Squeezing f_{NL} out of the matter bispectrum with consistency relations

Sam Goldstein

COLUMBIA UNIVERSITY

<u>2209.06228*</u> SG, Esposito, Philcox, Hui, Hill, Scoccimarro, Abitbol ***Buchalter Cosmology 1st Prize**

<u>2310.12959</u> SG, Philcox, Hill, Esposito, Hui

Oliver Philcox

J. Colin Hill

Lam Hui

Roman Scoccimarro

Max Abitbol

Early Dark Energy and Lya Forest

- SG, Hill, Irśić, and Sherwin, 2303.00746
 - Phys Rev Lett. 131, 201001
 - Editors' Suggestion/Featured in Physics

Current Lya forest data disfavor EDE as a resolution to Hubble tension

What I won't talk about...

Galaxy-Halo Connection

- Comparing simulations with analytic models for LSS
 - Galaxy bias models: SG, Pandey, Slosar, Blazek, and Jain, 2111.00501
 - Splashback radius: 2111.06499 and 2105.05914

New physics from CMBxLSS

Correlations between long and short wavelength cosmological perturbations are highly constrained by symmetries

Soft/long wavelength mode: Hard/short wavelength mode:

Note Notation

Correlations between long and short wavelength cosmological perturbations are highly constrained by symmetries

Soft/long wavelength mode: Hard/short wavelength mode:

Note Notation

"Squeezed" bispectrum ($q \ll k \approx k'$)

Soft/long wavelength

Hard/short waveleng

Note Notation

"Squeezed" bispectrum ($q \ll k \approx k'$)

Introduction

- Upcoming large-scale structure (LSS) surveys will measure many modes
 - Stress test ΛCDM
 - Provide insight into initial conditions
- Theoretical challenge: **non-linearities**
 - Impose scale cuts \bullet
 - Particularly challenging for non-Gaussian/ higher-order statistics

BOSS galaxy power spectrum multipoles. (Measurements from Philcox & Ivanov, 2021)

Goal: Constrain cosmology from $\delta(\mathbf{x}) = \frac{\rho(\mathbf{x}) - \bar{\rho}}{\bar{\rho}}$

Compress field into its correlation functions

$\xi_n(\boldsymbol{x}_1,\ldots,\boldsymbol{x}_n) \equiv \langle \delta(\boldsymbol{x}_1)\ldots\delta(\boldsymbol{x}_n) \rangle_c$

- Compress field into its correlation functions
 - Power spectrum is lossless if field is Gaussian

- Compress field into its correlation functions
 - Power spectrum is lossless if field is Gaussian
- Need to model correlation functions with theory

- Compress field into its correlation functions
 - Power spectrum is lossless if field is Gaussian
- Need to model correlation functions with theory

- Compress field into its correlation functions
 - Power spectrum is lossless if field is Gaussian
- Need to model correlation functions with theory

- Compress field into its correlation functions
 - Power spectrum is lossless if field is Gaussian
- Need to model correlation functions with theory
- Theory is **non-linear**

- Compress field into its correlation functions
 - Power spectrum is lossless if field is Gaussian
- Need to model correlation functions with theory
- Theory is **non-linear**
 - Need to "throw out" measurements

- Compress field into its correlation functions
 - Power spectrum is lossless if field is Gaussian
- Need to model correlation functions with theory
- Theory is **non-linear**
 - Need to "*throw out*" measurements
 - Astrophysics/baryons

- Compress field into its correlation functions
 - Power spectrum is lossless if field is Gaussian
- Need to model correlation functions with theory
- Theory is **non-linear**
 - Need to "*throw out*" measurements
 - Astrophysics/baryons
- Observational limitations

- Compress field into its correlation functions
 - Power spectrum is lossless if field is Gaussian
- Need to model correlation functions with theory
- Theory is **non-linear**
 - Need to "throw out" measurements
 - Astrophysics/baryons
- Observational limitations
 - Generally observe biased tracers

ssiar

- Compress field into its correlation functions
 - Power spectrum is lossless if field is Gaussian
- Need to model correlation functions with theory
- Theory is **non-linear**
 - Need to "throw out" measurements
 - Astrophysics/baryons
- Observational limitations
 - Generally observe biased tracers
 - Redshift space distortions

ssiar

- Compress field into its correlation functions
 - Power spectrum is lossless if field is Gaussian
- Need to model correlation functions with theory
- Theory is **non-linear**
 - Need to "*throw out*" measurements
 - Astrophysics/baryons
- **Observational limitations**
 - Generally observe biased tracers
 - Redshift space distortions

- Compress field into its correlation functions
 - Power spectrum is lossless if field is Gaussian

- **Observational limitations**
 - Generally observe biased tracers
 - Redshift space distortions

- Compress field into its correlation functions
 - Power spectrum is lossless if field is Gaussian

- **Observational limitations**
 - Generally observe biased tracers
 - Redshift space distortions

Simulations

Let there be *freedom from perturbations* with respect to the things which come from the external cause; and let there be justice in the things *done by virtue of the internal cause*.

Let there be *freedom from perturbations* with respect to the things which come from the external cause; and let there be justice in the things *done by symmetries.*

Let there be *freedom from perturbations* with respect to the things which come from the external cause; and let there be justice in the things *done by*

Ward identities from QFT

How do symmetries constrain cosmological correlators?

