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Current Lyα forest data disfavor EDE as a resolution to 
Hubble tension

Galaxy-Halo Connection

New physics from CMBxLSS
What I won’t talk about…

• Comparing simulations with 
analytic models for LSS

• Galaxy bias models: SG, 
Pandey, Slosar, Blazek, and 
Jain, 2111.00501 

• Splashback radius: 2111.06499 
and 2105.05914 
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Introduction
• Upcoming large-scale structure (LSS)  

surveys will measure many modes


• Stress test CDM


• Provide insight into initial conditions 


• Theoretical challenge: non-linearities 

• Impose scale cuts


• Particularly challenging for non-Gaussian/
higher-order statistics
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Non-linearities in LSS

Goal: Constrain cosmology from δ(x) = ρ(x) − ρ̄
ρ̄



Non-linearities in LSS

• Compress field into its correlation functions

ξn(x1, …xn) ≡ ⟨δ(x1)…δ(xn)⟩c

δ(x1)

δ(x2)

δ(x3)
r12

r23

r31



Non-linearities in LSS

• Compress field into its correlation functions

• Power spectrum is lossless if field is Gaussian
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• Need to model correlation functions with theory
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Non-linearities in LSS

• Compress field into its correlation functions

• Power spectrum is lossless if field is Gaussian

• Need to model correlation functions with theory

• Theory is non-linear
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Non-linearities in LSS

• Compress field into its correlation functions
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• Compress field into its correlation functions


• Power spectrum is lossless if field is Gaussian


• Need to model correlation functions with theory


• Theory is non-linear 

• Need to “throw out” measurements


• Astrophysics/baryons


• Observational limitations


• Generally observe biased tracers


• Redshift space distortions

What to do when we cannot use 
perturbation theory?

Simulations



Let there be freedom from 
perturbations with respect to the 
things which come from the 
external cause; and let there be 
justice in the things done by virtue 
of the internal cause.

Marcus Aurelius ~170 AD
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Marcus Aurelius ~170 AD

Ward identities from QFT

Let there be freedom from 
perturbations with respect to the 
things which come from the 
external cause; and let there be 
justice in the things done by 
symmetries.

Consistency relations/soft theorems



• Translational invariance: 

• Rotational symmetry: 

• Examples:


• Power spectrum: 


• Bispectrum: 


• Trispectrum: 

⟨δ(k1) δ(k2)⟩ = (2π)3δD(k1 + k2) P(k1)

⟨δ(k1) δ(k2)δ(k3)⟩ = (2π)3δD(k1 + k2 + k3) B(k1, k2, k3)

⟨δ(k1) δ(k2)δ(k3)δ(k4)⟩ = (2π)3δD(k1 + k2 + k3 + k4) T(k1, k2, k3, k4, k12, k23)

⟹ ⟨𝒪(k1)…𝒪(kn)⟩ = (2π)3δD(∑
a

ka)⟨𝒪(k1)…𝒪(kn)⟩′ 

⟹ ⟨𝒪(k1)…𝒪(kn)⟩′ = F(ki ⋅ kj)

How do symmetries constrain cosmological correlators?



• Translational invariance: 

• Rotational symmetry: 

• Examples:


• Power spectrum: 


• Bispectrum: 


• Trispectrum: 

⟨δ(k1) δ(k2)⟩ = (2π)3δD(k1 + k2) P(k1)

⟨δ(k1) δ(k2)δ(k3)⟩ = (2π)3δD(k1 + k2 + k3) B(k1, k2, k3)

⟨δ(k1) δ(k2)δ(k3)δ(k4)⟩ = (2π)3δD(k1 + k2 + k3 + k4) T(k1, k2, k3, k4, k12, k23)

⟹ ⟨𝒪(k1)…𝒪(kn)⟩ = (2π)3δD(∑
a

ka)⟨𝒪(k1)…𝒪(kn)⟩′ 

⟹ ⟨𝒪(k1)…𝒪(kn)⟩′ = F(ki ⋅ kj)

What about more general symmetries?

How do symmetries constrain cosmological correlators?



