Squeezing f f_{N} out of the

Oliver Philcox

Lam Hui

SG, Esposito, Philcox, Hui, Hill, Scoccimarro, Abitbol
*Buchalter Cosmology 1st Prize 2310.12959

SG, Philcox, Hill, Esposito, Hui
-SG, Hill, Irśić, and Sherwin, 2303.00746

- Phys Rev Lett. 131, 201001
- Editors' Suggestion/Featured in Physics

Current Lya forest data disfavor EDE as a resolution to Hubble tension

What I won't talk about...

- Comparing simulations with analytic models for LSS
- Galaxy bias models: SG, Pandey, Slosar, Blazek, and Jain, 2111.00501
- Splashback radius: 2111.06499 and 2105.05914

Note Notation

Correlations between long and short wavelength cosmological perturbations are highly constrained by symmetries

Soft/long wavelength mode: Hard/short wavelength mode:

"Squeezed" bispectrum $\left(q \ll k \approx k^{\prime}\right)$

Note Notation

Correlations between long and short wavelength cosmological perturbations are highly constrained by symmetries

Soft/long wavelength mode: Hard/short wavelength mode: MMMDMDMDMDMDMDMDMMDM

"Squeezed" bispectrum $\left(q \ll k \approx k^{\prime}\right)$

Note
 Notation

"Squeezed" bispectrum $\left(q<k \approx k^{\prime}\right)$

Introduction

- Upcoming large-scale structure (LSS) surveys will measure many modes
- Stress test Λ CDM
- Provide insight into initial conditions
- Theoretical challenge: non-linearities
- Impose scale cuts
- Particularly challenging for non-Gaussian/ higher-order statistics

Non-linearities in LSS

$$
\text { Goal: Constrain cosmology from } \delta(\boldsymbol{x})=\frac{\rho(\boldsymbol{x})-\bar{\rho}}{\bar{\rho}}
$$

Non-linearities in LSS

- Compress field into its correlation functions

$$
\xi_{n}\left(x_{1}, \ldots x_{n}\right) \equiv\left\langle\delta\left(x_{1}\right) \ldots \delta\left(x_{n}\right)\right\rangle_{c}
$$

Non-linearities in LSS

- Compress field into its correlation functions
- Power spectrum is lossless if field is Gaussian

Non-linearities in LSS

- Compress field into its correlation functions
- Power spectrum is lossless if field is Gaussian
- Need to model correlation functions with theory

Non-linearities in LSS

- Compress field into its correlation functions
- Power spectrum is lossless if field is Gaussian
- Need to model correlation functions with theory

Non-linearities in LSS

- Compress field into its correlation functions
- Power spectrum is lossless if field is Gaussian
- Need to model correlation functions with theory

Non-linearities in LSS

- Compress field into its correlation functions
- Power spectrum is lossless if field is Gaussian
- Need to model correlation functions with theory
- Theory is non-linear

Non-linearities in LSS

- Compress field into its correlation functions
- Power spectrum is lossless if field is Gaussian
- Need to model correlation functions with theory
- Theory is non-linear
- Need to "throw out" measurements

Non-linearities in LSS

- Compress field into its correlation functions
- Power spectrum is lossless if field is Gaussian
- Need to model correlation functions with theory
- Theory is non-linear
- Need to "throw out" measurements
- Astrophysics/baryons

Non-linearities in LSS

- Compress field into its correlation functions
- Power spectrum is lossless if field is Gaussian
- Need to model correlation functions with theory
- Theory is non-linear
- Need to "throw out" measurements
- Astrophysics/baryons
- Observational limitations

Non-linearities in LSS

- Compress field into its correlation functions
- Power spectrum is lossless if field is Gaussian
- Need to model correlation functions with theory
- Theory is non-linear
- Need to "throw out" measurements
- Astrophysics/baryons
- Observational limitations
- Generally observe biased tracers

Non-linearities in LSS

- Compress field into its correlation functions
- Power spectrum is lossless if field is Gaussian
- Need to model correlation functions with theory
- Theory is non-linear
- Need to "throw out" measurements
- Astrophysics/baryons
- Observational limitations
- Generally observe biased tracers
- Redshift space distortions

Non-linearities in LSS

- Compress field into its correlation functions
- Power spectrum is lossless if field is Gaussian
- Need to model correlation functions with theory
- Theory is non-linear
- Need to "throw out" measurements
- Astrophysics/baryons
- Observational limitations
- Generally observe biased tracers
- Redshift space distortions

Non-linearities in LSS

- Compress field into its correlation functions
- Power spectrum is lossless if field is Gaussian
- Nee
- The What to do when we cannot use
- ^ perturbation theory?
- A
- Observational limitations
- Generally observe biased tracers
- Redshift space distortions

Non-linearities in LSS

- Compress field into its correlation functions
- Power spectrum is lossless if field is Gaussian
- Nee
- The What to do when we cannot use - ^ perturbation theory?
- A
- Observational limitations
- Generally observe biased tracers
- Redshift space distortions

Marcus Aurelius ~170 AD

Marcus Aurelius ~170 AD

Marcus Aurelius ~170 AD

Marcus Aurelius ~170 AD

How do symmetries constrain cosmological correlators?