- Translational invariance:
 - $\implies \langle \mathcal{O}(k_1) \dots \mathcal{O}(k_n) \rangle = (2\pi)^3 \langle \mathcal{O}(k_1) \dots \mathcal{O}(k_n) \rangle$
- Rotational symmetry:
 - $\implies \langle \mathcal{O}(k_1) \dots \mathcal{O}(k_n) \rangle$

- Examples:
 - Power spectrum: $\langle \delta(k_1) \, \delta(k_2) \rangle = (2)$
 - Bispectrum: $\langle \delta(k_1) \, \delta(k_2) \delta(k_3) \rangle = (2)$
 - Trispectrum: $\langle \delta(k_1) \, \delta(k_2) \delta(k_3) \delta(k_4) \rangle$ ullet

$$\delta \delta_D \left(\sum_a k_a \right) \langle \mathcal{O}(k_1) \dots \mathcal{O}(k_n) \rangle'$$

$$_{n})\rangle' = F(k_{i} \cdot k_{j})$$

$$2\pi)^{3} \delta_{D}(k_{1} + k_{2}) P(k_{1})$$

$$2\pi)^{3} \delta_{D}(k_{1} + k_{2} + k_{3}) B(k_{1}, k_{2}, k_{3})$$

$$\delta = (2\pi)^{3} \delta_{D}(k_{1} + k_{2} + k_{3} + k_{4}) T(k_{1}, k_{2}, k_{3}, k_{4}, k_{12}, k_{23})$$

How do symmetries constrain cosmological correlators?

- Translational invariance:
 - $\implies \langle \mathcal{O}(k_1) \dots \mathcal{O}(k_n) \rangle = (2\pi)^3$
- Rotational symmetry:
 - $\implies \langle \mathcal{O}(k_1) \dots \mathcal{O}(k_n) \rangle$

- Examples:
 - Power spectrum: $\langle \delta(k_1) \, \delta(k_2) \rangle = (2$
 - Bispectrum: $\langle \delta(k_1) \, \delta(k_2) \delta(k_3) \rangle = (2)$
 - Trispectrum: $\langle \delta(k_1) \, \delta(k_2) \, \delta(k_3) \, \delta(k_4) \rangle$ lacksquare

What about more general symmetries?

$$\delta \delta_D \left(\sum_a k_a \right) \langle \mathcal{O}(k_1) \dots \mathcal{O}(k_n) \rangle'$$

$$_{n})\rangle' = F(k_{i} \cdot k_{j})$$

$$2\pi)^{3} \delta_{D}(\mathbf{k_{1}} + \mathbf{k_{2}}) P(k_{1})$$

$$2\pi)^{3} \delta_{D}(\mathbf{k_{1}} + \mathbf{k_{2}} + \mathbf{k_{3}}) B(k_{1}, k_{2}, k_{3})$$

$$\mathbf{h} = (2\pi)^{3} \delta_{D}(\mathbf{k_{1}} + \mathbf{k_{2}} + \mathbf{k_{3}} + \mathbf{k_{4}}) T(k_{1}, k_{2}, k_{3}, k_{4}, k_{12}, k_{23})$$

Consistency relations for LSS

Equations of motion for δ_m, v_m, Φ

$$\frac{\partial \delta_g}{\partial \pi} + \nabla \cdot \left[\left[\left(1 + \delta_g \right) \mu \right]_g \right] = 0 \right] \qquad \text{(conservation of } \frac{\partial v_g}{\partial \pi} + \mathcal{W} + \mathcal{W} + \left[\left[\nu_g \nabla \nabla \right] \nu \right]_g = \nabla \Phi \quad \text{(conservation of } \frac{\partial v_g}{\partial \pi} + \mathcal{W} + \mathcal{W} + \left[\left[\nu_g \nabla \nabla \right] \nu \right]_g = \nabla \Phi \quad \text{(conservation of } \frac{\partial v_g}{\partial \pi} + \mathcal{W} + \mathcal{W} + \left[\left[\nu_g \nabla \nabla \right] \nu \right]_g = \nabla \Phi \quad \text{(conservation of } \frac{\partial v_g}{\partial \pi} + \mathcal{W} + \mathcal{W} + \left[\left[\nu_g \nabla \nabla \right] \nu \right]_g = \nabla \Phi \quad \text{(conservation of } \frac{\partial v_g}{\partial \pi} + \mathcal{W} + \mathcal{W} + \left[\left[\nu_g \nabla \nabla \nabla \right] \nu \right]_g = \nabla \Phi \quad \text{(conservation of } \frac{\partial v_g}{\partial \pi} + \mathcal{W} + \mathcal{W} + \left[\left[\nu_g \nabla \nabla \nabla \right] \nu \right]_g = \nabla \Phi \quad \text{(conservation of } \frac{\partial v_g}{\partial \pi} + \mathcal{W} + \mathcal{W} + \left[\left[\nu_g \nabla \nabla \nabla \nabla \right] \right]_g = \nabla \Phi \quad \text{(conservation of } \frac{\partial v_g}{\partial \pi} + \mathcal{W} + \mathcal{W$$

- Possess the following symmetry:
 - Shift in gravitational potential: $\Phi \mapsto \Phi + \kappa(\eta)$
 - *Time-dependent translation:* $x \mapsto x + n(\eta)$

$$\Phi \to \Phi - (\mathscr{H}n' + n'') \cdot x, \ v \to v + n'$$

Kehagias & Riotto 2012; Peloso & Pietroni, 2013

Soft Mode [q]

