Peculiar velocities in Cosmology

ROMAIN GRAZIANI

September 27th - LBNL

$z\sim 1100$ $t\sim 400\,000\,{\rm yr}$

 $z \sim 0$ $t \sim 14 \times 10^9 \, \mathrm{yr}$

Probing our cosmological model

Probing our cosmological model

The Hubble constant tension

Growth rate

The Local Universe

Simulated Local Universe

 $\Omega_m = 0.3$ LCDM

8

Density fluctuations

Simulated Local Universe

Matter density fluctuations :

$$\sigma_8^2 = \langle \delta^2 \rangle$$

But we don't see dark matter...

 $\Omega_m = 0.3$

LCDM

 $\Omega_m = 1$

CDM

Growth rate of structures

Simulated Local Universe

Matter density fluctuations + Growth factor

 $(f\sigma_8)^2 = \langle v^2 \rangle$

Depends on the <u>expansion model</u> and gravity

 $\Omega_m = 0.3$

LCDM

 $\Omega_m = 1$ CDM

Goal

State of the art: >15% measurement with peculiar velocities

Measuring peculiar velocities

Peculiar velocity measurement

$$1 + z = \left(1 + \bar{z}\right)\left(1 + \frac{v^r}{c}\right)$$

Peculiar velocity measurement

Peculiar velocity measurement

The roadmap to peculiar velocities

$$1 + z = (1 + \overline{z})\left(1 + \frac{v^r}{c}\right)$$

The roadmap to peculiar velocities

$$1 + z = (1 + \bar{z})\left(1 + \frac{v^r}{c}\right)$$

$$\downarrow \mu = 5 \log_{10} \frac{d}{10 \text{ pc}} = m - M$$

The roadmap to peculiar velocities

$$1 + z = (1 + \bar{z}) \left(1 + \frac{v^r}{c} \right)$$

$$\downarrow \rightarrow \mu = 5 \log_{10} \frac{d}{10 \text{ pc}} = m - M$$

$$\boxed{\text{Tully-Fisher Relation } L \sim V^4 \quad \sigma_\mu \sim 0.4}$$

$$z \sim 0.1$$

$$\boxed{\text{SNela } L \sim \text{constant } \sigma_\mu \sim 0.14}$$

$$z \sim 1$$

Radial peculiar velocity measurement : an exemple

Radial peculiar velocity measurement : an exemple

Radial peculiar velocity measurement : an exemple

Power spectrum

$$\langle \delta^2 \rangle = \sigma_8^2 P_0(k)$$

Power spectrum

Inverse analysis

Inverse analysis

Systematic

Errors

- Malmquist bias
- Selection effects
- Error bias
- Density bias
- Covariance bias

Inverse analysis

Graziani et al., 2019

Graziani et al., 2019

- Hierarchical Bayesian model
- Highly modular
- Room for systematics modeling

$$\mathcal{L} = \int \mathcal{N}\left(m - M_{SN} - 5\log_{10}\frac{r}{10 \text{ pc}}, \sigma_m\right) \\ \times \mathcal{N}\left(v^r(z, r) - \boldsymbol{v}_{\delta}(\boldsymbol{r}), \sigma_{nl}\right) \\ \times \mathcal{N}\left(\hat{\delta}(\boldsymbol{k}), P(k)\right) \, \mathrm{d}\hat{\delta}$$

Metropolis Sampling

- Randomly draw a set of parameters
- If the posterior probability is approximately higher than previously, keep this set
- Else, retry

Metropolis Sampling

- Randomly draw a set of parameters
- If the posterior probability is approximately higher than previously, keep this set
- Else, retry

Pros	Cons
Converges* to the solution *sometimes	Inefficient in high dimensions
Easy to implement	Inefficient when parameters are correlated
	Inefficient for multi-modal or multi-scale distribution
	Samples are highly correlated

Gibbs Sampling

- Draw each parameter from its conditional probability
- Accept all the samples

Gibbs Sampling

- Draw each parameter from its conditional probability
- Accept all the samples

Pros	Cons
Converges* to the solution *always	Need the conditional probability (rare)
Easy to implement	Samples highly correlated
Acceptance rate of 100%	Model dependent

MCMC

MCMC

The model applied on galaxy data

Inverse method

Graziani et al., 2019

Peculiar velocity field vs galaxy distribution

The model applied on galaxies

Graziani et al. 2019, 1901.01818

No cosmological parameter fitting because galaxy data are prone to **systematics**

Why SNela ?

