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What is IGM?

Absorption in Quasar spectra
along the line of sight

Flux power spectrum

Scattering of the photon on n = 1→ n = 2
Hydrogen transition (Lyman series)
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Observable of the IGM
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Why should we care about IGM?

ρg -gas density

F -observed flux

Flux is a biased
tracer of the density:

F ∼ b ρg

Sensitive to fluctuations, along the line-of-sight, on scales ∼ 0.1− 10 Mpc/h
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Flux is a biased
tracer of the density:
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Sensitive to density fluctuations, along the line-of-sight, on scales ∼ 0.1− 10 Mpc/h

small scales
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Why should we care about IGM?

ρg -gas density

F -observed flux

Flux is a biased
tracer of the density:

F ∼ b ρg

Sensitive to mildly non-linear density fluctuations, along the line-of-sight, on scales ∼ 0.1− 10 Mpc/h
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Cold Dark Matter (CDM):
heavy, non-interactive particle(s) → WIMPs

Cold Dark Matter problems (?)
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Cold Dark Matter (CDM):
heavy, non-interactive particle(s) → WIMPs

CDM problems of small-scale physics:
I Missing satellites
I Core/Cusp problem
I ...


→ Alternative DM models

(Warm DM, Fuzzy DM,
Self-interacting DM, ...)

Baryonic physics.
Cold Dark Matter problems (?)
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Warm Dark Matter (WDM):
Free-streaming of DM particles
(From the time they decouple
until they become non-relativistic)

Fuzzy Dark Matter (FDM):
de-Broglie wavelength
of ultra-light DM scalar

=⇒ erases small scale structure

Typical λFS ∼ Mpc/h
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Non-CDM erases small scale structure

Typical DM particle mass ·
from local small-scale structure · mWDM ∼ 2− 3 keV (WDM)

mFDM ∼ 1− 10 × 10−22 eV (FDM)

Vid Iršič (University of Washington) Small scale structure of the IGM INPA @ LBNL 6 / 18



0.0 0.2 0.4 0.6 0.8 1.0
1/mWDM [keV−1]

L
ref
Cf = 1.3

Weak priors

XQ-100

HIRES/MIKE

XQ-100 + HIRES/MIKE

’realistic’ thermal history:

→ mWDM > 5.3 keV @ 2σ

conservative thermal history model:

→ mWDM > 3.5 keV @ 2σ

10−23 10−22 10−21 10−20

m [eV]

0.0

0.2

0.4

0.6

0.8

F

3 σ C. L. (Lyman-α forest)
2 σ C. L. (Lyman-α forest)
”solution” to missing satellite
Nsub = 60 (Mhalo = 1012M�/h)

Nsub = 60 (Mhalo = 3 · 1012M�/h)

’realistic’ thermal history:

→ mFDM > 37 × 10−22 eV @ 2σ

conservative thermal history model:

→ mFDM > 20 × 10−22 eV @ 2σ
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What do we measure?

Measured quantity:

f = C ·F̄ (1 + δF)+n
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f = C · F̄ (1 + δF) + n

observed flux

continuum

absorption

noise

F̄ δF

− ln F̄(z) ∝ (1 + z)3.6

〈δF (x)δF (x + r)〉 ≡ ξF (r)

ξF (r) =
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2π

∫
PF (k)e−ikr dk
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Matter ↔ Lyman-α
3D: Matter Power spectrum Pm(k, z)
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Matter ↔ Lyman-α
3D: Matter Power spectrum Pm(k, z)
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1D: Flux Power spectrum PF(k, z)

1D: small scales, gas physics, mwdm, . . .
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F(ρg): Complex non-linear relationship
Flux fluctuations in Lyα forest trace matter density fluctuations

F = exp [−τ(δ)]

I Intergalactic medium (IGM) is mainly highly ionized hydrogen gas (Gunn & Petterson)
I UV photo-ionization in equilibrium with recombination
I Data & simulations suggest the state of IGM: 104 K and low densities 10−4 cm−3

