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Requirements for precision science:
      Accurate observations with good statistics
      Accurate theory that connects directly to observations 
      OR
      Controllable phenomenology that connects to observations

“Precision” Cosmology

Nonlinear regime of structure formation now plays a key role 
in all of the above. Accuracy figure of merit is ~1%!

Large-scale, quantitative, and accurate simulations, based on 
solid theory, are essential for future progress.

“The Universe is far too complicated a structure to 
be studied deductively, starting from initial 
conditions and solving the equations of motion.”

  -- Robert Dicke (Jayne Lectures, 1969)

Touchstone: 
CMB

Times have changed! 



Because of high dimensionality and strong nonlinearity effects, direct solution as 
a PDE is essentially impossible (unlike the case in plasma physics).

For small perturbations, the gravitational Jeans instability in an expanding 
Universe predicts:

As evolution proceeds, linear theory fails for               where        is determined 
very roughly by the dimensionless power spectrum being of order unity.

Accurate results in the nonlinear regime require N-body simulations.

The matter fluid evolves via a collisionless Vlasov-Poisson equation in an 
expanding background geometry. Initial conditions are prescribed by the 
spectrum of perturbative (Gaussian) linear fluctuations at an early epoch.

Evolution under Gravity

P(k,z) = b(z,zin)2P(k,zin)

k > kNL kNL



Mock catalogs from 20 years ago for “eyeball” 
comparisons with the CfA galaxy survey

Model b

Model a

CfA survey

I. Beginnings  (60’s/70’s)
Theory: Eulerian perturbations. 
Simulations: direct N^2 methods; 
N~100, no theory of initial conditions. 

II. Medieval period (80’s)
Theory: Lagrangian methods appear.
Simulations: Zeldovich approximation 
allows systematic approach to initial 
conditions. O(N) methods -- and their 
adaptive extensions -- implemented.

III. Modern period (90’s)
Theory: Attempts to control 
perturbation theory.
Simulations: Multi-resolution parallel 
codes; hydrodynamics simulations 
approach maturity.

IV. Current era
Transition from qualitative analysis to 
quantitative prediction underway 
driven by observational advances, but 
nonlinear sector resists “theory” --

Davis et al 1985

Large Scale Structure Theory/Simulations



Large Scale Structure of the Universe

I. Two-point Statistics
Relatively robust, “easy” to 
compute and compare to 
observations. Clean theoretical 
interpretation.

II. Shape Indicators
Useful as characterization 
tools, but connection to 
underlying gravitational physics  
unclear.

III. Higher-point statistics
Tedious to compute, 
theoretical interpretations not 
so straightforward.

IV. Phenomenology
Halo models useful as 
statistical descriptors and to 
provide basic intuition, but 
connection to underlying 
theory is very indirect.

Homogeneity scale ~ 100 Mpc
SDSS Main Sample ~ 400 Mpc 



Percolation 

Last & Thouless ‘71

Percolation 
threshold

Hole concentration

Sethna ‘06

I. Continuous 
Structural 
Transition
As a function of some 
control parameter, a 
physical property 
changes continuously 
near a singular point.

II. Percolation I
Percolation = 
probabilistic models 
with continuous 
(percolation) transition

III. Percolation II
No concepts from 
equilibrium statistical 
mechanics or the 
existence of 
Hamiltonians required 
to study percolation.

IV. Universality/
Scaling
Near the transition 
point, percolation 
properties should split 
up into a small number 
of universality classes
(e.g., morphology of 
percolating cluster). 

Simple scaling laws 
expected near the 
transition --



Smith & Lobb ‘79

Continuum Percolation 

Roberts & Teubner ‘95

I. Continuum Models
Instead of lattice-based models, consider 
continuous random fields, control parameter 
being amplitude or density, etc. Dual models 
map to random networks.

II. Gaussian Random Fields
A popular, very simple, class of continuum 
model; no exact results available for 
percolation properties! 

III. Scaling Ansatz (single-variable)

Normalized cluster number (per lattice site) of 
a given size, as a function of on-site 
occupation probability, near the percolation 
transition, and for large sizes.

Simple (continuum) versions of this ansatz 
provide very good fits to numerical results. 

Basis of application to cosmology --

ns(p) = s−τ f [(p− pc)sσ], (p→ pc, s→ ∞)



Cosmic Voids

Voids

“Best-fit”
ellipsoids

I. Voids
Underdense regions in the 
Universe largely devoid of 
bright galaxies (suppressed 
mass function)

II. Observation
As surveys cover large 
contiguous volumes (SDSS), 
analysis of voids becomes 
possible (void scale ~ 10 Mpc)

III. What is a Void?
Various ambiguities in 
operational definitions. We 
use a simple underdensity 
threshold definition.

IV. Voids are Complex 
Strategy: Use scaling ansatz 
to characterize void 
properties near the void 
percolation transition

V. Void Percolation
At percolation, the largest void quickly 
dominates the excursion set (exclude 
this); near this point the individual voids 
reach their largest sizes and volumes

Example voids from a
256 Mpc/h simulation

Shandarin et al MNRAS 2006



R=1 Mpc/h

Voids and Percolation I

1. Void Filling Factor
The void filling factor is a 
monotonic function of the 
(under)density threshold 
over the range of interest.

