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OUthne Main goal: stress-test the standard
cosmological model with new methods!

1) Toolbox essential: weak lensing mass maps

2)  Why non Gaussian statistics?
3) Results from non Gaussian statistics with DES Y3

4) New promising probes: wavelet based estimators

Future obstacles & analyses robustness
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(Weak) Gravitational Lensing

Due to the Large Scale Structure of
the Universe,
the path followed by the light
emitted by distant galaxies will
appear distorted

Gravitational lensing allows to
probe the matter distribution
(mostly dark)

Toolbox essential: weak lensing mass maps



In weak lensing we have to deal with multiple deflections/distortions due to lenses along the line of sight

Lensing H(6.1) = %/r gt k(T =) [®(6, ') + (6, )]
¢ Jo

/
potential Si(r)Sk(r")

Toolbox essential: weak lensing mass maps



In weak lensing we have to deal with multiple deflections/distortions due to lenses along the line of sight

ensing 6(0,7) = / ( ’“@""" 7[00, ) + (6,

potential (1)Sk

Geometrical factor
(redshift-distance relation
depends on cosmology)

Toolbox essential: weak lensing mass maps




In weak lensing we have to deal with multiple deflections/distortions due to lenses along the line of sight

Lensing L Splr = 1)
potential #o.7) = c2 /0 o Sy (r)Sp(r’

Gravitational potential

Geometrical factor (clumpiness along the line of
(redshift-distance relation sight -> evolution of
depends on cosmology) structures)

Toolbox essential: weak lensing mass maps



In weak lensing we have to deal with multiple deflections/distortions due to lenses along the line of sight

Lensing L Splr = 1)
potential #o.7) = c2 /0 o Sy (r)Sp(r’

Gravitational potential

Geometrical factor (clumpiness along the line of
(redshift-distance relation sight -> evolution of
depends on cosmology) structures)

laws of gravity

Toolbox essential: weak lensing mass maps



In weak lensing we have to deal with multiple deflections/distortions due to lenses along the line of sight

Lensing L Splr =) , ,
ot Y00 =3 [ ' 00, + o)
Deflection a=Vo

Toolbox essential: weak lensing mass maps



In weak lensing we have to deal with multiple deflections/distortions due to lenses along the line of sight

Lensing , Sp(r—1') , )
i / dr' gt o [2(60,7%) 4 4(0, 1)
Deflection a=Vo
Convergence = %V%ﬁ = (¢ 11+ ¢ 22) Mass
. 1
=hear Y=t = (</5 11— ¢.22) +i0 12

Observable

Toolbox essential: weak lensing mass maps




observable!

Mass Map reconstruction i i iptici i
convergence) K p o Using measured galaxies ellipticity, we can estimate the shear
(e.g., Kaiser-Squires) field (2 components)

Not observable dlrectly
L e
<4 “ o)
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(projected) WL mass map (or

Image plane

redshift /

distance

Toolbox essential: weak lensing mass maps



Dark Energy Survey Y3 Mass Map

convergence PDF
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Toolbox essential: weak lensing mass maps
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Main goal: stress-test the standard
cosmological model with new methods!

1) Toolbox essential: weak lensing mass maps

2) Why non Gaussian statistics?
3) Results from non Gaussian statistics with DES Y3
4) New promising probes: wavelet based estimators

5) Future obstacles & analyses robustness

Takeaways:
- WL mass maps = projected matter density maps
- Preserve non Gaussian features of the field
- HKasy to study with non Gaussian statistics
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non Gaussian statistics improve cosmological constraints over standard Gaussian statistics

1-point PDF (Patton+18)

2

0, = 2.34 arcmin, n = 8.53 galaxies/arcmin

B Power Spectrum el : . :
il B CNN —— Power Spectrum
' 1.10} — 1-point PDF
1.0 — Joint
1.05}
g 0.9 ,o
g
& 1.00
0.8 1 <
0.95}
0.7
0.6 . . . ; ! I 0.90}
0.10 0.15 020 025 030 035 040 045
Qm
0885 0.00 005 1.00 105 110 115
Machine Learning (Fluri+19) AQy, [

* results shown here are either forecasts or tests on simulations

Why non Gaussian statisties?



non Gaussian statistics improve cosmological constraints over standard Gaussian statistics

T B 2nd moments
3rd moments
: % 2nd + 3rd moments
i —— Cosmic Shear Y3
N
&~
o ] ' '
J 0.6
N i
Gl 0.45 1
Q- g I
Ol
Y 03f (, N
7 [
Q- 7
Q«.@ 1 0.15 + i
0.I64 0.I72 OI‘I80 0.I88 0.15 O.E’,O 0.45 O.IGO
SB Qm
Mass aperture stat, Heydenreich-+22 Moments, Gatti+ 2019

* results shown here are either forecasts or tests on simulations

Why non Gaussian statisties?