• Equations of motion for δm, vm, Φ

• Possess the following symmetry:


1. Shift in gravitational potential: 


2. Time-dependent translation: 

Φ ↦ Φ + κ(η)

x ↦ x + n(η)

Φ → Φ − (ℋn′ + n′ ′ ) ⋅ x, v → v + n′ 

∂δ
∂τ

+ ∇ ⋅ [(1 + δ)v] = 0

∂v
∂τ

+ ℋv + [v ⋅ ∇]v = − ∇Φ

∇2Φ = 3
2 Ωmℋ2δ

(conservation of mass)

(conservation of momentum)

(Poisson equation)

Consistency relations for LSS

Kehagias & Riotto  2012;  
Peloso & Pietroni,  2013

 has no  poleslim
q→0 [ B(q, k, k′ )

P(q) ] (1/q)α⟹
* Assumes Gaussian IC’s/Equivalence Principle 

Equal-Time LSS Bispectrum  Consistency Relation

Example of what CR violation looks like

∂δg

∂τ
+ ∇ ⋅ [(1+δg)vg] = 0

∂vg

∂τ
+ ℋvg+[vg ⋅ ∇]vg = − ∇Φ

∇2Φ = 3
2 Ωmℋ2δ

(conservation of mass)

(conservation of momentum)

(Poisson equation)



• Simplest single-field models predict ~Gaussian 
initial conditions


• Classify PNG according to shapes/amplitudes 
( ) of bispectra 


• Inflaton self-interactions:  and 


• Multiple light fields:  

• PNG 


• Trispectrum:  and 


• Cosmological collider (Arkani-Hamed & Maldacena, 
1503.08043)

fNL

f equil.
NL f orth.

NL

f loc.
NL

≠ fNL ≠ f loc.
NL

gNL τNL

Primordial non-Gaussianity

Constraints on  can be mapped to constraints on 
physical parameters, e.g.  the inflaton sound speed. 
(from Cabass, Ivanov, Philcox, Simonović, 
Zaldariagga, 2201.07238)

fNL



Local primordial non-Gaussianity

• Local in configuration space


• Correlates long and short modes 

• Bispectrum peaks in squeezed limit


• Notation:  fNL ≡ f loc.
NL

©L

©S

fNL = 0

Φ(x) = ΦG(x) + f loc.
NL (Φ2

G(x) − ⟨Φ2
G(x)⟩)

Komatsu & Spergel,  2001

q
k′ 

k

“Squeezed” limit



Local primordial non-Gaussianity

• Local in configuration space


• Correlates long and short modes 

• Bispectrum peaks in squeezed limit


• Notation:  fNL ≡ f loc.
NL

©L

©S

fNL = 0
©L

©S

fNL > 0

Φ(x) = ΦG(x) + f loc.
NL (Φ2

G(x) − ⟨Φ2
G(x)⟩)

Komatsu & Spergel,  2001

q
k′ 

k

“Squeezed” limit
Φ = ΦL + fNL(Φ2

L − ⟨ΦL⟩2)
+(1 + 2fNLΦL)ΦS+fNL(Φ2

S − ⟨Φ2
S⟩)

Mode Coupling
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Local primordial non-Gaussianity

• Local in configuration space


• Correlates long and short modes 

• Bispectrum peaks in squeezed limit


• Notation:  fNL ≡ f loc.
NL

©L

©S

fNL = 0
©L

©S

fNL > 0
©L

©S

fNL > 0

Φ(x) = ΦG(x) + f loc.
NL (Φ2

G(x) − ⟨Φ2
G(x)⟩)

Komatsu & Spergel,  2001

q
k′ 

k

“Squeezed” limit
“Scale-dependent” bias

Dalal et al./Matarrese & Verde/

Slosar et al./Desjacques, Seljak, & Iliev 



• Detection of  local violates single-field consistency condition


• Current best constraints come from CMB


•  (Planck 2018)


•  is an important theoretical target 

• Near-term CMB may reach 


• LSS( CMB) can do better!

fNL

fNL = − 0.9 ± 5.1

σfNL
< 1

σfNL
≈ 2

×

fNL ≈ 5
12 (1 − ns),

Maldacena, 2002; Creminelli & Zaldarriaga, 2004

(assuming single field inflation)

Why should we care about ?f loc.
NL



Local PNG violates LSS consistency relations

• Let’s derive the leading order  contribution to the squeezed matter bispectrum


• Squeezed bispectrum ( ) is described by modulation of small scale power 
spectrum to long wavelength gravitational potential 

fNL

q ≪ k
ΦL

lim
q≪kNL,k

Bm(q, k, k′ ) = lim
q≪kNL,k

⟨δm(q)δm(k)δm(k′ )⟩′ ,

= ⟨δm(q)Pm(k |ΦL)⟩′ = PΦLm(q) ∂Pm(k)
∂ΦL(q) ,

(Non-perturbative see, e.g., 
Lewis, 1107.5431)

= 3Ωm0H2
0

2q2T(q)Dmd(zq)
Pm(q) ∂Pm(k)

∂ΦL(q) .