I1. Percolating Void
At percolation, about half 
of the volume of the 
underdense excursion set 
is already in one 
percolating void.

R=2 Mpc/h

Percolation 
threshold

at z=0



Percolation Ansatz Works

Void vol. fn.

at

before

after

Voids and Percolation II: Gaussian Fields

n(V )∼V−τ exp(−cV )
c∼ |FF−FFc|1/σ

LCDM Initial Conditions 
at z=150

Void vol. fracn.

1. Void Volume Function
# of voids of volume V, analog 
of halo mass function

I1. Void Volume Fraction
Fractional amount of total 
volume in voids of volume V.

τ = 1.95



z=0 z=50

At percolation

Voids and Percolation III: Evolution

before

after

Void vol. fn. vs Volume

1. Void Evolution
Number of small voids 
decreases, number of 
large voids increases.

I1. Scaling Violation?
Percolation ansatz does 
not hold at z=0.

Not clear why: finite 
volume, large-scale 
coherence, --



I. Singularities in 
Lagrangian Space
Singularity structure of local 
map approximations:

II. Cosmic Web
“Correlation bridges” from 
considering conditional multi-
point correlation functions 
(e.g., of the primordial shear 
field)

II. Structural “Building 
Blocks”
Although the basic units of 
structure may be so indentified, 
we desire a global, quantitative 
measure of network structure.

Local Descriptions of Structure Formation

!x(!q, t) =!q+D(t)!sR(!q)

dik =
∂si

∂qk

Arnold et al ‘82

Bond et al ‘96



Percolation in Gaussian Random Fields

n=4

n=-2

LCDM(1)

LCDM(10)

I. Gaussian Fields 
Uniquely specified by their 
two-point statistics (power 
spectra).

II. Symmetry
Exact symmetry between 
overdense and underdense 
excursion sets. 

III. Percolation Ansatz

         is the filling factor of the 
percolating region.          is the 
filling factor when percolation 
occurs. The ansatz applies 
when                     .  

FF1 = A(FF−FFc)ν

FF1
FFc

FF > FFc

Percolation threshold decreases 
with increase of large-scale power



Percolation Coefficients

Multiple realizations capture percolation coefficients accurately. 

LCDM(1) = “Concordance” model, 15 realizations of a 340 Mpc/h box,
                   with smoothing scale R = 1 Mpc/h.

LCDM (10) = As above but with 10 realizations of a 3.4 Gpc/h box, with             
                      R = 10 Mpc/h

NL is the evolved LCDM(1) case at z = 0.



Fraction of particles from the 
initial percolating set, in the 
final percolating region at z=0 

(Filling factor of 
percolation region at z=0)

Fraction of percolating 
region in the excursion 
set at z=0 

Nature or Nurture?
1. “Percolating” 
Particles
All particles in a 
percolating region (not 
equivalent to density cut)

I1. Forward/Inverse 
Maps
Particle from initial 
percolating region(s) are 
mapped to final 
percolating regions. But 
these particles do not 
themselves form a 
percolating cluster: they 
fragment into a very large 
number of isolated regions 
(overdense regions 
collapse), a compression 
factor of more than an 
order of magnitude.

Inverse particle map 
percolates --

“Half-fill” point
for initial percolating 
region



Forward and Backward Maps

Forward Map
z=50, percolating region (blue)
z=0, percolating region (yellow)
Slab thickness=70 Mpc/h

Backward Map
z=0, percolating region (yellow)
z=50, percolating region (blue)
Slab thickness=70 Mpc/h



LCDM Percolation Transition at z=0

Linear
(symmetric)

Nonlinear
(Underdense)

Nonlinear
(Overdense) I. Broken Symmetry 

Symmetry between 
underdense and overdense 
excursions is broken by 
gravitational evolution

II. Percolation 
Ansatz still holds 
separately for the under 
and overdense sets. 
Overdense set percolates 
much more easily (more 
large-scale power), 
underdense percolation set 
goes the other way: 
Nonlinear evolution 
amplifies the network 
structure present in the 
cosmic web.



Summary

I. With current computational capabilities, percolation statistics 
can be calculated both robustly and accurately for cosmological 
density fields. 

II. Percolation provides a useful global measure of the nature of 
cosmological structure, how much is controlled by the initial 
condition, and how much by gravitational evolution. 

III. Percolation measures are easy to compute and should be 
applicable to large-volume galaxy surveys (both 2-D and 3-D).
No harder than the power spectrum or the two-point function? 
Explore with mock catalogs.

IV.  In statistical mechanics, percolation scaling laws have been 
predicted using RG methods. Can this -- or some other approach 
-- be an alternative to conventional perturbation theory to 
understand the gravitational instability?

V. Can particle percolation statistics be connected to 
phenomenological approaches to structure formation, such as 
the halo model? 


