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1) Large-Scale Structure and Baryons: A high-z (Lyman-ɑ)and low-z example (tSZ)

2) Cosmological Hydrodynamical Simulations

3) Machine Learning as a New Computational Paradigm

4) Unifying ML and Hydrodynamical Simulations with a Field Level Approach



A High Redshift Example: Lyman-ɑ Forest

Nearby (low-z) quasars have fewer absorption lines than distant (high-z) quasars

From Bill Keel



https://docs.google.com/file/d/1RHgCInk4ec-Wc0iVw2OYelgwRYMQ0WdX/preview


If neutral hydrogen/flux is a function of density, can use absorption as a tracer of clustering 
→ constrain physics which effects clustering

Lyman Alpha as a Cosmological Probe

Rogers+Peiris (2021)

Warm Dark Matter

DESI (2024)

Cosmic Expansion



Basic Idea: Observe lots of lines of sight in small area and then 
interpolate/extrapolate between absorptions on various of lines of sight.
(Pichon+2001, Caucci+2008, Lee+2014)

Lyman Alpha Tomography: Unique Probe of z~2 Universe

From Casey Stark
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Applied to Data: COSMOS Field
COSMOS Lyman Alpha Mapping and 
Tomography Observations (CLAMATO)

Lee et al. (2016), BH et al. (2023)

Three Dimensional Map of Cosmic Web

320 background sources in COSMOS field



https://docs.google.com/file/d/1lLSvyn-P_QvJgtXC5pP9KvySFbytIocd/preview


Discrepancy between Galaxy Fields and Flux Fields

Dong + BH et al. (2023)

There exist a lot of clusters which appear in either galaxy or Lyman-ɑ, but not both! 



Discrepancy between Galaxy Fields and Flux Fields

Dong + BH et al. (2023)

There exist a lot of clusters which appear in either galaxy or Lyman-ɑ, but not both! 
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Feedback and Baryon Cycle Leisawitz et al (2019)



A low-z Example : Sigma 8 Tension and tSZ
(from M. Douspis)

Low Redshift

Inferred from
High Redshift



One Example: Thermal Sunyaev Zeldovich Effect

from Sunyaev + Zeldovich (1980)

Mroczkowski, Nagai, Basu, Chluba et al. (2019)



tSZ Effect : Compton y-map Planck 2015
(Aghanim, et al.)

Coma Cluster tSZ



Thermal Sunyaev Zeldovich Effect : Halo Model

Total “power” of tSZ comes from clusters across 
different masses at different redshifts:

Halo Mass Function 
(Cosmology)

Halo Pressure Profile 
(Baryon Physics)

NIKA (Macías-Pérez et al. 2019)

NIKA (Macías-Pérez et al. 2019)



Thermal Sunyaev Zeldovich Effect : Power Spectra

Volume Factor (Geometry)
Halo Mass Function 

(Cosmology)
Halo Pressure Profile 

(Baryon Physics)

BH, Seljak (2017)

Modelling Pressure Profile with Feedback:

Parametrization:

Planck (2013)

Add up all halos across all redshifts and mass ranges, weighted by pressure/geometry



tSZ: Likelihood analysis with Planck Data
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Preference for more powerful feedback?



Can simulations provide insight?



http://www.youtube.com/watch?v=-Za5Eer0DXw


Components of a Hydrodynamical Simulation

1) Dark Matter evolution

2) Gas evolution 

3) “Subgrid Physics” (i.e. anything not in Navier-Stokes Equations)



Dark Matter Evolution

Collisionless Boltzmann Equation/Vlasov Equation for phase space distribution (f):

Can solve this numerically by sampling phase space and using Hamilton’s Equations:

Position:

Velocity:

Lots of tricks to calculate g efficiently (particle-mesh, octotree, etc.)



http://www.youtube.com/watch?v=81FjTTB1mtc


Hydrodynamics

Euler Equations: (Comoving coordinates, single energy formalism)

Describes the change in density, pressure/internal energy, and momenta of a gas

Density

Momenta

Energy



Discretize and Solve (Eulerian)

Break up domain into discrete blocks: Turns every timestep into a series of 
linear operations:

Greenshields+Weller

Actual choices of how to best break up these terms are quite complex… 

State Vector (Density, Momentum, Energy)



Hydrodynamics

Shocks Fluid Instabilities



Subgrid Physics

 From Debora Sijacki



Subgrid Physics

Lots of possible subgrid physics to include:

1) Metal heating/cooling
2) Star Formation
3) Active Galactic Nuclei
4) MHD
5) Cosmic Rays
6) Galactic Inflow/Outflow
7) Subgrid turbulence

Many others…



Hydrodynamical Simulations : Inconsistencies at Small Scales 

AGORA (Roca-Fàbrega et al. 2021)



Hydrodynamical Simulations : Inconsistencies at Small Scales 

AGORA (Kim et al. 2019)



Can machine learning help?