- Translational invariance:

$$
\Longrightarrow\left\langle\mathcal{O}\left(\boldsymbol{k}_{\mathbf{1}}\right) \ldots \mathcal{O}\left(\boldsymbol{k}_{\boldsymbol{n}}\right)\right\rangle=(2 \pi)^{3} \delta_{D}\left(\sum_{a} \boldsymbol{k}_{a}\right)\left\langle\mathcal{O}\left(\boldsymbol{k}_{\mathbf{1}}\right) \ldots \mathcal{O}\left(\boldsymbol{k}_{\boldsymbol{n}}\right)\right\rangle^{\prime}
$$

- Rotational symmetry:

$$
\Longrightarrow\left\langle\mathcal{O}\left(\boldsymbol{k}_{1}\right) \ldots \mathcal{O}\left(\boldsymbol{k}_{\boldsymbol{n}}\right)\right\rangle^{\prime}=F\left(\boldsymbol{k}_{\boldsymbol{i}} \cdot \boldsymbol{k}_{\boldsymbol{j}}\right)
$$

- Examples:
- Power spectrum: $\left\langle\delta\left(\boldsymbol{k}_{\mathbf{1}}\right) \delta\left(\boldsymbol{k}_{\mathbf{2}}\right)\right\rangle=(2 \pi)^{3} \delta_{D}\left(\boldsymbol{k}_{\mathbf{1}}+\boldsymbol{k}_{\mathbf{2}}\right) P\left(k_{1}\right)$
- Bispectrum: $\left\langle\delta\left(\boldsymbol{k}_{\mathbf{1}}\right) \delta\left(\boldsymbol{k}_{\mathbf{2}}\right) \delta\left(\boldsymbol{k}_{\mathbf{3}}\right)\right\rangle=(2 \pi)^{3} \delta_{D}\left(\boldsymbol{k}_{\mathbf{1}}+\boldsymbol{k}_{\mathbf{2}}+\boldsymbol{k}_{\mathbf{3}}\right) B\left(k_{1}, k_{2}, k_{3}\right)$
- Trispectrum: $\left\langle\delta\left(\boldsymbol{k}_{\mathbf{1}}\right) \delta\left(\boldsymbol{k}_{\mathbf{2}}\right) \delta\left(\boldsymbol{k}_{\mathbf{3}}\right) \delta\left(\boldsymbol{k}_{\mathbf{4}}\right)\right\rangle=(2 \pi)^{3} \delta_{D}\left(\boldsymbol{k}_{\mathbf{1}}+\boldsymbol{k}_{\mathbf{2}}+\boldsymbol{k}_{\mathbf{3}}+\boldsymbol{k}_{4}\right) T\left(k_{1}, k_{2}, k_{3}, k_{4}, k_{12}, k_{23}\right)$

How do symmetries constrain cosmological correlators?

- Translational invariance:

$$
\Longrightarrow\left\langle\mathcal{O}\left(\boldsymbol{k}_{\mathbf{1}}\right) \ldots \mathcal{O}\left(\boldsymbol{k}_{\boldsymbol{n}}\right)\right\rangle=(2 \pi)^{3} \delta_{D}\left(\sum_{a} \boldsymbol{k}_{a}\right)\left\langle\mathcal{O}\left(\boldsymbol{k}_{\mathbf{1}}\right) \ldots \mathcal{O}\left(\boldsymbol{k}_{\boldsymbol{n}}\right)\right\rangle^{\prime}
$$

- Rotational symmetry:

$$
\Longrightarrow\left\langle\mathcal{O}\left(\boldsymbol{k}_{1}\right) \ldots \mathcal{O}\left(\boldsymbol{k}_{n}\right)\right\rangle^{\prime}=F\left(\boldsymbol{k}_{i} \cdot \boldsymbol{k}_{j}\right)
$$

- Examples:
- Power spectrum: $\left\langle\delta\left(\boldsymbol{k}_{\mathbf{1}}\right) \delta\left(\boldsymbol{k}_{\mathbf{2}}\right)\right\rangle=(2 \pi)^{3} \delta_{D}\left(\boldsymbol{k}_{\mathbf{1}}+\boldsymbol{k}_{\mathbf{2}}\right) P\left(k_{1}\right)$
- Bispectrum: $\left\langle\delta\left(\boldsymbol{k}_{\mathbf{1}}\right) \delta\left(\boldsymbol{k}_{\mathbf{2}}\right) \delta\left(\boldsymbol{k}_{\mathbf{3}}\right)\right\rangle=(2 \pi)^{3} \delta_{D}\left(\boldsymbol{k}_{\mathbf{1}}+\boldsymbol{k}_{\mathbf{2}}+\boldsymbol{k}_{\mathbf{3}}\right) B\left(k_{1}, k_{2}, k_{3}\right)$
- Trispectrum: $\left\langle\delta\left(\boldsymbol{k}_{\mathbf{1}}\right) \delta\left(\boldsymbol{k}_{\mathbf{2}}\right) \delta\left(\boldsymbol{k}_{\mathbf{3}}\right) \delta\left(\boldsymbol{k}_{\mathbf{4}}\right)\right\rangle=(2 \pi)^{3} \delta_{D}\left(\boldsymbol{k}_{\mathbf{1}}+\boldsymbol{k}_{\mathbf{2}}+\boldsymbol{k}_{\mathbf{3}}+\boldsymbol{k}_{4}\right) T\left(k_{1}, k_{2}, k_{3}, k_{4}, k_{12}, k_{23}\right)$

What about more general symmetries?