* Assumes Gaussian IC's/Equivalence Principle

Primordial non-Gaussianity

- Simplest single-field models predict ~Gaussian initial conditions
- Classify PNG according to shapes/amplitudes $(f_{\rm NI})$ of **bispectra**
 - Inflaton self-interactions: $f_{NI}^{equil.}$ and $f_{NL}^{orth.}$
 - Multiple light fields: $f_{\rm NI}^{\rm loc.}$
- PNG $\neq f_{\rm NI} \neq f_{\rm NI}^{\rm loc.}$
 - Trispectrum: $g_{\rm NL}$ and $\tau_{\rm NL}$ ullet
 - Cosmological collider (Arkani-Hamed & Maldacena, \bullet 1503.08043

physical parameters, e.g. the inflaton sound speed. (from Cabass, Ivanov, Philcox, Simonović, Zaldariagga, 2201.07238

• Local in configuration space

$$\Phi(\boldsymbol{x}) = \Phi_G(\boldsymbol{x}) + f_{\mathrm{NL}}^{\mathrm{loc.}} \left(\Phi_G^2(\boldsymbol{x}) - \left\langle \Phi_G^2(\boldsymbol{x}) \right\rangle \right)$$

Komatsu & Spergel, 2001

- **Correlates long and short modes**
 - Bispectrum peaks in squeezed limit

• Notation: $f_{\rm NL} \equiv f_{\rm NL}^{\rm loc.}$

• Local in configuration space

$$\Phi(\mathbf{x}) = \Phi_G(\mathbf{x}) + f_{\mathrm{NL}}^{\mathrm{loc.}} \left(\Phi_G^2(\mathbf{x}) - \langle \Phi_G^2(\mathbf{x}) \rangle \right)$$

Komatsu & Spergel, 2001

- **Correlates long and short modes**
 - Bispectrum peaks in squeezed limit

• Notation: $f_{\rm NL} \equiv f_{\rm NL}^{\rm loc.}$

 $(\mathbf{x})\rangle$

• Local in configuration space

$$\Phi(\mathbf{x}) = \Phi_G(\mathbf{x}) + f_{\mathrm{NL}}^{\mathrm{loc.}} \left(\Phi_G^2(\mathbf{x}) - \langle \Phi_G^2(\mathbf{x}) \rangle \right)$$

Komatsu & Spergel, 2001

- **Correlates long and short modes** \bullet
 - Bispectrum peaks in squeezed limit

• Notation: $f_{\rm NL} \equiv f_{\rm NL}^{\rm loc.}$

 $(\mathbf{x})\rangle$

• Local in configuration space

$$\Phi(\mathbf{x}) = \Phi_G(\mathbf{x}) + f_{\mathrm{NL}}^{\mathrm{loc.}} \left(\Phi_G^2(\mathbf{x}) - \langle \Phi_G^2(\mathbf{x}) \rangle \right)$$

Komatsu & Spergel, 2001

- **Correlates long and short modes**
 - Bispectrum peaks in squeezed limit

• Notation: $f_{\rm NL} \equiv f_{\rm NL}^{\rm loc.}$

 $(\mathbf{x})\rangle$

Why should we care about $f_{NI}^{loc.}$?

Detection of f_{NL} local violates single-field consistency condition

$$f_{\rm NL} \approx \frac{5}{12}(1 - n_s),$$
 (as

Maldacena, 2002; Creminelli & Zaldarriaga, 2004

- Current best constraints come from CMB
 - $f_{\rm NL} = -0.9 \pm 5.1$ (*Planck* 2018)
- $\sigma_{f_{NI}} < 1$ is an important theoretical target
 - Near-term CMB may reach $\sigma_{\!f_{\rm NL}} \thickapprox 2$
 - LSS(×CMB) can do better!

ssuming single field inflation)

Local PNG violates LSS consistency relations

- Squeezed bispectrum ($q \ll k$) is described by **modulation** of small scale power spectrum to long wavelength gravitational potential Φ_{I}

$$\lim_{q \ll k_{\rm NL}, k} B_m(q, k, k') = \lim_{q \ll k} q_{\ll k}$$

 $=\langle \delta_m($

• Let's derive the leading order $f_{\rm NL}$ contribution to the squeezed matter bispectrum

 $\lim_{k \to \infty} \left\langle \delta_m(\boldsymbol{q}) \delta_m(\boldsymbol{k}) \delta_m(\boldsymbol{k}') \right\rangle', \quad \text{(Non-perturbative see, e.g., Lewis, 1107.5431)} \\ = \partial D \quad (I_r)$

$$(\boldsymbol{q})P_m(k \mid \Phi_L)\rangle' = P_{\Phi_L m}(q) \frac{\partial P_m(k)}{\partial \Phi_L(q)},$$

 $=\frac{3\Omega_{m0}H_0^2}{2q^2T(q)D_{md}(z_q)}P_m(q)\frac{\partial P_m(k)}{\partial \Phi_L(q)}.$