Machine Learning Revolution https://github.com/georgestein/ml-in-cosmology



Neural Network : Training a Regression Model

��



More Broadly: Differentiable Programming



Role of (Deep) ML in Simulation-Based Cosmology

1) Direct Regression/Inference : Train models on existing simulations and 
apply directly to data.
○ Models don’t know what they aren’t trained on… need to know 

systematics EXACTLY (see BH, Melchior 2022)

2) Generation/Surrogate Modelling : Use ML tools to generate additional 
simulations to apply “traditional” techniques.

 

3) Integrated Approach : Leverage ML tools within traditional simulations to 
allow new types of inference.



Surrogate Model Approach



Hydrodynamic reconstruction from N-body simulations

Finding a reliable method to reconstruct hydrodynamic quantities from N-body simulations has been a 
long-standing research goal

N-body

Hydro

Lya 



Hydrodynamic reconstruction from N-body simulations

Finding a reliable method to reconstruct hydrodynamic quantities from N-body simulations has been a 
long-standing research goal

Do it with neural networks of course! 
Image translation models are great candidates

N-body

Hydro

Lya 



Hydrodynamic reconstruction from N-body simulations

Three approaches:

1. Adversarial U-Net: deterministic approach
Reconstruct hydro fields, focus on accuracy in Lya
(Harrington ++ BH, 2021)

 

N-body
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Reconstruct hydro fields, focus on accuracy in Lya
(Harrington ++ BH, 2021)

2. HyPhy: variational approach with a CVAE
Reconstruct posterior over hydro fields, allowing for 
uncertainty quantification in mapping
(BH+ 2022)
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Hydrodynamic reconstruction from N-body simulations

Three approaches:

1. Adversarial U-Net: deterministic approach
Reconstruct hydro fields, focus on accuracy in Lya
(Harrington ++ BH, 2021)

2. HyPhy: variational approach with a CVAE
Reconstruct posterior over hydro fields, allowing for 
uncertainty quantification in mapping
(BH+ 2022)

3. Stochastic Interpolants Model
Uncertainty estimation + better reconstruction fidelity
(BH + 2025) 

N-body

Hydro

Lya flux



N-body      Hydro

Generative modeling task:
Accurately reproduce Lya flux from N-body simulation

Following pix2pix design, generation of output fields 
handled by U-Net architecture:

N-body

Hydro

Lya fluxU-Net

Harrington + BH  et al., 2021

https://phillipi.github.io/pix2pix/


N-body      Hydro: Lya reconstructions

Harrington + BH  et al., 2021



N-body      Hydro: Lya reconstructions

Harrington + BH  et al., 2021

Summary Statistics



Extend to Include Uncertainty Estimation: HyPhy

Can implement latent space implementation in variational auto-encoder or diffusion model 

approach.

Hydrosim HyPhy Estimated 
Variance

BH et al. (2022)



Uncertainty Quantification Allows Diffuse Gas Recon

Diffuse Gas

Dense Clusters

Horowitz et al. (2022)

Hydro Simulation HyPhy (ML Model)



The Future: Stochastic Interpolants with Score-Based Diffusion

w/ Omar Yehia (IPMU), 
Carolina Cuesta (MIT)

Learn the solution to a stochastic differential equation mapping from an input to a target distribution.



BaryonBridge: Stochastic Interpolants

w/ Omar Yehia (IPMU), 
Carolina Cuesta (MIT)

Learn the solution to a stochastic differential equation mapping from an input to a target distribution.

We will map to fully hydrodynamic CAMELS simulations from particle-mesh realizations generated from 
same ICs. Conditional on cosmological and astrophysical parameters.

Preliminary
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Particle-Mesh IC-matched Gas Temperature

Random/latent variables

ICML2025: ML4Astro



Continuous Transport Realizations

(Albergo++ 2022, 2023)Stochastic case generalizes to Fokker-Planck Equation



Interpolant Function

(Albergo++ 2022, 2023)



Interpolant Function
(Albergo++ 2022, 2023)



Training Interpolant Functions

(Albergo++ 2022, 2023)



Stochastic Interpolation Model: Conditional with CAMELS sims
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Generalized Across Cosmology/Astrophysics

Map to 3d Lyman Alpha Forest 
w/ THALAS (Ding, BH, Lukic 
(2024))

Can also be used for field level 
inference, since ML model is 
differentiable…

Preliminary



Applied to Arbitrarily Large Volumes : CAMELS -> TNG50
Preliminary



Power Spectrum on TNG50 (large separate hydrosim)



Field Level Inference 
w/ Differentiable Programming 



Differentiable Programming Chen et al. (2023)



Automatic Differentiation

Computational graph for simple function: y = f(x
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Differentiable Cosmological Simulations

Initial 
Density 
Phases

Physical 
Simulation

Simulated 
Outputs

Data

Likelihood 
Function

Update Phases/Parameters



Differentiable Dark Matter Evolution

Small industry has developed for differentiable particle mesh codes:

From Li et al. (2022)

(Jasche & Wandelt 2013)
(Wang et al. 2014, …)
(Feng et al. 2016, …)

(Modi et al. 2020)

(Li et al. 2022)

Particle Mesh codes are lots of linear operations (including fast fourier transforms), so 
straightforward to differentiate.