• Brightness

Graziani et al., *in prep.* Kim, ..., Graziani,... et al. 2019

- Precision : 1 SNela = 15 galaxies
- Systematics studied for cosmology
- Number ?

ZTF: 600 SNela/yr, z<0.1

LSST: 4000 SNela/yr z<0.2

Forecasts

Forecasts

Graziani et al., 2019

Results on mock

Including density correlations

 $\mathcal{P}(\mathcal{O}|\delta)?$

Density model

 \mathcal{P} oisson $(\mathcal{O}|\mathbf{r}) \propto n_g(\mathbf{r}) \times e^{-\int n_g(\mathbf{x}) \, \mathrm{d}\mathbf{x}}$

Density model: Linear bias

 \mathcal{P} oisson $(\mathcal{O}|\mathbf{r}) \propto n_g(\mathbf{r}) \times e^{-\int n_g(\mathbf{x}) d\mathbf{x}}$

$$n_g = 1 + \delta_g = 1 + b\delta$$

Linear bias

#52

$$\mathcal{P}$$
oisson $(\mathcal{O}|\mathbf{r}) \propto n_g(\mathbf{r}) \times e^{-\int n_g(\mathbf{x}) d\mathbf{x}}$

$$n_g = 1 + \delta_g = 1 + b\delta$$

Linear bias

$$\delta = f(\delta^L)?$$

$$\mathcal{P}$$
oisson $(\mathcal{O}|\mathbf{r}) \propto n_g(\mathbf{r}) \times e^{-\int n_g(\mathbf{x}) \, \mathrm{d}\mathbf{x}}$

$$n_g = 1 + \delta_g = 1 + b\delta$$

$$\delta = f(\delta^L)?$$

- Eulerian perturbation theory
- Lagrangian perturbation theory
- Effective perturbation theory

$$\mathcal{P}$$
oisson $(\mathcal{O}|\mathbf{r}) \propto n_g(\mathbf{r}) \times e^{-\int n_g(\mathbf{x}) \, \mathrm{d}\mathbf{x}}$

$$n_g = 1 + \delta_g = 1 + b\delta$$

$$\delta = f(\delta^L)?$$

- Eulerian perturbation theory
- Lagrangian perturbation theory
- Effective perturbation theory

$$\mathcal{P}$$
oisson $(\mathcal{O}|\mathbf{r}) \propto n_g(\mathbf{r}) \times e^{-\int n_g(\mathbf{x}) d\mathbf{x}}$

$$n_g = 1 + \delta_g = 1 + b\delta$$

Linear bias

$$n_g = \exp(b\delta^L)$$

(it is positive)

Hamiltonian sampling

- Draw a momentum for each parameter
- Integrate Hamiltonian equation for the parameters and their momenta
- Accept the state

Hamiltonian sampling

- Draw a momentum for each parameter
- Integrate Hamiltonian equation for the parameters and their momenta
- Accept the state

Potential : $\psi = -\ln \mathcal{L}$ Hamiltonian : $H = \sum_{i} \sum_{j} \frac{1}{2} p_{i} \mathbf{M}_{ij}^{-1} p_{j} + \psi$

Hamilton's equation of motion :

$$\frac{\mathrm{d}x_i}{\mathrm{d}t} = \frac{\partial H}{\partial p_i}$$
$$\frac{\mathrm{d}p_i}{\mathrm{d}t} = -\frac{\partial \psi}{\partial x_i}$$

Hamiltonian sampling

- Draw a momentum for each parameter
- Integrate Hamiltonian equation for the parameters and their momenta
- Accept the state

Pros	Cons
Converges to the solution	Hard to implement
Theoretical acceptance rate of 100%	Need to do math
Efficient for high dimensions and correlated models	

Results on mocks

- Mocks based on DM-only simulation
- 1000 SNe at z<0.05
- Observational uncertainty of 0.1 mag
- Includes LSST angular mask

Results on mocks

- Mocks based on DM-only simulation
- 1000 SNe at z<0.05
- Observational uncertainty of 0.1 mag
- Includes LSST angular mask

Results on mocks

- Mocks based on DM-only simulation
- 1000 SNe at z<0.05
- Observational uncertainty of 0.1mag
- Includes LSST angular mask

Comments

- Peculiar-velocity only Fisher-Matrix error: 6.3 (15%)
- Algorithm converges in approx. few hours
- Need to know the selection function

Markov step

CF2

- We can do maps from peculiar velocities
- We can do cosmology from peculiar velocities
- Know your selection effects