From Poisson's equation

Local PNG violates LSS consistency relations

Evaluate potential derivative using separate universe

$$\Phi(\mathbf{x}) = \Phi_L(\mathbf{x}) + f_{\rm NL}(\Phi_L^2(\mathbf{x}) - \langle \Phi_L \rangle^2) + (\mathbf{x}) + f_{\rm NL}(\Phi_L^2(\mathbf{x}) - \langle \Phi_L \rangle^2) + (\mathbf{x}) + f_{\rm NL}(\Phi_L^2(\mathbf{x}) - \langle \Phi_L \rangle^2) + (\mathbf{x}) + f_{\rm NL}(\Phi_L^2(\mathbf{x}) - \langle \Phi_L \rangle^2) + (\mathbf{x}) + f_{\rm NL}(\Phi_L^2(\mathbf{x}) - \langle \Phi_L \rangle^2) + (\mathbf{x}) + f_{\rm NL}(\Phi_L^2(\mathbf{x}) - \langle \Phi_L \rangle^2) + (\mathbf{x}) + f_{\rm NL}(\Phi_L^2(\mathbf{x}) - \langle \Phi_L \rangle^2) + (\mathbf{x}) + f_{\rm NL}(\Phi_L^2(\mathbf{x}) - \langle \Phi_L \rangle^2) + (\mathbf{x}) + f_{\rm NL}(\Phi_L^2(\mathbf{x}) - \langle \Phi_L \rangle^2) + (\mathbf{x}) + f_{\rm NL}(\Phi_L^2(\mathbf{x}) - \langle \Phi_L \rangle^2) + (\mathbf{x}) + f_{\rm NL}(\Phi_L^2(\mathbf{x}) - \langle \Phi_L \rangle^2) + (\mathbf{x}) + f_{\rm NL}(\Phi_L^2(\mathbf{x}) - \langle \Phi_L \rangle^2) + (\mathbf{x}) + f_{\rm NL}(\Phi_L^2(\mathbf{x}) - \langle \Phi_L \rangle^2) + (\mathbf{x}) + f_{\rm NL}(\Phi_L^2(\mathbf{x}) - \langle \Phi_L \rangle^2) + (\mathbf{x}) + f_{\rm NL}(\Phi_L^2(\mathbf{x}) - \langle \Phi_L \rangle^2) + (\mathbf{x}) + f_{\rm NL}(\Phi_L^2(\mathbf{x}) - \langle \Phi_L \rangle^2) + (\mathbf{x}) + f_{\rm NL}(\Phi_L^2(\mathbf{x}) - \langle \Phi_L \rangle^2) + (\mathbf{x}) + f_{\rm NL}(\Phi_L^2(\mathbf{x}) - \langle \Phi_L \rangle^2) + (\mathbf{x}) + f_{\rm NL}(\Phi_L^2(\mathbf{x}) - \langle \Phi_L \rangle^2) + (\mathbf{x}) + f_{\rm NL}(\Phi_L^2(\mathbf{x}) - \langle \Phi_L \rangle^2) + (\mathbf{x}) + f_{\rm NL}(\Phi_L^2(\mathbf{x}) - \langle \Phi_L \rangle^2) + (\mathbf{x}) + f_{\rm NL}(\Phi_L^2(\mathbf{x}) - \langle \Phi_L \rangle^2) + (\mathbf{x}) + f_{\rm NL}(\Phi_L^2(\mathbf{x}) - \langle \Phi_L \rangle^2) + (\mathbf{x}) + f_{\rm NL}(\Phi_L^2(\mathbf{x}) - \langle \Phi_L \rangle^2) + (\mathbf{x}) + f_{\rm NL}(\Phi_L^2(\mathbf{x}) - \langle \Phi_L \rangle^2) + (\mathbf{x}) + f_{\rm NL}(\Phi_L^2(\mathbf{x}) - \langle \Phi_L \rangle^2) + (\mathbf{x}) + (\mathbf{x})$$

- Equivalent to local rescaling of σ_8 $\sigma_8^{\text{loc.}}(\mathbf{x}) = (1 + 2f_{\text{NI}} \Phi_I(\mathbf{x}))\sigma_8$
- Squeezed bispectrum is then

$$\lim_{q \ll k_{\rm NL},k} B_m(q,k,k') = \frac{6\Omega_{m0}H_0^2 f_{\rm NL}}{q^2 T(q)D_{\rm md}(z_q)} \frac{\partial \log P_m(k)}{\partial \log \sigma_8^2} P_m(q)P_m(k) + \mathcal{O}(f_{\rm NL}^2)$$

 $(1 + 2f_{\mathrm{NL}}\Phi_{I}(\mathbf{x}))\Phi_{S}(\mathbf{x}) + f_{\mathrm{NL}}(\Phi_{S}^{2}(\mathbf{x}) - \langle \Phi_{S}^{2} \rangle)$

(e.g., <u>Giri, Münchmeyer, Smith 2305.03070</u>)

Can we use this to constrain f_{NI} ?

"Squeezing f_{NL} out of the matter bispectrum with consistency relations"

2209.06228 SG, Esposito, Philcox, Hui, Hill, Scoccimarro, Abitbol

Simulations

- Use nbody simulations to validate squeezed bispectrum model beyond non-linear scale
- 40 nbody simulations with Gaussian initial conditions and 12 with $f_{\rm NL} = 100$
 - $L_{\rm box} = 2400 \,\,{\rm Mpc}/h$
 - $N_{\text{particle}} = 1280^3$

$$\Omega_m = 0.25, \ \Omega_b = 0.04, \ \Omega_\Lambda = 0.75,$$

 $h = 0.7, \ n_s = 1, \ \sigma_8 = 0.8$

 Measure squeezed bispectrum and power spectrum at z=0 and z=0.97

Neasurements

- Measure soft power spectrum ($\hat{P}_m(q)$)
- Angle averaged squeezed bispectrum

$$\hat{B}(q, k_{\min}, k_{\max}) = \int d\Omega_k W(q, k) B(q, k, k')$$

- Choose weights $W(q, k, \theta) = 1$ (sub-optimal!)
- Average over wide k-bin for hard momenta

Measurements of angle averaged squeezed bispectrum as a function of the soft mode for two different hard momenta bins.