Differentiable Particle Mesh Dark Matter



Basic Idea: Observe lots of lines of sight in small area and then 
interpolate/extrapolate between absorptions on various of lines of sight.
(Pichon+2001, Caucci+2008, Lee+2014)

Lyman Alpha Tomography: Unique Probe of z~2 Universe

From Casey Stark



Tomographic Absorption Density Inference Scheme (TARDIS)

Forward modeling approach to reconstruct the initial density field given the observed Lyman alpha 
forest.

Neutral Hydrogen

Fluctuating Gunn-Peterson 
Approx (exp mapping)

BH et al. (2019, 2020)
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Data to Initial Conditions



Applied to Data: COSMOS Field

Initial Gaussian Field

BH et al. (2023)



Run Illustris With Same Initial Conditions: cosmosTNG

Design a constrained simulation in the COSMOS field at z~2 
using the AREPO code + TNG galaxy formation model

Good qualitative match between field level observations 
and constrained hydrosim run

Lots of limitations, particularly in centers of massive 
clusters… Can we plug in AREPO/TNG to TARDIS?

Reconstructed subvolume

Byrohl ++ BH (2024)



Fully Differentiable Hydrodynamics



Fully Differentiable Hydrodynamical Simulations

● In some cases can just import a different library to get automatic differentiability (i.e. JAX vs numpy).

● Care needed for full hydro-sims for memory reasons; can’t save all states! 

○ Adjoint method: Pontryagin (1962), McNamara et al. (2004), Li et al. (2022)

Toy Example: Taylor–von Neumann–Sedov blast waves in 2D 

No gravity, constant medium

2nd order TVD scheme

Based on fortran code from 
Trac & Pen (2003)

Euler Eq.

BH + Lukic (2025)



The Future? Fully Differentiable Hydrodynamical Simulations

Toy Example: Taylor–von Neumann–Sedov blast wave in 2D Optimization!

Initial Energy Field Predicted Field Target Field

BH + Lukic (2025)



800x800 resolution
on 4 gpus (V100)



Couple Dark Matter to Hydro Gravitationally

Dark Matter IE (Temp)Gas Density

BH + Lukic (2025)



Field Level Inference through Hydrosims

Mock observable inspired by thermal SZ: Noisy 3d map of thermal pressure

643 box, 8 h-1 Mpc, evolved till z=2.98 (240 timesteps of hydrosim)

Mock Data Slice

BH + Lukic (2025)



Field Level Inference : Baryons + Dark Matter
Joint optimization of initial dark 
matter + baryon distribution!

BH + Lukic (2025)



Field Level Inference : Recovered Summary Statistics



Applications

● The Dream: Full field level inverse modelling including galaxy formation 
down to z=0, marginalizing over all possible subgrid physics, including all 
CMB secondaries, etc.

● The near-term: Map hydrodynamical fields and work in summary statistic 
space, optimizing for cosmology/subgrid/bias jointly. (i.e. Lanzieri+ (BH) 
(2022) for weak lensing)

In either case, could also use some tricks like MUSE (BH+2018, Millea+Seljak 2022) to 
avoid sampling.



Subgrid physics modelling example: Supernova feedback

A simple model: Stochastic formation of a star particle with probability 

𝛱
0
 if T < T

c
 , and the density 𝛅 > 𝛅

c
. Stars release energy, E

0
, at once. 

Input Field(s) 𝛱
0 Sampled



Dealing with Stochasticity and Discreteness

Taking derivatives through random variables

Reparametrization Trick… Common with VAEs

Same technique for Differentiable Halo Occupancy Distribution in BH+ (2022)

From F. Errica

θ θ

θ θ

Gumbel Softmax (Maddison+2016, Jang+2016) : Introduce a temperature parameter to control 

“discreteness” w/ one-hot encoding



Subgrid Physics in Motion

Dark Matter IE (Temp) Gas Density Star Formation 



More Realistic Simulation

Dark Matter IE (Temp)Gas Density Star Field

Simplifying assumption, track stellar particles with dark matter particles.
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Parameter Constraints via Hamiltonian Monte Carlo

Rapidly explore combined parameter 

space based on mock power spectra 

data!

- HMC highly efficient, 500 samples 

with effective sample size of 6000!