Non Gaussian statistics self-calibrate nuisance parameters

PS, all systematics, wide priors |

PS+BS, all systematics, wide priors Pyne & Joachimi +-22

PS, 0.1 prior on intrinsic alignment parameters |
PS+BS, 0.1 prior on intrinsic alignment parameters

PS, 0.002 prior on redshift parameters
PS+BS, 0.002 prior on redshift parameters

PS, 0.002 prior on multiplicative bias parameters |
PS+BS, 0.002 prior on multiplicative bias parameters

PS, no systematics | 1

PS+BS, no systematics

102 108 10 10°
FoM Q,, — oy

And can help discriminate between general relativity and modified gravity theories

Map peak count(> 30)

M, variance
92

92

9 01

discrim. efficiency

94 discrim. efficiency
20 40 60 80 |100%

20 40 60 80 |100%

Peel+18

fs(R) [m, =0.15eV]

source redshift

9. [ |
6

05 1.0 1.5 2.0

source redshift

% [ |

05 1.0 1.5 2.0

Why non Gaussian statisties?




Growing interest in weak lensing Non Gaussian stats.

- Peaks statistics (eg. Kacprzak et al. 2016; Martinet et al. 2018; Peel et al. 2018; Shan et al. 2018; Ajani et al. 2020; Ziircher et al. 2021a,2021b..)

- High order Moments (Changetal. 2018; Vicinanza et al. 2018; Peel et al. 2018; Gatti et al. 2020,2021...)

- 3pt correlation functions (Takada & Jain 2003, 2004; Semboloni et al. 2011; Fu et al. 2014,Secco et al 2022...)

- Minkowski functionals (Kratochvil et al. 2012; Petri et al. 2015; Vicinanza et al. 2019; Parroni et al. 2020...)

- Machine Learning (Ribli et al. 2019; Fluri et al. 2018, 2019; Jeffrey et al. 2021a...)

- Wavelet-based methods (Allys 2021, Cheng 2021, Gatti et al in prep....)

- Others (PDF,minima counts, L1-norm, k-Nearest Neighbor distributions, Minimum Spanning

Tree,....)
[DISCLAIMER: non exhaustive!]
Note: only ‘3pt correlation functions’ do not require a map - all the others are map based statistics.

How do I choose? Is one better than the others?
- Human-designed statistics vs. machine designed statistics
- Theory modelling vs. simulation-based modelling
- Impact of systematics / data vector ease of use

Why non Gaussian statisties?



Outline

Main goal: stress-test the standard
cosmological model with new methods!

1) Toolbox essential: weak lensing mass maps

2) Why non Gaussian statistics?
3) Results from non Gaussian statistics with DES Y3
4) New promising probes: wavelet based estimators

5) Future obstacles & analyses robustness

Takeaways:
- Improve cosmological constraints over Gaussian stats.
- Difference dependence on systematics.
- Self-calibrate nuisance parameters.

- Help discriminate between modified gravity theories
and GR

Outline
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The Dark Energy
Survey

* Imaging galaxy survey.

* ~5000 sq. deg. after 6 years
(2013-2019)

e Shapes, photometric redshifts
and positions for 300 million
galaxies.

Results from non Gaussian statisties with DES Y3




v X - The DES Y3 data spans the full footprint
D\ (4134 sq deg). 100 million galaxy shapes,

10 million galaxy positions

'{ ; - | - In 2021 we released the so called ‘3x2pt’
DES Y3 cosmological analysis which

e | featured the analysis of 3 different 2pt

, correlation functions (shear-shear,
] galaxy-shear, galaxy-galaxy). In January
= 2022, we released our DES Y3 catalogs.

Red : Science verification data
Green: DES Y1
Blue: DES Y3

Results from non Gaussian statisties with DES Y3



Non Gaussian statistics in DES

(WL mass map)

convergence
smoothing 10 arcmin
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Results from non Gaussian statisties with DES Y3

Map of the mass distribution of the Universe

(integrated along the line-of-sight).

convergence PDF

751

501

0.02 —0.0L 0.0

Y

The convergence field is not Gaussian; high order
stats can probe additional cosmological information

DES Y3 moments analysis, Gatti+21, [2110.10141]




~35.00°|:;

+90.00°  +70.00°
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Non Gaussian statistics in DES

(WL mass map)

convergence
smoothing 10 arcmin
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Map of the mass distribution of the Universe

(integrated along the line-of-sight).
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The convergence field is not Gaussian; high order
stats can probe additional cosmological information

DES Y3 moments analysis, Gatti+21, [2110.10141]
DES Y3 peaks analysis, Zuercher+22, [2110.10135]
DES Y3 LFI peaks analysis & CNN (Jeftrey+ in prep.)




