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Vera C. Rubin Observatory

8.4 m primary/tertiary moving
into the observatory on March
7,2024.

I

Moved onto the mirror cell on March 20.
Will now be prepared for coating.

Rubin Obs/NSF/AURA/O.Rivera.

Slide courtesy of Elisa Chisari (DESC Deputy Analysis Coordinator)



The LSST Camera

will soon be shipped to Chile!
Wednesday’s Press Release:

APRIL 3, 2024

SLAC completes construction
of the largest digital camera
ever built for astronomy

Once set in place atop a telescope in Chile, the 3,200-
megapixel LSST Camera will help researchers better

understand dark matter, dark energy and other mysteries

of our universe.



https://www6.slac.stanford.edu/news/2024-04-03-slac-completes-construction-largest-digital-camera-ever-built-astronomy

Motivating LSST

Time domain science
o Nova, supernova, GRBs
o Source characterization
o Instantaneous discovery
Census of the Solar System
o NEOs, MBAs, Comets
o KBOs, Oort Cloud
Mapping the Milky Way
o Tidal streams
o Galactic structure
Dark energy and dark matter
o Strong lensing
o Weak Lensing N ' OBSERVED SKY
o Constraining the nature of dark energy ‘ "

slide from Mario Juric



LSST Dark Energy Science Collaboration (DESC)

1200 MEMBERS
4 250 FULL (VOTING) MEMBERS
273 INSTITUTIONS (102 IN US)
31 COUNTRIES




LSST Dark Energy Science Collaboration (DESC)
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The Goa Forecasted 68% credible regions on (wg, w,) for individual probes and
their combination after all LSST data is analyzed.
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Introduction

e The 3x2pt method consists of 3 two-point correlation functions combining
weak lensing and large scale structure
o Shear-shear: auto-correlation between shapes of galaxies
o Galaxy clustering: auto-correlation between galaxy locations
o Galaxy-galaxy lensing: cross-correlation between shapes and locations

e LSST will observe too many galaxies to get spectroscopic redshifts and will
instead rely on less precise photometric redshifts
o Galaxies will be sorted into tomographic redshift bins
o 2D correlation functions are computed within and between bins



Towards a 3x2pt anaIyS|s

Measurements: TXPipe

PRELIMINARY

Prat+, LSST DESC (2022), 2212.09345

Slide courtesy of Elisa Chisari (DESC Deputy Analysis Coordinator)
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Photo-z as a mapping of color space to redshift

Rubin ugrizy will give 6 dimensional space (6 magnitudes or 5 colors + 1

magnitude)
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Slide stolen from Sam Schmidt’s excellent DE School lesson



Machine Learning for Photo-z's

A variety of machine learning methods can be used to estimate photometric redshifts (photo-z’s) including:

Self-organized maps

Neural networks (e.g ANNz, NetZ)

Random forests (e.g TPZ)

Conditional density estimators (e.g FlexZBoost)

And many others!
These photo-z machine learning methods require two things:

e A training sample of galaxies with accurate (spectroscopic) redshifts and photometry
e An application sample of galaxies with only photometry


https://iopscience.iop.org/article/10.1086/383254
https://www.aanda.org/articles/aa/full_html/2021/07/aa39945-20/aa39945-20.html
https://academic.oup.com/mnras/article/432/2/1483/1029454
https://projecteuclid.org/journals/electronic-journal-of-statistics/volume-11/issue-2/Converting-high-dimensional-regression-to-high-dimensional-conditional-density-estimation/10.1214/17-EJS1302.full

Motivation

The DESC Tomographic Challenge (https://arxiv.org/abs/2108.13418)
investigated methods of optimizing the source sample selection for cosmic shear

We investigate optimizing the lens sample for galaxy clustering
o Get to use the full range of photometric filters
o We also add a realistic level of non-representativeness to the training sample

We present a method for optimizing the tomographic binning strategy for the lens
sample of galaxies used for galaxy clustering using a realistically non-
representative training sample for estimating photo-z’s
o Pipeline is tested on 2 mock galaxy catalogs: Buzzard (DeRose et al. 2019)
and CosmoDC2 (Korytov et al. 2019)
o Training sample is redder and brighter than application sample, consistent
with current spectroscopic samples
Optimize choice of bin edges and selection of galaxies for binning



https://arxiv.org/abs/2108.13418
https://arxiv.org/abs/2108.13418
https://arxiv.org/abs/2108.13418

Challenge: Six-band photometric redshifts are difficult!