I Equation of state of the IGM can be approximately described by T ∝ ργ
Highly nonlinear relation between flux and density

F = exp [−A (1 + δ)p]

But that is not all... Temperature + peculiar velocity effects:

F(v) = exp
[
−A(z̄; Ωi)

∫
ds
(

1 + δb(s)
)2

T(s)−0.7 Γ−1
γ,HI V

(
v − s − vp(s); T(s)

) ]
UV photoion. equil. is 2 body process

and has T depend.

strength of the UV background

Line profile with broadening:
Doppler, pressure, ...

peculiar velocity shift
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WDM mass constraints
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→ mWDM > 3.5 keV @ 2σ

Low-z data:

XQ-100 (3 < z < 4.2)

High-z data:

HIRES/MIKE (4.2 < z < 5.4)

Typical DM mass:
mWDM ∼ 2− 3 keV
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FDM mass constraints
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mFDM = 10× 10−22 eV

T0(z) is power-law

→ mFDM > 37.5 × 10−22 eV @ 2σ

T0(z) free +
∂T0

∂z
bounded

→ mFDM > 20.4 × 10−22 eV @ 2σ

FDM + Quantum Pressure

→ mFDM > 21.1 × 10−22 eV @ 2σ

Results later confirmed by independent groups:

Yeche et al. 2017 (WDM)

Armengaud et al. 2017 (FDM)

Typical DM mass:
mFDM ∼ 1− 10 × 10−22 eV
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How cold is too cold?
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How cold is too cold?
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I He I and He II photo-heating

only increases the temperature
I H II, He III recombination

cooling decreases temperature
by ∼ few %

I Planck ΛCDM Cosmology
I Trei = 10, 000 K (more realistic

would be 20, 000 K)

Simple model:
I instantaneous H reionisation at

zrei = 9
I HI photo-heating, depends on

spectral index of UV intensity
αbk = 0

I Compton cooling + adiabatic
expansion
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How cold is too cold?
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Overlapping constraints with different probes

10−23 10−22 10−21 10−20

m [eV]

0.0

0.2

0.4

0.6

0.8

F

3 σ C. L. (Lyman-α forest)
2 σ C. L. (Lyman-α forest)
”solution” to missing satellite
Nsub = 60 (Mhalo = 1012M�/h)

Nsub = 60 (Mhalo = 3 · 1012M�/h)

with T. Kobayashi
(SISSA)

Vid Iršič (University of Washington) Small scale structure of the IGM INPA @ LBNL 13 / 18



General non-CDM models

General transfer function for DM: T(k) =

√
PnCDM
PCDM

=
[
1 + (αk)β

]γ
,

E.g. for thermal WDM: β = 2.24, γ = −4.46, α ∝ 0.049
(mWDM
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)−1.11
h−1 Mpc
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Constraints on the shape of the nCDM T (k)
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Stable limit on the scale of suppression
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Stable limit on the scale of suppression
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Conclusions

Cosmological & Astrophysical Constraints on WDM:
I Combined data: XQ-100 + HIRES/MIKE (high resolution, high redshift)
I Large redshift range and probing small scales
I Good agreement with thermal history evolution (a paper by Becker+11)
I Constraints on WDM from combined data: mWDM > 5.3 keV at 2σ.
I Constraints on WDM from combined data: mWDM > 3.5 keV at 2σ (conservative

thermal history)
I The paper: astro-ph/1702.01764

Cosmological & Astrophysical Constraints on FDM:
I First FDM constraints from Lyman-α forest
I Constraints on FDM from combined data: mFDM > 37.5 × 10−22 eV at 2σ.
I Constraints on FDM from combined data: mFDM > 20.0 × 10−22 eV at 2σ

(conservative thermal history)
I mFDM value from ”local” Universe leads to unphysically small high-z temperature
I FDM parameter space greatly constrained: it is hard to solve missing satellite problem and

satisfy Lyα constraints.
I The papers: astro-ph/1703.04683, astro-ph/1708.00015
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