Non Gaussian statistics in DES

Map of the mass distribution of the Universe
(integrated along the line-of-sight).

convergence
smoothing 10 arcmin convergence PDF
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| DES Y3 moments analysis, Gatti+21, [2110.10141]

DES Y3 peaks analysis, Zuercher+22, [2110.10135]
DES Y3 LFI peaks analysis & CNN (Jeftrey+ in prep.)
DES Y3 Wavelet Phase Harmonics (Gatti+ in prep.)

Results from non Gaussian statisties with DES Y3




From maps to cosmology

Obrtain Mass Map Measure Statistics Compare to model predictions Cosmological constraints
- third moments (x2) third moments (k3) ' ' '
N A i 0.82 F .
- A 5 10 1.0
£ ; 0.80 F .
.\ o 4 092 o 0.9|m =
[ 078 F -
; _hg',a +++++* °8;$_rg° os‘g'_r ”
“6 24 8 2 c }'&, " :L > .
, s e e 1
W o 07 & = 0.7 &
S o 7.".‘ v"ll.' 0 1 I 0.74 .
457 Sy of I l" 4/ -1 : 3 g ‘
A, : ‘ 06 i i 0:6 0.2 0.3 0.4
10! 10? 10! 10?
120° 0 270° smoothing (arcmin) smoothing (arcmin) n

Results from non Gaussian statisties with DES Y3



From maps to cosmology

Obtain Mass Map Measure Statistics Compare to model predictions Cosmological constraints
third moments (k2) third moments (k3)
6 0.82
N 1.0
’] 0.80 |-
4 0.9|m
o 3 QE _r’ 0
L N = a [N
: o 21 + 0.8 e
1< . + T el
. = 0.7 &
01 0.74 [
1 L
; r : 06 0 0.3 0.4
10! 107 100 102 o
o smoothing (arcmin) smoothing (arcmin) *ém

Two different strategies to model high order statistics

Analytical modelling | ( Simulation-based forward modelling |
@ complex to develop; not always feasible @ possible for any statistic
(©) not computationally expensive () computationally expensive

adopted in the moments analysis [Gatti+21] adopted in the peaks analysis [Zuercher+21]

Results from non Gaussian statisties with DES Y3



3 6 2 2
. . ° : e et d k k k k k
Analytical predictions: complex to (960.1(7) (27r)3/ 1 k2 Wik, o)W (kz, Bo)W (ki + k2, 6o)
develop, but computationally cheap to X Pyn(ky, 7). Piin(ka, T)Fy (k1 ko, 7)., (AL
evaluate.
Fy(k;, ko, 7) = %[(1 2 :—;cosd)) +(1+ :—Tcosgb)] +[1 - p(1)](cos*¢ — 1),
1 ki ko
Fr(kp, ky, 7) = Eblbz[(l + k—cos¢) +(1+ k—cos¢)]
2 1
— +[1 - p(D)lcrca(cos’d — 1) + [arau(t) - biby + [1 - p(1)]ercal.
> 2- PKDGRAV mean
% DES Y3 unc. third moments (k2)
uEJ o 1.0
ﬂ? 0 - —# 0.9 g
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e T 08 ¢
)
o N
n =2 -
= 10! 102 t 4o
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Results from non Gaussian statisties with DES Y3



Simulation-based forward
modelling:
lots of simulations required!

O ..
@ e
1.2 O
@) o’ ©
@ @ ®
1.0 © o
% ® O ) @
| ® o S o
0.8 O O (@) @
® ¢ o o ©o @
® O @] @) OO @
0.6 @ © .O ®
o % o .o
Oll 0:2 O:3 014 0:5
Qlll
Predictions
interpolated using an
emulator

Credit: D. Zuercher

Results from non Gaussian statisties with DES Y3
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Validation & systematics control

Parameter Prior

These analyses rely on the data validation :
from the DES 3x2 efforts (source sample Cosmological Poramieters

. . . . . Q U[0.1,0.9
validation, redshift & shear calibration). 0‘: U{O 5 1 4}
Qp U[0.03,0.07]
ns U[0.87,1.07]
h U[0.55,0.91]