Measurements (continued)

 $f_{\rm NL}$ leads to poles in squeezed bispectrum. Amplitude of pole can be used to constrain $f_{\rm NL}$

 Squeezed bispectrum has primordial and gravitational contribution

 $B(q, k, k') = B_{\text{prim.}}(q, k, k') + B_{\text{grav.}}(q, k, k')$

Already derived primordial contribution

$$B_{\text{prim.}}(q,k,k') = \frac{6\Omega_{m0}H_0^2 f_{\text{NL}}}{q^2 T(q)D_{\text{md}}(z_q)} \frac{\partial \log P_m(k)}{\partial \log \sigma_8^2} P_m(q)P_m(k)$$

 Model gravitational contribution based on consistency relations

$$B_{\text{grav.}}(q, k, k') = \sum_{n=0}^{\infty} a_n(k)q^n P(q)P(k)$$

(See also Valageas, 2013; Chiang et al. 2017; Esposito, Hui, Scoccimarro, 2019; Biagetti et al 2022)

 Squeezed bispectrum has primordial and gravitational contribution

 $B(q, k, k') = B_{\text{prim.}}(q, k, k') + B_{\text{grav.}}(q, k, k')$

Already derived primordial contribution

$$B_{\text{prim.}}(q,k,k') = \frac{6\Omega_{m0}H_0^2 f_{\text{NL}}}{q^2 T(q)D_{\text{md}}(z_q)} \frac{\partial \log P_m(k)}{\partial \log \sigma_8^2} P_m(q)P_m(k)$$

 Model gravitational contribution based on consistency relations

$$B_{\text{grav.}}(q, k, k') = \sum_{n=0}^{\infty} a_n(k)q^n P(q)P(k)$$

(See also Valageas, 2013; Chiang et al. 2017; Esposito, Hui, Scoccimarro, 2019; Biagetti et al 2022)

Challenge: f_{NL} is degenerate with logarithmic derivative. Can be modeled with sims for matter. Will be difficult for galaxies (b_{d})

 Squeezed bispectrum has primordial and gravitational contribution

 $B(q, k, k') = B_{\text{prim.}}(q, k, k') + B_{\text{grav.}}(q, k, k')$

Already derived primordial contribution

$$B_{\text{prim.}}(q,k,k') = \frac{6\,\Omega_{m0}H_0^2 f_{\text{NL}}}{q^2 T(q)D_{\text{md}}(z_q)} \frac{\partial \log P_m(k)}{\partial \log \sigma_8^2} P_m(q)P_m(k)$$

 Model gravitational contribution based on consistency relations

$$B_{\text{grav.}}(q, k, k') = \sum_{\substack{n \text{ even}}}^{\infty} a_n(k)q^n P(q)P(k)$$

(See also Valageas, 2013; Chiang et al. 2017; Esposito, Hui, Scoccimarro, 2019; Biagetti et al 2022)

 Squeezed bispectrum has primordial and gravitational contribution

 $B(q, k, k') = B_{\text{prim.}}(q, k, k') + B_{\text{grav.}}(q, k, k')$

Already derived primordial contribution

$$B_{\text{prim.}}(q,k,k') = \frac{6\Omega_{m0}H_0^2 f_{\text{NL}}}{q^2 T(q)D_{\text{md}}(z_q)} \frac{\partial \log P_m(k)}{\partial \log \sigma_8^2} P_m(q)P_m(k)$$

 Model gravitational contribution based on consistency relations

$$B_{\text{grav.}}(q, k, k') = a_0(k)P(q)P(k) + a_2(k)q^2P(q)P(k)$$

(See also Valageas, 2013; Chiang et al. 2017; Esposito, Hui, Scoccimarro, 2019; Biagetti et al 2022)

P(k)

 Squeezed bispectrum has primordial and gravitational contribution

 $B(q, k, k') = B_{\text{prim.}}(q, k, k') + B_{\text{grav.}}(q, k, k')$

Already derived primordial contribution

$$B_{\text{prim.}}(q,k,k') = \frac{6\Omega_{m0}H_0^2 f_{\text{NL}}}{q^2 T(q)D_{\text{md}}(z_q)} \frac{\partial \log P_m(k)}{\partial \log \sigma_8^2} P_m(q)P_m(k)$$

 Model gravitational contribution based on consistency relations

$$B_{\text{grav.}}(q, k, k') = \bar{a}_0 P(q) + \bar{a}_2 q^2 P(q)$$

(See also Valageas, 2013; Chiang et al. 2017; Esposito, Hui, Scoccimarro, 2019; Biagetti et al 2022)

 $f_{\rm NL}, \bar{a}_0, \bar{a}_2, \bar{a}_4$ 25 $f_{\rm NL}^{\rm true}$ $f_{\rm NL}$ -25 $f_{\rm NL}^{\rm true} = 100$ $- f_{\rm NL}^{\rm true} = 0$ -50-2-1 $\bar{a}_4 \ (\mathrm{Mpc}/h)^7$ $\times 10^7$

50

Measurements/Likelihood

- Measure power spectrum and **angle** averaged squeezed bispectrum
- Joint likelihood for $\hat{P}(q)$ and $\hat{B}(q)$
 - Sample variance cancellation
- Covariance estimated from simulations without PNG
 - Multivariate-t likelihood (<u>Sellentin &</u> **Heavens**, 2015)
- Fit for f_{NL} , a_0 , and a_2

Marginalized Posterior at z=0

Marginalized Posterior at z=0.97

(i) How squeezed do the triangles need to be?