Consistency relations for LSS

- Equations of motion for δ_{m}, v_{m}, Φ

$$
\begin{aligned}
& \frac{\partial \delta_{g}}{\partial \pi t}+W \cdot\left[[(11+\delta))_{g} \equiv=00 \quad\right. \text { (conservation of mass) } \\
& \left.\frac{\partial v_{g}}{\partial \tau}+\mathscr{A} d v_{y}+\left[\left[v_{g} \nabla \nabla\right\rangle\right]\right]_{-}=\nabla \Phi \Phi \text { (conservation of momentum) } \\
& \nabla^{2} \Phi=\frac{3}{2} \Omega_{m} \mathscr{H}^{2} \delta \quad \text { (Poisson equation) }
\end{aligned}
$$

Example of what $C R$ violation looks like

Soft Mode [q]

- Possess the following symmetry:

1. Shift in gravitational potential: $\Phi \mapsto \Phi+\kappa(\eta)$
2. Time-dependent translation: $\boldsymbol{x} \mapsto \boldsymbol{x}+\boldsymbol{n}(\eta)$

$$
\left.\Phi \rightarrow \Phi-\left(\mathscr{H} n^{\prime}+n^{\prime \prime}\right) \cdot x, v \rightarrow v+n^{\prime}\right\}
$$

Equal-Time LSS Bispectrum Consistency Relation

$$
\lim _{q \rightarrow 0}\left[\frac{B\left(q, k, k^{\prime}\right)}{P(q)}\right] \text { has no }(1 / q)^{\alpha} \text { poles }
$$

* Assumes Gaussian IC's/Equivalence Principle

Primordial non-Gaussianity

- Simplest single-field models predict \sim Gaussian initial conditions

Constraints on f_{NL} can be mapped to constraints on physical parameters, e.g. the inflaton sound speed. (from Cabass, Ivanov, Philcox, Simonović, Zaldariagga, 2201.07238)

Local primordial non-Gaussianity

- Local in configuration space

$$
\begin{gathered}
\Phi(\boldsymbol{x})=\Phi_{G}(\boldsymbol{x})+f_{\mathrm{NL}}^{\mathrm{loc} .}\left(\Phi_{G}^{2}(\boldsymbol{x})-\left\langle\Phi_{G}^{2}(\boldsymbol{x})\right\rangle\right) \\
\text { Komatsu \& Spergel, } 2001
\end{gathered}
$$

- Correlates long and short modes
- Bispectrum peaks in squeezed limit

"Squeezed" limit
- Notation: $f_{\mathrm{NL}} \equiv f_{\mathrm{NL}}^{\text {loc. }}$

Local primordial non-Gaussianity

- Local in configuration space

$$
\begin{gathered}
\Phi(\boldsymbol{x})=\Phi_{G}(\boldsymbol{x})+f_{\mathrm{NL}}^{\mathrm{loc} .}\left(\Phi_{G}^{2}(\boldsymbol{x})-\left\langle\Phi_{G}^{2}(\boldsymbol{x})\right\rangle\right) \\
\text { Komatsu \& Spergel, } 2001
\end{gathered}
$$

- Correlates long and short modes
- Bispectrum peaks in squeezed limit

"Squeezed" limit

$$
\begin{aligned}
\Phi= & \Phi_{L}+f_{\mathrm{NL}}\left(\Phi_{L}^{2}-\left\langle\Phi_{L}\right\rangle^{2}\right) \\
& +\left(1+2 f_{\mathrm{NL}} \Phi_{L}\right) \Phi_{S}+f_{\mathrm{NL}}\left(\Phi_{S}^{2}-\left\langle\Phi_{S}^{2}\right\rangle\right)
\end{aligned}
$$

- Notation: $f_{\mathrm{NL}} \equiv f_{\mathrm{NL}}^{\text {loc. }}$

Local primordial non-Gaussianity

- Local in configuration space

$$
\begin{gathered}
\Phi(\boldsymbol{x})=\Phi_{G}(\boldsymbol{x})+f_{\mathrm{NL}}^{\mathrm{loc} .}\left(\Phi_{G}^{2}(\boldsymbol{x})-\left\langle\Phi_{G}^{2}(\boldsymbol{x})\right\rangle\right) \\
\text { Komatsu \& Spergel, } 2001
\end{gathered}
$$

- Correlates long and short modes
- Bispectrum peaks in squeezed limit

"Squeezed" limit
- Notation: $f_{\mathrm{NL}} \equiv f_{\mathrm{NL}}^{\text {loc. }}$

Local primordial non-Gaussianity

- Local in configuration space

$$
\begin{gathered}
\Phi(\boldsymbol{x})=\Phi_{G}(\boldsymbol{x})+f_{\mathrm{NL}}^{\mathrm{loc} .}\left(\Phi_{G}^{2}(\boldsymbol{x})-\left\langle\Phi_{G}^{2}(\boldsymbol{x})\right\rangle\right) \\
\text { Komatsu \& Spergel, } 2001
\end{gathered}
$$

- Correlates long and short modes
- Bispectrum peaks in squeezed limit

"Squeezed" limit

- Notation: $f_{\mathrm{NL}} \equiv f_{\mathrm{NL}}^{\text {loc. }}$

Why should we care about $f_{\mathrm{NL}}^{\mathrm{oc}}$?

- Detection of f_{NL} local violates single-field consistency condition

$$
\begin{gathered}
f_{\mathrm{NL}} \approx \frac{5}{12}\left(1-n_{s}\right), \quad \text { (assuming single field inflation) } \\
\text { Maldacena, 2002; Creminelli \& Zaldarriaga, } 2004
\end{gathered}
$$

- Current best constraints come from CMB
- $f_{\mathrm{NL}}=-0.9 \pm 5.1$ (Planck 2018)
- $\sigma_{f_{\mathrm{NL}}}<1$ is an important theoretical target
- Near-term CMB may reach $\sigma_{f_{\mathrm{NL}}} \approx 2$
- LSS(×CMB) can do better!