From Poisson’s equation



• Evaluate potential derivative using separate universe 

• Equivalent to local rescaling of 


• Squeezed bispectrum is then 

σ8

Local PNG violates LSS consistency relations

lim
q≪kNL,k

Bm(q, k, k′ ) = 6 Ωm0H2
0 fNL

q2T(q)Dmd(zq)
∂ log Pm(k)

∂ log σ2
8

Pm(q)Pm(k) + 𝒪( f2
NL)

Φ(x) = ΦL(x) + fNL(Φ2
L(x) − ⟨ΦL⟩2)+(1 + 2fNLΦL(x))ΦS(x)+fNL(Φ2

S(x) − ⟨Φ2
S⟩)

(e.g., Giri, Münchmeyer, Smith  2305.03070)

σloc.
8 (x) = (1 + 2fNLΦL(x))σ8

Can we use this to constrain ?fNL



“Squeezing  out of the matter 
bispectrum with consistency 
relations”

fNL

2209.06228 
SG, Esposito, Philcox, Hui, Hill, Scoccimarro, Abitbol 



• Use nbody simulations to validate 
squeezed bispectrum model beyond 
non-linear scale


• 40 nbody simulations with Gaussian 
initial conditions and 12 with 


• 


• 


• Measure squeezed bispectrum and 
power spectrum at z=0 and z=0.97

fNL = 100

Lbox = 2400 Mpc/h

Nparticle = 12803

Ωm = 0.25, Ωb = 0.04, ΩΛ = 0.75,

h = 0.7, ns = 1, σ8 = 0.8

Simulations

δ(x1)

δ(x2)

δ(x3) r12

r23

r31



Measurements

• Measure soft power spectrum ( )


• Angle averaged squeezed bispectrum


• 


• Choose weights  (sub-optimal!)


• Average over wide -bin for hard momenta

̂Pm(q)

B̂(q, kmin, kmax) = ∫ dΩk W(q, k) B(q, k, k′ )

W(q, k, θ) = 1

k

k′ 

Measurements of angle averaged squeezed 
bispectrum as a function of the soft mode for two 
different hard momenta bins.
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Measurements (continued)
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 leads to poles in squeezed bispectrum.  Amplitude of pole can be used to constrain fNL fNL



Theory model
• Squeezed bispectrum has primordial and 

gravitational contribution


• Already derived primordial contribution


• Model gravitational contribution based on 
consistency relations 

B(q, k, k′ ) = Bprim.(q, k, k′ ) + Bgrav.(q, k, k′ )
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0 fNL
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Bgrav.(q, k, k′ ) =
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∑
n=0

an(k)qnP(q)P(k)

(See also Valageas, 2013; Chiang et al. 2017; Esposito, Hui, Scoccimarro, 2019; 

 Biagetti et al 2022)
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(See also Valageas, 2013; Chiang et al. 2017; Esposito, Hui, Scoccimarro, 2019; 

 Biagetti et al 2022)
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• Measure power spectrum and angle 
averaged squeezed bispectrum


• Joint likelihood for  and 


• Sample variance cancellation 

• Covariance estimated from simulations 
without PNG


• Multivariate-t likelihood (Sellentin & 
Heavens, 2015)


• Fit for and 

̂P(q) B̂(q)

fNL, a0, a2

Measurements/Likelihood
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ā2 (Mpc/h)5

f true
NL = 0

f true
NL = 100

Marginalized Posterior at z=0.97



(i) How squeezed do the triangles need to be? (ii) How much information is in non-linear regime?

Constraints saturate for k>0.3h/Mpc due to 
non-Gaussian covariance and sub-optimal 
weighting

We recover the true value of fNL for 
kmin>0.2h/Mpc



Optimal weighting can help!