We recover the true value of fNL for kmin>0.2h/Mpc

(ii) How much information is in non-linear regime?

Constraints saturate for k>0.3h/Mpc due to non-Gaussian covariance and sub-optimal weighting

Optimal weighting can help!

Instead of summing all k-bins, split into sub bins

- Single bin ($\sigma_{f_{NL}} = 62$)
- Two bins ($\sigma_{f_{NI}} = 47$)
- Four bins ($\sigma_{f_{NII}} = 41$)

Shaded region: Fisher error for B+P up to $k_{\rm max} = 0.5 \ h/{\rm Mpc}$ from Quijote PNG analysis (Coulton, 2022) for different marginalizations

Error from fitting squeezed bispectrum is close to Fisher error from full bispectrum!

Can we do better with the collapsed trispectrum?

(see also Giri, Münchmeyer, Smith 2305.03070)

Can we do better with the collapsed trispectrum?

(see also Giri, Münchmeyer, Smith 2305.03070)

Multi-bin analysis

 Collapsed trispectrum is product of squeezed bispectra

 $\lim_{k_{12} \ll k_{\rm NL} \dots} T(k_1, k_2, k_3, k_4) = \frac{B(k_{12}, k_1)B(k_{12}, k_3)}{P_{\rm L}(k_{12})} + T_0.$

- We get this for free! (after coding a trispectrum estimator..)
 - Joint analysis B+T

New possibilities with trispectrum

- With trispectrum we can go beyond $f_{\rm NL}$
- Example: $\tau_{\rm NL}$
 - Collapsed T not associated with squeezed B (excess d.o.f. during inflation)

$$\tau_{\rm NL} \ge \left(\frac{6}{5}f_{\rm NL}\right)^2$$
 (Suyama-Yamaguchi)

- Can fit for $f_{\rm NL}$ and $\tau_{\rm NL}$ using joint likelihood in bispectrum and trispectrum measured from Quijote
- These results are a **proof of concept**
 - Need to implement optimal weighting and more configurations
 - Should learn a lot from bispectrum

Constraints on ($f_{\rm NL}$, $\tau_{\rm NL}$) from squeezed bispectrum and collapsed trispectrum using Quijote simulations with $f_{\rm NL} = 100!$

"Consistently constraining $f_{\rm NL}$ with the squeezing lensing bispectrum using consistency relations"

<u>2310.12959</u> SG, Philcox, Hill, Esposito, Hui

Constraining fNL with the squeezed lensing bispectra

- of it with lensing!
- Lensing \bullet

Genvergence:

$$\kappa^{(i)}(\hat{\boldsymbol{n}}) = \int_{0}^{\chi_{s}} d\chi W^{(i)}(\chi) \,\delta_{m}(\chi \hat{\boldsymbol{n}}, \chi) \,, \text{ where } \begin{cases} \mathsf{CMB} \\ \widetilde{W^{\mathcal{K}_{\text{CMB}}}(\chi)} = \frac{3 H_{0}^{2} \Omega_{m} \chi}{2 a(\chi)} \left(\frac{\chi * - \chi}{\chi *}\right), \\ W^{\mathcal{K}_{g},(i)}(\chi) = \frac{3 H_{0}^{2} \Omega_{m} \chi}{2 a(\chi)} \int_{\chi}^{\infty} d\chi' p_{s}^{(i)}(\chi') \left(\frac{\chi' - \chi}{\chi'}\right). \end{cases}$$

• Can't observe the matter bispectrum directly, but can observe integrals

Cosmic shear/galaxy surveys

$$\int W(\chi) \,\delta_m(\ell/\chi,\chi) \,d\chi \implies \begin{cases} C_\ell \propto \int d\chi \frac{W(\chi)}{\chi^2} \, P_m(\ell/\chi,\chi) \\ \\ b_{\ell_1 \ell_2 \ell_3} \propto \int d\chi \frac{W^3(\chi)}{\chi^4} \, B_m(\ell_1/\chi,\ell_2/\chi,\ell) \end{cases}$$

where $B_m(q, k, k', \chi) = \frac{6f_{\mathrm{NL}}\Omega_{m,0}H_0^2}{D_{\mathrm{md}}(\chi)} \frac{\partial P(k, \chi)}{\partial \log \sigma_8^2} \frac{P(q, \chi)}{q^2 T(q)} + \bar{a}_0(k, \chi)P(q, \chi)$

Forecast Setup

- Lensing surveys
 - **CMB Lensing**: Simons Observatory and CMB-S4
 - Cosmic Shear: LSST/Euclid-like survey

• Specifications: $\bar{n}_g = 31 \text{ arcmin}^{-2}$, $\sigma_e = 0.26$, $\sigma_z = 0.05(1 + z)$, vary N_{tomo}

• **Fisher matrix**: f_{NL} is only free parameter (optimistic)

$$\mathcal{F} = \sum_{\substack{ijk \\ e_1 \ell_2 \ell_3}} \sum_{\substack{\ell_1 \ell_2 \ell_3 \\ abc}} \frac{\partial b_{\ell_1 \ell_2 \ell_3}^{(ijk)}}{\partial f_{\mathrm{NL}}} \operatorname{Cov}^{-1} \left[b_{\ell_1 \ell_2 \ell_3}^{(ijk)}, d_{\ell_1 \ell_2 \ell_3} \right]$$

Sum over tomographic with reconstruction/shape noise bins and multipoles

lariance

Does shear+CMB lensing help?