Local PNG violates LSS consistency relations

- Let's derive the leading order f_{NL} contribution to the squeezed matter bispectrum
- Squeezed bispectrum $(q<k)$ is described by modulation of small scale power spectrum to long wavelength gravitational potential Φ_{L}

$$
\begin{aligned}
\lim _{q \ll k_{\mathrm{NL}}, k} B_{m}\left(q, k, k^{\prime}\right) & =\lim _{q \ll k_{\mathrm{NL}}, k}\left\langle\delta_{m}(\boldsymbol{q}) \delta_{m}(\boldsymbol{k}) \delta_{m}\left(\boldsymbol{k}^{\prime}\right)\right\rangle^{\prime}, \begin{array}{c}
\text { (Non-perturbative see, e.g., } \\
\text { Lewis, 1107.5431) }
\end{array} \\
& =\left\langle\delta_{m}(\boldsymbol{q}) P_{m}\left(k \mid \Phi_{L}\right)\right\rangle^{\prime}=P_{\Phi_{L} m}(q) \frac{\partial P_{m}(k)}{\partial \Phi_{L}(q)}, \\
& =\underbrace{\frac{3 \Omega_{m 0} H_{0}^{2}}{2 q^{2} T(q) D_{\mathrm{md}}\left(z_{q}\right)}}_{\text {From Poisson's equation }} P_{m}(q) \frac{\partial P_{m}(k)}{\partial \Phi_{L}(q)} .
\end{aligned}
$$

Local PNG violates LSS consistency relations

- Evaluate potential derivative using separate universe

$$
\Phi(\boldsymbol{x})=\Phi_{L}(\boldsymbol{x})+f_{\mathrm{NL}}\left(\Phi_{L}^{2}(\boldsymbol{x})-\left\langle\Phi_{L}\right\rangle^{2}\right)+\left(1+2 f_{\mathrm{NL}} \Phi_{L}(\boldsymbol{x})\right) \Phi_{S}(\boldsymbol{x})+f_{\mathrm{NL}}\left(\Phi_{S}^{2}(\boldsymbol{x})-\left\langle\Phi_{S}^{2}\right\rangle\right)
$$

- Equivalent to local rescaling of σ_{8}

$$
\sigma_{8}^{\text {loc. }}(\boldsymbol{x})=\left(1+2 f_{\mathrm{NL}} \Phi_{L}(\boldsymbol{x})\right) \sigma_{8}
$$

- Squeezed bispectrum is then

$$
\lim _{q \ll k_{\mathrm{NL}}, k} B_{m}\left(q, k, k^{\prime}\right)=\frac{6 \Omega_{m 0} H_{0}^{2} f_{\mathrm{NL}}}{q^{2} T(q) D_{\mathrm{md}}\left(z_{q}\right)} \frac{\partial \log P_{m}(k)}{\partial \log \sigma_{8}^{2}} P_{m}(q) P_{m}(k)+\mathcal{O}\left(f_{\mathrm{NL}}^{2}\right)
$$

Can we use this to constrain f_{NL} ?

"Squeezing f_{NL} out of the matter bispectrum with consistency relations"

2209.06228

SG, Esposito, Philcox, Hui, Hill, Scoccimarro, Abitbol

Simulations

- Use nbody simulations to validate squeezed bispectrum model beyond non-linear scale
- 40 nbody simulations with Gaussian initial conditions and 12 with $f_{\mathrm{NL}}=100$
- $L_{\text {box }}=2400 \mathrm{Mpc} / h$
- $N_{\text {particle }}=1280^{3}$

$$
\begin{aligned}
& \Omega_{m}=0.25, \Omega_{b}=0.04, \Omega_{\Lambda}=0.75 \\
& h=0.7, n_{s}=1, \sigma_{8}=0.8
\end{aligned}
$$

- Measure squeezed bispectrum and power spectrum at $\mathbf{z = 0}$ and $\mathbf{z = 0 . 9 7}$

Measurements

- Measure soft power spectrum ($\left.\hat{P}_{m}(q)\right)$
- Angle averaged squeezed bispectrum
- $\hat{B}\left(q, k_{\min }, k_{\max }\right)=\int d \Omega_{k} W(q, k) B\left(q, k, k^{\prime}\right)$
- Choose weights $W(q, k, \theta)=1$ (sub-optimal!)
- Average over wide k-bin for hard momenta

Measurements of angle averaged squeezed bispectrum as a function of the soft mode for two different hard momenta bins.

Measurements (continued)

f_{NL} leads to poles in squeezed bispectrum. Amplitude of pole can be used to constrain f_{NL}

Theory model

- Squeezed bispectrum has primordial and gravitational contribution

$$
B\left(q, k, k^{\prime}\right)=B_{\text {prim. }}\left(q, k, k^{\prime}\right)+B_{\text {grav. }}\left(q, k, k^{\prime}\right)
$$

- Already derived primordial contribution

$$
B_{\text {prim. }}\left(q, k, k^{\prime}\right)=\frac{6 \Omega_{m 0} H_{0}^{2} f_{\mathrm{NL}}}{q^{2} T(q) D_{\mathrm{md}}\left(z_{q}\right)} \frac{\partial \log P_{m}(k)}{\partial \log \sigma_{8}^{2}} P_{m}(q) P_{m}(k)
$$

- Model gravitational contribution based on consistency relations

$$
B_{\text {grav. }}\left(q, k, k^{\prime}\right)=\sum_{n=0}^{\infty} a_{n}(k) q^{n} P(q) P(k)
$$

Theory model

- Squeezed bispectrum has primordial and gravitational contribution

$$
B\left(q, k, k^{\prime}\right)=B_{\text {prim. }}\left(q, k, k^{\prime}\right)+B_{\text {grav. }}\left(q, k, k^{\prime}\right)
$$

- Already derived primordial contribution

$$
B_{\text {prim }}\left(q, k, k^{\prime}\right)=\frac{6 \Omega_{m 0} H_{0}^{2} f_{\mathrm{NL}}}{q^{2} T(q) D_{\mathrm{md}}\left(z_{q}\right)} \frac{\partial \log P_{m}(k)}{\partial \log \sigma_{8}^{2}} P_{m}(q) P_{m}(k)
$$