— Single bin (σfNL
= 62)

— Two bins (σfNL
= 47)

°100 0 100

fNL ° f̄NL

Preliminary

0.005 < q < 0.065 h/Mpc
0.25 < k < 0.5 h/Mpc

QUIJOTE (1 Gpc/h)3

— Four bins (σfNL
= 41)

Shaded region: Fisher error for B+P up to 
 from Quijote PNG analysis 

(Coulton, 2022) for different marginalizations
kmax = 0.5 h/Mpc

Instead of summing all k-bins, split into sub 
bins

Error from fitting squeezed bispectrum is close 
to Fisher error from full bispectrum!



Can we do better 
with the collapsed 
trispectrum?

k1

k2
k12

k3

k4

(see also Giri, Münchmeyer, Smith  2305.03070)



Can we do better 
with the collapsed 
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(see also Giri, Münchmeyer, Smith  2305.03070)



Multi-bin analysis
• Collapsed trispectrum is product of 

squeezed bispectra 

• We get this for free! (after coding a 
trispectrum estimator..)

• Joint analysis B+T
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New possibilities with trispectrum 

• With trispectrum we can go beyond 


• Example: 


• Collapsed T not associated with 
squeezed B (excess d.o.f. during inflation)


• Can fit for  and  using joint 
likelihood in bispectrum and trispectrum 
measured from Quijote 


• These results are a proof of concept


• Need to implement optimal weighting and 
more configurations


• Should learn a lot from bispectrum

fNL

τNL

fNL τNL

τNL ≥ ( 6
5 fNL))

2

Constraints on ( , ) from squeezed bispectrum and collapsed 
trispectrum using Quijote simulations with !

fNL τNL
fNL = 100

Long wavelength modes

Short wavelength modes

(Suyama-Yamaguchi)



“Consistently constraining  with the 
squeezing lensing bispectrum using 
consistency relations”

fNL

2310.12959  
SG, Philcox, Hill, Esposito, Hui 



Constraining fNL with the squeezed lensing bispectra
• Can’t observe the matter bispectrum directly, but can observe integrals 

of it with lensing!


• Lensing convergence:
CMB 

κ(i)(n̂) = ∫
χs

0
dχ W(i)(χ) δm(χn̂, χ) ,  where 

WκCMB(χ) = 3 H2
0 Ωm χ

2 a(χ) ( χ* − χ
χ* ),

Wκg,(i)(χ) = 3 H2
0 Ωm χ

2 a(χ)

∞
∫
χ

dχ′ p(i)
s (χ′ )( χ′ − χ

χ′ ) .
Cosmic shear/galaxy surveys

Credit: Planck Collaboration

κℓ ≈ ∫ W(χ) δm(ℓ/χ, χ) dχ ⟹

bℓ1ℓ2ℓ3
∝ ∫ dχ

W3(χ)
χ4

Cℓ ∝ ∫ dχ
W(χ)

χ2

Bm(ℓ1/χ, ℓ2/χ, ℓ3/χ, χ)

Pm(ℓ/χ, χ)

where Bm(q, k, k′ , χ) =
6fNLΩm,0H2

0
Dmd(χ)

∂P(k, χ)
∂ log σ2

8

P(q, χ)
q2T(q) + ā0(k, χ)P(q, χ)
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• Lensing surveys


• CMB Lensing: Simons Observatory and CMB-S4


• Cosmic Shear: LSST/Euclid-like survey

• Specifications: , , , vary 


• Fisher matrix:  is only free parameter (optimistic)

n̄g = 31 arcmin−2 σϵ = 0.26 σz = 0.05(1 + z) Ntomo

fNL
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ℱ = ∑
ijk
abc

∑
ℓ1ℓ2ℓ3

∂ b(ijk)
ℓ1ℓ2ℓ3

∂fNL
Cov−1 [b(ijk)

ℓ1ℓ2ℓ3
, b(abc)

ℓ1ℓ2ℓ3]
∂ b(abc)

ℓ1ℓ2ℓ3

∂fNL
,

Assume Gaussian covariance 
with reconstruction/shape noiseSum over tomographic 

bins and multipoles
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Under optimistic assumptions may reach  from lensing bispectra. 
Completely independent of galaxy field!