Going to Smaller Scales/Faster Sims



Going Beyond Standard Particle Mesh : Adaptive Approach
Use adaptive mesh which maintains same rectangular topology (easy for GPU, easy for autodiff)

Preliminary

FastPM

APM
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Inspired by U. Pen (1997)

Can’t use standard FFTs, instead directly solve for potential



The Future… Solver-in-Loop Models

Best of both worlds? 

Speed/accuracy of ML models with the generalizability of hydrodynamical simulations!

Low Resolution High Resolution

“Resolution” could mean many things… (mesh size, adaptive mesh refinement, memory 

intensive Riemann solvers, larger timesteps, additional (subgrid) physics, etc.)

Inspired by Um et al. (2020)



Going Beyond Standard Particle Mesh : Exact Approach

Can also back-propagate through exact particle force calculation.

Preliminary

w/ Lucas Mebille

Individual orbits are hard/impossible to reconstruct, but ensembles (i.e. halos) 

can be reconstructed



The Future… Solver-in-Loop Models

Even with GPU, some simulations are computationally expensive…

Inspired by Um et al. (2020)



The Future? Solver-in-Loop Models

Initial 
Condition

Final State

Train model by minimizing loss over all timesteps: 

Setup neural network to augment each timestep:

Could also include it at the level of flux and/or source calculations

(“Standard” sim)

Inspired by Um et al. (2020)



Solver-in-Loop Models : Star Formation

Train star formation field iteratively in loop to capture star formation 

history. Trained on “standard” hydrodynamical simulations, CAMELS 

simulations (Villaescusa-Navarro et al). w/ Lillie Szemraj

PM Stellar ComponentPM Dark Matter Hydrosim Reference

IN PROGRESS



Summary

The “machine learning revolution” is useful beyond making complex black-box models! 
Optimization methods, available GPUs, etc. have opened new doors for analysis.

● Machine learning can be used a surrogate model for realistic hydrodynamical physics 
in a forward model.

● Hydro-sims themselves can be able to be constructed in a differentiable fashion, even 
with complex stochastic feedback.

● In the future, ML-assisted hydrosims could maintain generalizability while vastly 
outperforming current classes of simulations.



Backup Slides



Couple to dm-solver (PMWD)

DM Baryon Density
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Power Spectra : Varying Critical Density



Derivatives of Summary Statistics



https://docs.google.com/file/d/1lLSvyn-P_QvJgtXC5pP9KvySFbytIocd/preview




Hydrodynamics

Combined Conservation Equation:

Flux Term: Source Terms:

Can solve numerically time-step by timestep on a grid.

State vector:



Optimization in Progress

(used fewer timesteps, so easier than 3 blast example…)



Dealing with Stochasticity and Discreteness

Taking derivatives through random variables

Reparametrization Trick… Common with VAEs

Classic Multivariable Gaussian example

From F. Errica

Same technique for Differentiable Halo Occupancy Distribution in BH+ (2022)

θ θ

θ θ



Taking Derivative Through Discrete Stochastic Process

Sampling a discrete random variable differentiably with a Gumbel random g
i

Introduce tau, temperature relaxation parameter: (Maddison+2016, Jang+2016)

Simplifies a bit for one class:

Same technique for Differentiable Halo Occupancy Distribution in BH+ (2022)

In Progress!



More Realistic Simulation

Dark Matter IE (Temp)Gas Density Star Field



Slice Through (more realistic) Simulation

(Log) Dark Matter (Log) Gas Density Star Field

In Progress!



https://docs.google.com/file/d/1RHgCInk4ec-Wc0iVw2OYelgwRYMQ0WdX/preview


Lyman Alpha Forest: Astrophysics and Cosmology

 Madau and Dickenson, 2014

Astrophysics Cosmology

Andreu Font-Ribera

http://www.annualreviews.org/doi/full/10.1146/annurev-astro-081811-125615




HSC-SSP: 8 years, 300 nights, completed
Wide: ~1200 sq deg to 26, Deep: 30 sq deg to 27, Ultra-Deep 3 sq deg to 28

PFS-SSP: 5 years, 360 nights, starting S2025



Key Pillars of the PFS-SSP

● CO - Cosmology

● GA - Galactic Archaeology 

● GE - Galaxy Evolution



Prime Focus Spectraph: Redshift Evolution of the Galaxy - Environment Relation



PFS

Unprecedented combination: 
spectral resolution, wavelength coverage, multiplex

PFS
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Differentiable Simulations



How Derivatives Help : Sampling

https://chi-feng.github.io/mcmc-demo/app.html

https://docs.google.com/file/d/1sXQoe54SzQOY9tgidrBc8fikiFHOsvFk/preview


Protocluster Science

BH et al. (2019, 2020)



Protocluster Science

BH et al. (2019, 2020)