- Model gravitational contribution based on consistency relations

$$
B_{\text {grav. }}\left(q, k, k^{\prime}\right)=\sum_{n=0}^{\infty} a_{n}(k) q^{n} P(q) P(k)
$$

Challenge: f_{NL} is degenerate with logarithmic derivative. Can be modeled with sims for matter. Will be difficult for galaxies $\left(b_{\phi}\right)$

Theory model

- Squeezed bispectrum has primordial and gravitational contribution

$$
B\left(q, k, k^{\prime}\right)=B_{\text {prim. }}\left(q, k, k^{\prime}\right)+B_{\text {grav. }}\left(q, k, k^{\prime}\right)
$$

- Already derived primordial contribution

$$
B_{\text {prim. }}\left(q, k, k^{\prime}\right)=\frac{6 \Omega_{m 0} H_{0}^{2} f_{\mathrm{NL}}}{q^{2} T(q) D_{\mathrm{md}}\left(z_{q}\right)} \frac{\partial \log P_{m}(k)}{\partial \log \sigma_{8}^{2}} P_{m}(q) P_{m}(k)
$$

- Model gravitational contribution based on consistency relations

$$
B_{\text {grav. }}\left(q, k, k^{\prime}\right)=\sum_{n \text { even }}^{\infty} a_{n}(k) q^{n} P(q) P(k)
$$

Theory model

- Squeezed bispectrum has primordial and gravitational contribution

$$
B\left(q, k, k^{\prime}\right)=B_{\text {prim. }}\left(q, k, k^{\prime}\right)+B_{\text {grav. }}\left(q, k, k^{\prime}\right)
$$

- Already derived primordial contribution

$$
B_{\text {prim. }}\left(q, k, k^{\prime}\right)=\frac{6 \Omega_{m 0} H_{0}^{2} f_{\mathrm{NL}}}{q^{2} T(q) D_{\mathrm{md}}\left(z_{q}\right)} \frac{\partial \log P_{m}(k)}{\partial \log \sigma_{8}^{2}} P_{m}(q) P_{m}(k)
$$

- Model gravitational contribution based on consistency relations

$$
B_{\text {grav. }}\left(q, k, k^{\prime}\right)=a_{0}(k) P(q) P(k)+a_{2}(k) q^{2} P(q) P(k)
$$

Theory model

- Squeezed bispectrum has primordial and gravitational contribution

$$
B\left(q, k, k^{\prime}\right)=B_{\text {prim. }}\left(q, k, k^{\prime}\right)+B_{\text {grav. }}\left(q, k, k^{\prime}\right)
$$

- Already derived primordial contribution

$$
B_{\text {prim. }}\left(q, k, k^{\prime}\right)=\frac{6 \Omega_{m 0} H_{0}^{2} f_{\mathrm{NL}}}{q^{2} T(q) D_{\mathrm{md}}\left(z_{q}\right)} \frac{\partial \log P_{m}(k)}{\partial \log \sigma_{8}^{2}} P_{m}(q) P_{m}(k)
$$

- Model gravitational contribution based on consistency relations

$$
B_{\text {grav. }}\left(q, k, k^{\prime}\right)=\bar{a}_{0} P(q)+\bar{a}_{2} q^{2} P(q)
$$

Measurements/Likelihood

- Measure power spectrum and angle averaged squeezed bispectrum
- Joint likelihood for $\hat{P}(q)$ and $\hat{B}(q)$
- Sample variance cancellation
- Covariance estimated from simulations without PNG
- Multivariate-t likelihood (Sellentin \& Heavens, 2015)
- Fit for f_{NL}, a_{0}, and a_{2}

Marginalized Posterior at $\mathbf{z = 0}$

Marginalized Posterior at $\mathbf{z = 0 . 9 7}$
(i) How squeezed do the triangles need to be?

We recover the true value of fNL for kmin>0.2h/Mpc
(ii) How much information is in non-linear regime?

Constraints saturate for $k>0.3 \mathrm{~h} / \mathrm{Mpc}$ due to non-Gaussian covariance and sub=optimal weighting

Optimal weighting can help!

Instead of summing all k-bins, split into sub bins

- Single bin $\left(\sigma_{f_{\mathrm{NL}}}=62\right)$
- Two bins $\left(\sigma_{f_{\mathrm{NL}}}=47\right)$
- Four bins $\left(\sigma_{f_{\mathrm{NL}}}=41\right)$

Shaded region: Fisher error for $B+P$ up to $k_{\max }=0.5 \mathrm{~h} / \mathrm{Mpc}$ from Quijote PNG analysis (Coulton, 2022) for different marginalizations

Error from fitting squeezed bispectrum is close to Fisher error from full bispectrum!

Can we do better with the collapsed trispectrum?

(see also Giri, Münchmeyer, Smith 2305.03070)

Can we do better with the collapsed trispectrum?