Under optimistic assumptions may reach $\sigma_{f_{
m NL}} pprox 10$ from lensing bispectra. Completely independent of galaxy field!

Conclusions

- Many possibilities (and challenges) in the future
 - Optimize weighting for hard modes in bispectrum and trispectrum
 - Understand information content
 - Constrain more general models that constrain consistency relations
 - **PNG:** Quasi-single field inflation/cosmological collider: fractional poles/oscillatory features Test equivalence principle/modified gravity
 - Extend framework to galaxies/halos
 - Bias, RSD, shot noise \bullet
 - Potential use
 - Multi-tracer, systematics

Consistency relations can be used to constrain PNG with LSS using info from non-linear regime

Backup

Measurements

- **Power spectrum:** need to be careful with binning effects
- **Bispectrum**:

- Average over all angles and hard momental
- Matter response:

$$\bar{F} \equiv \left\langle \delta_k \delta_{-k} \frac{\partial \log P(k)}{\partial \log \sigma_8^2} \right\rangle \text{ with } k \in [k_{\min}, k_{\max}]$$

Trom Halotit

$\hat{M}_{in} \equiv \begin{cases} \left\langle q^{n} \delta_{q} \delta_{-q} / T(q) \right\rangle_{i}, \text{ if } n < 0 \\ \left\langle q^{n} \delta_{q} \delta_{-q} \right\rangle_{i}, & \text{otherwise} \end{cases}, \\ \hat{B}_{i} \equiv \left\langle \operatorname{Re} \delta_{q} \delta_{k} \delta_{-q-k} \right\rangle_{i}, & \text{with } k \in [k_{\min}, k_{\max}] \end{cases} \qquad \hat{B} = \sum_{n=-2,0,2} \bar{a}_{n} \hat{M}_{\alpha}$

How squeezed is squeezed?

Where is the information?

Bispectrum Estimator

Suppose we want to estimate $B(k_1, k_2, k_3)$ in bins k_i Define $W_{k_i}(p_i) \equiv \begin{cases} 1, & p_i \in k_i \\ 0, & \text{otherwise} \end{cases}$ $B(k_1, k_2, k_3) \propto \int \int \int \int \delta(\boldsymbol{p}_1) W_{k_1}(p_1) \,\delta(\boldsymbol{p}_2)$ $\implies B(k_1, k_2, k_3) \propto \int d^3x \prod_{i=1}^3 \left(\int_{p_i} \delta(p_i) \right)$

$$\therefore \hat{B}(k_1, k_2, k_3) =$$

$$W_{k_2}(p_2) \,\delta(\boldsymbol{p}_3) W_{k_3}(p_3) \,(2\pi)^3 \delta_D(\boldsymbol{p}_{123}) = \int d^3 x e^{-i\boldsymbol{p}_{123} \cdot \boldsymbol{x}}$$
$$W_{k_i}(p_i) e^{-i\boldsymbol{p}_i \cdot \boldsymbol{x}}$$
Use exponential representation of the complete formula of the com

Use exponential representation of
$$\delta_D$$
 to write in separable form

$$\sum_{i=1}^{N_{\text{grid}}^{3}} \delta_{k_{1}}(x_{i}) \delta_{k_{2}}(x_{i}) \delta_{k_{3}}(x_{i})$$

$$\sum_{i=1}^{N_{\text{grid}}^{3}} I_{k_{1}}(x_{i}) I_{k_{2}}(x_{i}) I_{k_{3}}(x_{i})$$

Bispectrum Estimator Validation

Figure 1: Validation on measurements from Quijote

Trispectrum Estimator

- Trispectrum estimator in terms of external legs k_a, \ldots, k_d and diagonals k_{ab}, k_{bc} is **not** \bullet separable
 - Use estimator integrated over q_{23} (see Appendix A of <u>2306.11782</u>)

$$\left\langle \hat{T}_{\text{tot}}(k_a, k_b, k_c, k_d, k_E) \right\rangle = \frac{1}{N_{a,b,c,d,E}} \int_{\boldsymbol{Q}} W_E(\boldsymbol{Q}) \int_{\boldsymbol{k}_1, \dots, \boldsymbol{k}_4} \left\{ W_a(k_1) W_b(k_2) W_c(k_3) W_d(k_4) \delta_{\boldsymbol{k}_1} \delta_{\boldsymbol{k}_2} \delta_{\boldsymbol{k}_3} \delta_{\boldsymbol{k}_4} \right\rangle$$

$$(2\pi)^3 \delta_D^{(3)}(\boldsymbol{k}_{12} - \boldsymbol{Q}) (2\pi)^3 \delta_D^{(3)}(\boldsymbol{k}_{34} + \boldsymbol{Q}) \right\},$$

Can be efficiently evaluated by computing FFT's of product fields

$$D_{ij}(\boldsymbol{Q}) \equiv \int d^3x \, e^{-i\boldsymbol{Q}\cdot\boldsymbol{x}} \delta_{W_i}(\boldsymbol{x}) \delta_{W_j}(\boldsymbol{x}).$$

$$\hat{T}_{\text{tot}}(k_a, k_b, k_c, k_d, k_E) = \frac{1}{N_{a,b,c,d,E}} \int_{\boldsymbol{Q}} W_E(\boldsymbol{Q}) D_{ab}(\boldsymbol{Q}) D_{cd}^*(\boldsymbol{Q}),$$

Biased estimator because it includes disconnected terms!!!