σfNL
≈ 10



Conclusions
• Consistency relations can be used to constrain PNG with LSS using info from non-linear regime


• Many possibilities (and challenges) in the future


• Optimize weighting for hard modes in bispectrum and trispectrum 


• Understand information content


• Constrain more general models that constrain consistency relations


• PNG: Quasi-single field inflation/cosmological collider: fractional poles/oscillatory features


• Test equivalence principle/modified gravity


• Extend framework to galaxies/halos 

• Bias, RSD, shot noise


• Potential use


• Multi-tracer, systematics



Thank you!



Backup



Measurements

• Power spectrum: need to be careful with binning effects


• Bispectrum: 

• Average over all angles and hard momenta


• Matter response:

M̂in ≡ {⟨qnδqδ−q/T(q)⟩i , if n < 0

⟨qnδqδ−q⟩i , otherwise
,

B̂i ≡ ⟨Re δqδkδ−q−k⟩i ,  with k ∈ [kmin, kmax]

B̂ = ∑
n=−2,0,2

ānM̂α

F̄ ≡ ⟨δkδ−k ∂ log P(k)/∂ log σ2
8⟩ with k ∈ [kmin, kmax]

from Halofit
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Bispectrum Estimator

Suppose we want to estimate  in bins B(k1, k2, k3) ki

Define  Wki
(pi) ≡ {1, pi ∈ ki

0,  otherwise

⟹ B(k1, k2, k3) ∝ ∫ d3x
3

∏
j=1 (∫pi

δ(pi)Wki
(pi)e−ipi⋅x)

B(k1, k2, k3) ∝ ∫p1
∫p2

∫p3

δ(p1)Wk1
(p1) δ(p2)Wk2

(p2) δ(p3)Wk3
(p3) (2π)3δD(p123)

= ∫ d3xe−ip123⋅x

Use exponential representation of 
 to write in separable formδD

∴ B̂(k1, k2, k3) =

N3
grid

∑
i=1

δk1
(xi)δk2

(xi)δk3
(xi)

N3
grid

∑
i=1

Ik1(xi)Ik2(xi)Ik3(xi)



Bispectrum Estimator 
Validation

Figure 2: Validation on Gaussian mocks

Figure 3: Validation on mocks with f loc.
NL

Figure 1: Validation on measurements from Quijote



Trispectrum Estimator

• Trispectrum estimator in terms of external legs  and diagonals  is not 
separable 

• Use estimator integrated over  (see Appendix A of 2306.11782)


• Can be efficiently evaluated by computing FFT’s of product fields

ka, …, kd kab, kbc

q23

Biased estimator because it includes disconnected terms!!!

⟨ ⟨ ⟨⟨

https://arxiv.org/abs/2306.11782


Trispectrum Estimator (continued)
• Just need an estimator for disconnected terms and can subtract them


• Simple estimator: 


• More optimal estimator: 


• Can be efficiently implemented using FFT’s

δ4 − 6 δ2⟨δ2⟩2 + 3⟨δ2⟩2

δ4 − 3⟨δ2⟩2

(See Appendix F. of Shen, Schaan, Ferraro, 24 )

Depends on fiducial P(k) Depends on realization of δ

Can compute both types of disconnected terms and subtract accordingly!



Trispectrum Estimator Validation



Super sample covariance (SSC)
• SSC for observable can be computed from derivative w.r.t DC mode

• Can estimate from separate universe (SU). For bispectrum looks like 

• Painful to compute for angle-averaged bispectrum in wide bins. Instead rewrite in terms of power spectrum SSC 

(Assuming squeezed triangles) 

• Checked that this equation agrees with SU within ~20% for squeezed bispectrum from Quijote in thin bin



SSC (continued)



SSC (continued)

Left: Validating P(k) SSC using Quijote.


Right: including SSC in Quijote degrades constraints on a0, but has negligible impact on 
fNL



arxiv.org/pdf/2305.03070



Preliminary
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Marginalization of gravitational non-Gaussianity 

• Marginalization over gravitational 
NG increases forecasted error on 
fNL by ~50%
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Optimizing the estimator

Instead of summing over all non-linear modes, we can split into k-bins. 
• Example: squeezed bispectrum measurements from 100 realizations of Quĳote 
with  with fNL = 100 0.25 < k < 0.5 h/Mpc

Preliminarya0
a(a)

0

a(b)
0

a(a)
0

a(b)
0

a(c)
0

a(d)
0

(see also Giri, Münchmeyer, Smith  2305.03070)