3.0

e LSST will rely on photometric redshifts Representative ~
: : Training 2o
o Current spectroscopic samples are brighter and redder ol
(and lower redshift) than expected LSST data § 0 4 =
o DESI spectroscopy doesn’t go deep enough to solve H o
the problem 0s
e Non-representative training samples lead to o0 1
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samples

t Frac = 0.480

103

Zphot
ot
3

Realistically Non-
representative °

Figures from Moskowitz+2024 arXiv:2402.15551 Training

=
o
4

100

Number of Objects

Number of Objects


https://arxiv.org/abs/2402.15551

Training Sample Augmentation

e \What if we just add simulated galaxies to our training sample with otherwise
unrepresented photometry/redshifts?

e No simulation is perfect: need two simulations that are different enough from

each other to simulate the difference between real data and a simulation

o Use LSST Dark Energy Science Collaboration Data Challenge 2 (DC2) as “real” data (galaxy
SEDs constructed from FSPS)

o Use Buzzard as simulated data (galaxy SEDs assigned to match the SED-luminosity-density
relation measured in SDSS)

e In this work:

o Application sample (i.e., “validation set”, simulating expected LSST data): all DC2 galaxies

o Base training set (simulating spectroscopic samples): bright/red/low-redshift DC2 galaxies
o Used to augment training set: dim/blue/high-redshift Buzzard galaxies



Methodology: non-representative Sample

Split DC2 catalog into a realistically non-representative training sample and

application sample using the GridSelection degrader in RAIL
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https://github.com/LSSTDESC/rail/tree/main

Methodology: non-representative Sample

Split DC2 catalog into a realistically non-representative training sample and
application sample using the GridSelection degrader in RAIL

o Mimics HSC data with spectroscopic redshifts
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https://github.com/LSSTDESC/rail/tree/main

Methodology: Augmentation

e Select 10,000 Buzzard galaxies with features that are unrepresented in DC2
training sample

° I-mag > 23 Matched to boundaries of DC2 training
o (g-z)color<1.75

O Ztrue > 1.0 Sample

o Combination of 2 or 3 features

m Usually the intersection of both features, but matched to training sample shape for
color+magnitude

Best case augmentation selection shown in panel d: using
color+magnitude+redshift and the shifted magnitudes

DC2 Training Sample DC2 Application Sample Buzzard Sample Augmented Training Sample
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Methodology: Photometry Shifting

e Buzzard has a different color-redshift relationship than DC2: can we shift the
Buzzard photometry in some way so it looks more like the DC2 color-redshift

relationship?
o Magnitude shifting: shift magnitudes in all bands so the median magnitudes match. Generally

works best

o Normalizing flow: generate photometry that matches DC2, and use a conditional flow to generate

Buzzard-like redshifts
e Best case augmentation selection shown in panel d: using
color+magnitude+redshift and the shifted magnitudes

DC2 Training Sample DC2 Application Sample Buzzard Sample Augmented Training Sample
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Results
Reported statistics:
e COutlier fraction: define outliers as |Az|/(1+z) > 0.15
e NMAD: normalized median absolute deviation,1.4286 x med(|Az|/(1+z))
e Percent improvement: (X, naug - Xaug)/Xunaug: Where Xis outlier fraction or NMAD
e Percent recovery towards representative case: (Xynaug-Xaug)/(XunaugXrep)

o  Even with a fully representative training sample, outlier fraction and NMAD are not 0, want to capture
the recovery towards this best case scenario



Flowed Redshift Augmentation

Flowed Redshift Augmented

Out Frac = 0.292
NMAD = 0.094

3.0

55% recovery outliers
70% recovery NMAD

Zphot




Unshifted vs Shifted Magnitudes Augmentation:
color+magnitude+redshift
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Best Results Figures from Moskowitz+2024 arXiv:2402.15551
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https://arxiv.org/abs/2402.15551

Summary of Training Sample Augmentation

e Can get over % of the way back to the photo-z quality achieved by a fully
representative training sample with some simple augmentation

e Only added 10,000 Buzzard galaxies to our DC2 training sample (originally
180,000 objects)

e Simple selection criteria (redshift, one magnitude and one color)

e Expect even better results when using an updated, more realistic simulation
on real data

e Full quantification of improvements will require an end-to-end cosmological =
parameter estimate to confirm that augmentation reduces parameter biases