Trispectrum Estimator (continued)

- Just need an estimator for disconnected terms and can subtract them lacksquare
 - Simple estimator: $\delta^4 3\langle \delta^2 \rangle^2$
- Can be efficiently implemented using FFT's **Depends on fiducial P(k)**

$$F_{ij}^{P}(\boldsymbol{x}) \equiv \int_{\boldsymbol{k}} W_{i}(k) W_{j}(k) P(k) e^{i\boldsymbol{k}\cdot\boldsymbol{x}}$$

$$\hat{T}_{\text{disc}}^{\langle \delta^2 \rangle^2} = \frac{V}{N_{a,b,c,d,E}} \int_{\boldsymbol{Q}} W_E(Q) \int d^3x \, e^{-i\boldsymbol{Q}\cdot\boldsymbol{x}} \left[F_a \right]$$

$$\hat{T}_{\text{disc}}^{\delta^2 \langle \delta^2 \rangle} = \frac{V}{N_{a,b,c,d,E}} \int_{\boldsymbol{Q}} W_E(Q) \int d^3 x \, e^{-i\boldsymbol{Q} \cdot \boldsymbol{x}} [F]$$

Can compute both types of disconnected terms and subtract accordingly!

• More optimal estimator: $\delta^4 - 6 \delta^2 \langle \delta^2 \rangle^2 + 3 \langle \delta^2 \rangle^2$ (See Appendix F. of Shen, Schaan, Ferraro, 24)

Depends on realization of δ

$$F_{ij}^{\delta}(\boldsymbol{x}) \equiv \int_{\boldsymbol{k}} W_i(k) W_j(k) |\delta_{\boldsymbol{k}}|^2 e^{i\boldsymbol{k}\cdot\boldsymbol{x}}$$

 $F_{ac}^{P}(\boldsymbol{x})F_{bd}^{P}(\boldsymbol{x})+F_{ad}^{P}(\boldsymbol{x})F_{bc}^{P}(\boldsymbol{x})$

 $F_{ac}^{P}(\boldsymbol{x})F_{bd}^{\delta}(\boldsymbol{x}) + F_{ac}^{\delta}(\boldsymbol{x})F_{bd}^{P}(\boldsymbol{x}) + F_{ad}^{P}(\boldsymbol{x})F_{bc}^{\delta}(\boldsymbol{x}) + F_{ad}^{\delta}(\boldsymbol{x})F_{bc}^{P}(\boldsymbol{x})].$

Trispectrum Estimator Validation

Super sample covariance (SSC)

• SSC for observable can be computed from derivative w.r.t DC mode

$$\operatorname{Cov}^{\mathrm{SSC}}(\mathcal{O},\mathcal{O})' = \sigma_{R_{\mathrm{box}}}^2 \frac{\partial \mathcal{O}}{\partial \delta_{\mathrm{b}}} \frac{\partial \mathcal{O}'}{\partial \delta_{\mathrm{b}}} \qquad \qquad \frac{\partial P(k)}{\partial \delta_{\mathrm{b}}} \Big|_{\delta_{\mathrm{b}}=0} = P(k) + \frac{\partial P_{\mathrm{SU}}(k)}{\partial \delta_{\mathrm{b}}} - \frac{1}{3} \frac{\partial P(k)}{\partial \log(k)}$$

• Can estimate from separate universe (SU). For bispectrum looks like

$$\frac{\partial B(k_1, k_2, k_3)}{\partial \delta_b} = B(k_1, k_2, k_3) + \frac{\partial B_{\rm SU}(k_1, k_2, k_3)}{\partial \delta_b} - \frac{1}{3} \sum_{i=1}^3 \frac{\partial B(k_1, k_2, k_3)}{\partial \log k_i}.$$

• Painful to compute for angle-averaged bispectrum in wide bins. Instead rewrite in terms of power spectrum SSC

$$B^{\rm thr}(k_1, k_2, k_3) = a_0$$

$$Cov^{SSC}(B(q,k), B(q',k')) \approx a_0(k)a_0(k') \bigg[P(q)P(k') Cov^{SSC}(P(k), P(k')) + P(q)P(k') Cov^{SSC}(P(k), P(q')) + P(k)P(k') Cov^{SSC}(P(q), P(q')) + P(k)P(k') Cov^{SSC}(P(q), P(q')) \bigg].$$

Checked that this equation agrees with SU within ~20% for squeezed bispectrum from Quijote in thin bin

 $P_0(k)P(k_1)P(k_2)$, (Assuming squeezed triangles)

SSC (continued)

Left: Validating P(k) SSC using Quijote. **Right:** including SSC in Quijote degrades constraints on a0, but has negligible impac **fNL**

arxiv.org/pdf/2305.03070

Marginalization of gravitational non-Gaussianity

 Marginalization over gravitational NG increases forecasted error on fNL by ~50%

Instead of summing over all non-linear modes, we can split into k-bins. • Example: squeezed bispectrum measurements from 100 realizations of Quijote with $f_{\rm NL} = 100$ with $0.25 < k < 0.5 h/{\rm Mpc}$ (see also <u>Giri, Münchmeyer, Smith</u> <u>2305.03070</u>)

Optimizing the estimator