(see also Giri, Münchmeyer, Smith 2305.03070)

Multi-bin analysis

- Collapsed trispectrum is product of squeezed bispectra

$$
\lim _{k_{12}<k_{\mathrm{NL}} \ldots} T\left(\boldsymbol{k}_{1}, \boldsymbol{k}_{2}, \boldsymbol{k}_{3}, \boldsymbol{k}_{4}\right)=\frac{B\left(\boldsymbol{k}_{12}, \boldsymbol{k}_{1}\right) B\left(\boldsymbol{k}_{12}, \boldsymbol{k}_{3}\right)}{P_{\mathrm{L}}\left(k_{12}\right)}+T_{0} .
$$

- We get this for free! (after coding a trispectrum estimator..)
- Joint analysis B+T

New possibilities with trispectrum

- With trispectrum we can go beyond f_{NL}
- Example: τ_{NL}
- Collapsed T not associated with squeezed B (excess d.o.f. during inflation)

$$
\left.\tau_{\mathrm{NL}} \geq\left(\frac{6}{5} f_{\mathrm{NL}}\right)\right)^{2} \quad \text { (Suyama-Yamaguchi) }
$$

- Can fit for f_{NL} and τ_{NL} using joint likelihood in bispectrum and trispectrum measured from Quijote
- These results are a proof of concept
- Need to implement optimal weighting and more configurations
- Should learn a lot from bispectrum

Constraints on ($f_{\mathrm{NL}}, \tau_{\mathrm{NL}}$) from squeezed bispectrum and collapsed trispectrum using Quijote simulations with $f_{\mathrm{NL}}=100$!

"Consistently constraining f_{NL} with the squeezing lensing bispectrum using consistency relations"

2310.12959

SG, Philcox, Hill, Esposito, Hui

Constraining fNL with the squeezed lensing bispectra

- Can't observe the matter bispectrum directly, but can observe integrals of it with lensing!
- Lensing convergence:

$$
\kappa^{(i)}(\hat{\boldsymbol{n}})=\int_{0}^{\chi_{s}} d \chi W^{(i)}(\chi) \delta_{m}(\chi \hat{\boldsymbol{n}}, \chi), \text { where }
$$

$$
\begin{aligned}
& \overbrace{W^{\kappa_{\mathrm{CMB}}}(\chi)}^{\mathrm{CMB}}=\frac{3 H_{0}^{2} \Omega_{m} \chi}{2 a(\chi)}\left(\frac{\chi_{*}-\chi}{\chi_{*}}\right), \\
& \underbrace{W^{\kappa_{g},(i)}(\chi)}=\frac{3 H_{0}^{2} \Omega_{m} \chi}{2 a(\chi)} \int_{\chi}^{\infty} d \chi^{\prime} p_{s}^{(i)}\left(\chi^{\prime}\right)\left(\frac{\chi^{\prime}-\chi}{\chi^{\prime}}\right) .
\end{aligned}
$$

Cosmic shear/galaxy surveys

$$
\kappa_{\ell} \approx \int W(\chi) \delta_{m}(\ell \mid \chi, \chi) d \chi \Longrightarrow\left\{\begin{array}{l}
C_{\ell} \propto \int d \chi \frac{W(\chi)}{\chi^{2}} P_{m}(\ell \mid \chi, \chi) \\
b_{\ell_{1} \ell_{2} \ell_{3}} \propto \int d \chi \frac{W^{3}(\chi)}{\chi^{4}} B_{m}\left(\ell_{1} / \chi, \ell_{2} / \chi, \ell_{3} / \chi, \chi\right)
\end{array}\right.
$$

where $B_{m}\left(q, k, k^{\prime}, \chi\right)=\frac{6 f_{\mathrm{NL}} \Omega_{m, 0} H_{0}^{2}}{D_{\mathrm{md}}(\chi)} \frac{\partial P(k, \chi)}{\partial \log \sigma_{8}^{2}} \frac{P(q, \chi)}{q^{2} T(q)}+\bar{a}_{0}(k, \chi) P(q, \chi)$

Forecast Setup

- Lensing surveys

- CMB Lensing: Simons Observatory and CMB-S4
- Cosmic Shear: LSST/Euclid-like survey

- Specifications: $\bar{n}_{g}=31 \operatorname{arcmin}^{-2}, \sigma_{\epsilon}=0.26, \sigma_{z}=0.05(1+z)$, vary $N_{\text {tomo }}$
- Fisher matrix: f_{NL} is only free parameter (optimistic)

$$
\mathscr{F}=\underbrace{\sum_{\ell_{1} \ell_{2} \ell_{3}}}_{\substack{a j k}} \sum_{\substack{\text { Assume Gaussian covariance }}} \frac{\partial b_{\ell_{1} \ell_{2} \ell_{3}}^{(i j k)}}{\partial f_{\mathrm{NL}}} \underbrace{\mathrm{Cov}^{-1}\left[b_{\ell_{1} \ell_{2} \ell_{3}}^{(i j k)}, b_{\ell_{1} \ell_{2} \ell_{3}}^{(a b c)}\right]}_{\begin{array}{c}
\text { with reconstruction/shape noise }
\end{array}} \frac{\partial b_{\ell_{1} \ell_{2} \ell_{3}}^{(a b c)}}{\partial f_{\mathrm{NL}}},
$$

Does shear+CMB lensing help?

Does shear+CMB lensing help?

Under optimistic assumptions may reach $\sigma_{f_{\mathrm{NL}}} \approx 10$ from lensing bispectra. Completely independent of galaxy field!

Conclusions

- Consistency relations can be used to constrain PNG with LSS using info from non-linear regime
- Many possibilities (and challenges) in the future
- Optimize weighting for hard modes in bispectrum and trispectrum
- Understand information content
- Constrain more general models that constrain consistency relations
- PNG: Quasi-single field inflation/cosmological collider: fractional poles/oscillatory features
- Test equivalence principle/modified gravity
- Extend framework to galaxies/halos
- Bias, RSD, shot noise
- Potential use
- Multi-tracer, systematics

Backup

Measurements

- Power spectrum: need to be careful with binning effects

$$
\hat{M}_{i n} \equiv\left\{\begin{array}{ll}
\left\langle q^{n} \delta_{q} \delta_{-q} / T(q)\right\rangle_{i}, & , \text { f } n<0 \\
\left\langle q^{n} \delta_{q} \delta_{-q}\right\rangle_{i}, & \text { otherwise }
\end{array},\right.
$$