Optlmlzmg Bin Edges Figures from Moskowitz+2023 ApJ 950, 49

3 common, physically motivated choices:

e Equally spaced in redshift (equal Az)
e Equally spaced in comoving distance (equal Ay)
e Equal numbers in each bin

Equal number binning performs ~best out of these three choices
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https://ui.adsabs.harvard.edu/abs/2023ApJ...950...49M/abstract

Optimizing Bin Edges

Start with three base methods: equal Az, equal Ay, and equal number binning

Generalize by introducing the binning equation - [™ <le> <j§)ﬁdz

Divide M into 12 equal bins, interpolate back to redshift values
Three special cases:

o a=B=0:Mis z,,,, recover equal Az bins

o a=0, B=1:Mis Xax recover equal Ay bins

o a=1, B=0:M is the total number of galaxies, recover equal number bins



Optimizing Bin Edges
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Compute bin edges for many values of a and 3
Sort galaxies into bins using their photo-z
estimates

e Calculate SNR of the angular power spectra
derived from the bins

e For CosmoDC2, we find the highest SNR at
a=2.0 and 3=5.25 - a 5% improvement versus
equal-number binning




Optimizing Sample Selection

LSST will not be shot-noise limited, so we we can improve the binning by
removing galaxies with poor photo-z estimates
Only care if the photo-z is good enough to place it in the correct bin

Train two Neural Network Classifiers to make the sample selection
Outlier NNC (Broussard & Gawiser 2021):

o Estimates confidence that a given photo-z estimate is accurate

o By excluding galaxies with low Outlier NNC confidence, we remove galaxies with high probability of
being outliers

Misclassification NNC:
o Estimates confidence that a given photo-z estimate will result in the galaxy being sorted into the
correct redshift bin 38
o By excluding galaxies with low Misclassification NNC confidence, we remove galaxies with high
probability of being misclassified
o Must be retrained for each choice of bin edges



https://arxiv.org/abs/2108.13260

Opt|m|z|ng Sample Selection Figures from Moskowitz+2023
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https://ui.adsabs.harvard.edu/abs/2023ApJ...950...49M/abstract

Optimizing Sample Selection

e Can also ask how much of the sample we
should remove

e We compare the results for the optimized
binning choice (a=2.0 and =5.25) to the best
of the three base choices (equal number
binning)

e Misclassification NNC outperforms Outlier NNC
in both cases

e Misclassification NNC prefers to remove a
slightly larger fraction of the sample than
Outlier NNC
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a

Final Results Figures from Moskowitz+2023 ApJ 950, 49
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https://ui.adsabs.harvard.edu/abs/2023ApJ...950...49M/abstract

Other Research Projects You Can Ask Me About

e ODIN: Large Survey for Lyman-Alpha Emitting Galaxies on the Dark Energy
Camera to study how galaxies like the Milky Way were formed

e JWST-CEERS: Reconstructing star formation histories of galaxies at z>5 — and
maybe z>10

e Simons Observatory: Cosmic Microwave Background searching for primordial
gravitational waves; Engagement, Mentoring & Climate Committee = EMC?



Conclusions

e We built a realistically non-representative training sample from the LSST-DESC DC2 catalog
and augmented it with simulated Buzzard galaxies

e Can get over % of the way back to the photo-z quality achieved by a fully representative
training sample with some simple augmentation Moskowitz+2024

e We proposed a method for optimizing the tomographic binning strategy from two directions

o  Optimizing the choice of bin edges M .
oskowitz+2023
o  Optimizing the selection of galaxies for binning

e We found that the optimized choice of bin edges is not one of 3 common choices

e Removing ~50% of the galaxies with our neural network classifier further improves 3x2pt
SNR for a total improvement of ~13% over a standard choice of equal number binning

o  Misclassification NNC performs better than the Outlier NNC of Broussard & Gawiser 2021

e Full quantification of these improvements requires an end-to-end cosmological parameter
estimate to see if augmentation can reduce biases

e Our method can optimize the tomographic binning strategy for any 3x2pt lens galaxy sample


https://arxiv.org/abs/2108.13260
https://arxiv.org/abs/2402.15551
https://ui.adsabs.harvard.edu/abs/2023ApJ...950...49M/abstract