- Bispectrum:

$$
\hat{\boldsymbol{B}}=\sum_{n=-2,0,2} \bar{a}_{n} \hat{\boldsymbol{M}}_{\alpha}
$$

$$
\hat{B}_{i} \equiv\left\langle\operatorname{Re} \delta_{q} \delta_{k} \delta_{-q-k}\right\rangle_{i}, \quad \text { with } k \in\left[k_{\min }, k_{\max }\right]
$$

- Average over all angles and hard momenta
- Matter response:

$$
\bar{F} \equiv\langle\delta_{\boldsymbol{k}} \delta_{-\boldsymbol{k}} \underbrace{\left.\partial \log P(k) / \partial \log \sigma_{8}^{2}\right\rangle}_{\text {from Halofit }} \text { with } k \in\left[k_{\min }, k_{\max }\right]
$$

How squeezed is squeezed?

Where is the information?

Bispectrum Estimator

Suppose we want to estimate $B\left(k_{1}, k_{2}, k_{3}\right)$ in bins k_{i}
Define $W_{k_{i}}\left(p_{i}\right) \equiv \begin{cases}1, & p_{i} \in k_{i} \\ 0, & \text { otherwise }\end{cases}$

$$
\begin{aligned}
B\left(k_{1}, k_{2}, k_{3}\right) \propto \int_{\boldsymbol{p}_{1}} \int_{\boldsymbol{p}_{2}} \int_{\boldsymbol{p}_{3}} \delta\left(\boldsymbol{p}_{1}\right) W_{k_{1}}\left(p_{1}\right) \delta\left(\boldsymbol{p}_{2}\right) W_{k_{2}}\left(p_{2}\right) \delta\left(\boldsymbol{p}_{3}\right) W_{k_{3}}(p_{3} \underbrace{(2 \pi)^{3} \delta_{D}\left(\boldsymbol{p}_{123}\right)} \\
\Longrightarrow B\left(k_{1}, k_{2}, k_{3}\right) \propto \int d^{3} x \prod_{j=1}^{3}\left(\int_{\boldsymbol{p}_{i}} \delta\left(\boldsymbol{p}_{i}\right) W_{k_{i}}\left(p_{i}\right) e^{-i \boldsymbol{p}_{i} \cdot \boldsymbol{x}}\right) \quad \begin{array}{l}
=\int d^{3} x e^{-i p_{123} \cdot x} \\
\\
\begin{array}{l}
\text { Use exponential representation of } \\
\delta_{D} \text { to write in separable form }
\end{array}
\end{array} .
\end{aligned}
$$

$$
\therefore \hat{B}\left(k_{1}, k_{2}, k_{3}\right)=\frac{\sum_{i=1}^{N_{\text {mid }}^{3}} \delta_{k_{1}}^{3}\left(x_{i}\right) \delta_{k_{2}}\left(x_{i}\right) \delta_{k_{3}}\left(x_{i}\right)}{\sum_{i=1}^{N_{\text {Bidd }}^{3}} I_{k_{1}}\left(x_{i}\right) I_{k_{2}}\left(x_{i}\right) I_{k_{3}}\left(x_{i}\right)}
$$

Bispectrum Estimator Validation

Figure 1: Validation on measurements from Quijote

Figure 2: Validation on Gaussian mocks

Figure 3: Validation on mocks with $f_{\mathrm{NL}}^{\text {loc. }}$

Trispectrum Estimator

- Trispectrum estimator in terms of external legs k_{a}, \ldots, k_{d} and diagonals $k_{a b}, k_{b c}$ is not separable
- Use estimator integrated over q_{23} (see Appendix A of $\underline{2306.11782}^{\text {23 }}$

$$
\begin{aligned}
\left\langle\hat{T}_{\text {tot }}\left(k_{a}, k_{b}, k_{c}, k_{d}, k_{E}\right)\right\rangle=\frac{1}{N_{a, b, c, d, E}} \int_{\boldsymbol{Q}} W_{E}(Q) \int_{\boldsymbol{k}_{1}, \ldots, \boldsymbol{k}_{4}}\{ & W_{a}\left(k_{1}\right) W_{b}\left(k_{2}\right) W_{c}\left(k_{3}\right) W_{d}\left(k_{4}\left\langle\delta_{\boldsymbol{k}_{1}} \delta_{\boldsymbol{k}_{2}} \delta_{\boldsymbol{k}_{3}} \delta_{\boldsymbol{k}_{4}}\right\rangle\right. \\
& \left.(2 \pi)^{3} \delta_{D}^{(3)}\left(\boldsymbol{k}_{12}-\boldsymbol{Q}\right)(2 \pi)^{3} \delta_{D}^{(3)}\left(\boldsymbol{k}_{34}+\boldsymbol{Q}\right)\right\},
\end{aligned}
$$

- Can be efficiently evaluated by computing FFT's of product fields

$$
D_{i j}(\boldsymbol{Q}) \equiv \int d^{3} x e^{-i \boldsymbol{Q} \cdot \boldsymbol{x}} \delta_{W_{i}}(\boldsymbol{x}) \delta_{W_{j}}(\boldsymbol{x})
$$

$$
\hat{T}_{\mathrm{tot}}\left(k_{a}, k_{b}, k_{c}, k_{d}, k_{E}\right)=\frac{1}{N_{a, b, c, d, E}} \int_{\boldsymbol{Q}} W_{E}(Q) D_{a b}(\boldsymbol{Q}) D_{c d}^{*}(\boldsymbol{Q}),
$$

Trispectrum Estimator (continued)

- Just need an estimator for disconnected terms and can subtract them
- Simple estimator: $\delta^{4}-3\left\langle\delta^{2}\right\rangle^{2}$
- More optimal estimator: $\delta^{4}-6 \delta^{2}\left\langle\delta^{2}\right\rangle^{2}+3\left\langle\delta^{2}\right\rangle^{2}$ (See Appendix F. of Shen, Schaan, Ferraro, 24)
- Can be efficiently implemented using FFT's

Depends on fiducial $\mathbf{P (k)}$

$$
F_{i j}^{P}(\boldsymbol{x}) \equiv \int_{\boldsymbol{k}} W_{i}(k) W_{j}(k) P(k) e^{i \boldsymbol{k} \cdot \boldsymbol{x}}
$$

$$
\begin{aligned}
& \hat{T}_{\mathrm{disc}}^{\left\langle\delta^{2}\right\rangle^{2}}=\frac{V}{N_{a, b, c, d, E}} \int_{Q} W_{E}(Q) \int d^{3} x e^{-i \boldsymbol{Q} \cdot \boldsymbol{x}}\left[F_{a c}^{P}(\boldsymbol{x}) F_{b d}^{P}(\boldsymbol{x})+F_{a d}^{P}(\boldsymbol{x}) F_{b c}^{P}(\boldsymbol{x})\right] \\
& \hat{T}_{\mathrm{disc}}^{\delta^{2}\left\langle\delta^{2}\right\rangle}=\frac{V}{N_{a, b, c, d, E}} \int_{\boldsymbol{Q}} W_{E}(Q) \int d^{3} x e^{-i \boldsymbol{Q} \cdot \boldsymbol{x}}\left[F_{a c}^{P}(\boldsymbol{x}) F_{b d}^{\delta}(\boldsymbol{x})+F_{a c}^{\delta}(\boldsymbol{x}) F_{b d}^{P}(\boldsymbol{x})+F_{a d}^{P}(\boldsymbol{x}) F_{b c}^{\delta}(\boldsymbol{x})+F_{a d}^{\delta}(\boldsymbol{x}) F_{b c}^{P}(\boldsymbol{x})\right] .
\end{aligned}
$$

Can compute both types of disconnected terms and subtract accordingly!

Trispectrum Estimator Validation

Super sample covariance (SSC)

- SSC for observable can be computed from derivative w.r.t DC mode

$$
\mathrm{Cov}^{\mathrm{SSC}}(\mathcal{O}, \mathcal{O})^{\prime}=\left.\sigma_{R_{\mathrm{box}}}^{2} \frac{\partial \mathcal{O}}{\partial \delta_{\mathrm{b}}} \frac{\partial \mathcal{O}^{\prime}}{\partial \delta_{\mathrm{b}}} \quad \frac{\partial P(k)}{\partial \delta_{\mathrm{b}}}\right|_{\delta_{\mathrm{b}}=0}=P(k)+\frac{\partial P_{\mathrm{SU}}(k)}{\partial \delta_{\mathrm{b}}}-\frac{1}{3} \frac{\partial P(k)}{\partial \log (k)}
$$

- Can estimate from separate universe (SU). For bispectrum looks like

$$
\frac{\partial B\left(k_{1}, k_{2}, k_{3}\right)}{\partial \delta_{b}}=B\left(k_{1}, k_{2}, k_{3}\right)+\frac{\partial B_{\mathrm{SU}}\left(k_{1}, k_{2}, k_{3}\right)}{\partial \delta_{b}}-\frac{1}{3} \sum_{i=1}^{3} \frac{\partial B\left(k_{1}, k_{2}, k_{3}\right)}{\partial \log k_{i}} .
$$

- Painful to compute for angle-averaged bispectrum in wide bins. Instead rewrite in terms of power spectrum SSC

$$
\begin{array}{r}
B^{\mathrm{thr}}\left(k_{1}, k_{2}, k_{3}\right)=a_{0}(k) P\left(k_{1}\right) P\left(k_{2}\right), \quad \text { (Assuming squeezed triangles) } \\
\mathrm{Cov}^{\mathrm{SSC}}\left(B(q, k), B\left(q^{\prime}, k^{\prime}\right)\right) \approx a_{0}(k) a_{0}\left(k^{\prime}\right)\left[P(q) P\left(k^{\prime}\right) \operatorname{Cov}^{\mathrm{SSC}}\left(P(k), P\left(k^{\prime}\right)\right)+P(q) P\left(k^{\prime}\right) \operatorname{Cov}^{\mathrm{SSC}}\left(P(k), P\left(q^{\prime}\right)\right)+\right. \\
\left.P(k) P\left(q^{\prime}\right) \operatorname{Cov}^{\mathrm{SSC}}\left(P(q), P\left(k^{\prime}\right)\right)+P(k) P\left(k^{\prime}\right) \operatorname{Cov}^{\mathrm{SSC}}\left(P(q), P\left(q^{\prime}\right)\right)\right] .
\end{array}
$$

- Checked that this equation agrees with SU within $\sim 20 \%$ for squeezed bispectrum from Quijote in thin bin

SSC (continued)

SSC (continued)

Left: Validating $\mathrm{P}(\mathrm{k})$ SSC using Quijote.
Right: including SSC in Quijote degrades constraints on a0, but has negligible impac fNL

arxiv.org/pdf/2305.03070

Marginalization of gravitational non-Gaussianity

- Marginalization over gravitational NG increases forecasted error on fNL by ~50\%

Optimizing the estimator

Instead of summing over all non-linear modes, we can split into k-bins.

- Example: squeezed bispectrum measurements from 100 realizations of Quijote with $f_{\mathrm{NL}}=100$ with $0.25<k<0.5 \mathrm{~h} / \mathrm{Mpc}$ (see also Giri. Münchmeyer. Smith 2305.03070)