Similar modelling complexity of the DES 3x2:
- ACDM, 5 cosmological parameters Calibration Parameters

- Intrinsic Alignment (NLA) Z; x%_gg?gg 8%38
- Calibration systematics (redshift & m; N(-0.0241, 0.0076)
shear) my N(—0.0369, 0.0076)
Az N(0.0,0.018)
Az N(0.0,0.015)
Az3 N(0.0,0.011)
Azq N(0.0,0.017)
Intrinsic Alignment Parameters
A1A,0 U[-5,5]
aia U[-5,5]

Results from non Gaussian statisties with DES Y3



Validation & systematics

control
These analyses rely on the data validation
from the DES 3x2 efforts (source sample } t + + + + + + 304 Wt ¢ 4
101
validation, redshift & shear calibration). + 35 o . ¢ Second
> L, | 107 33 moments
0 = > 0 - -
Similar modelling complexity of the DES 3x2: oo o
¢ g ¢ p X y ¢ X4 smoothing (arcmin) smoothing (arcmin)
- ACDM, 5 cosmological parameters
- Intrinsic Alignment (NLA) —— PSF contamination [x10] ¢ (k2)
- Calibration systematics (redshift & 20 20
<N P
0 HH|||||+ 0 ++ +Hr Third
-20 222 |20 333 moments
+ Extra specific tests for high order =2 ot T 0 ot o
statistics smoothing (arcmin) smoothing (arcmin)
(validation pipeline & systematics)
- PSF contamination [x10] ¢ (k3

Results from non Gaussian statisties with DES Y3



Cosmology from
DES Y3 2nd+3rd moments

3rd moments probe additional non Gaussian
information & break 6 -Qm degeneracy

3rd moments is partially independent of second ->
different impact of systematics.

3rd+2nd moments improve constraints by 30% over
2nd moments only

Qm = 0.27 +0.03
og = 0.83 +0.05
S = 0.784 + 0.013

Most stringent constraints on Ss from a WL
analysis to date!

Results from non Gaussian statisties with DES Y3
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Cosmology from

DES Y3 Power Spectra+ Peaks BN CLs
0 Peaks

B CLs + Peaks

Peaks probe additional non Gaussian information &
break s -€2m degeneracy |

Peaks+Power Spectra(CL) improve constraints by
40% over Power Spectra only Zuercher+2021,

arxiv:2110.10135

Qn, = 0.2760-034

-0.086 0.80 =]
og = 0.8507%: 13 A e i z
Sg = 07975013 I e e et |
Similar constraining power on S8 of the moments 0'252 0= 05 . 0.7 58
analysis m Os Sg

Results from non Gaussian statisties with DES Y3




Are moments & peaks consistent with DES 3x2 results?

\ B 2nd-+3rd moments
The moments, peaks and DES 3x2 analyses \ —— DES Peaks+Cl
use 3 different pipelines i == DES Cosmic Shear
\ DES 3x2pt
results are consistent!
| 2nd+3rd moments ——
| Peaks+Cl '—.— 0.84
. 0.82
| Cosmic Shear =0 L0
N .78
| 3x2pt 0.76
: 0.74
1 1 L L= 1
0.70 0.72 0.74 0.76 0.78 0.80 0.82 0.2 0.3 0.4 0.76 0.80 0.84
Sy = 0(Qn /0.3)07 O S
note: mOdelling & analySiS choices are very DES Y3 Cosmic Shear, Amon+21,Secco&Samuroff+21
similar among analyses but *not identical* DES Y3 3x2, DES collaboration (2021)

Results from non Gaussian statisties with DES Y3



Are moments & peaks consistent with Planck?

—— 2nd+3rd t .
nd-+ord moments They are consistent (<3¢), although note that 3rd
------- 2ndmoments .
moments alone shows a 2.8 tension
—— 3rd moments
——— Peaks+Cl
Planck
TTTEEE lowE Planck TTTEEE
lowl lowE
2nd moments 270
3rd moments 2.80
2nd+3rd moments 220
ﬂ Peaks+Cl 150
| 2nd+3rd moments +
i | Peaks+Cl —
i | Cosmic Shear —'-0—
'. L 3x2pt
ok i i Planck
: L L L L L L AN . TTTEEE lowl lowE —_—
02 04 06 0.8 06 07 08 ‘ ‘ _ ! , ,
Qm SS 0.70 0.72 0.74 0.76 0.78 0.80 0.82 0.84 0.86

Sg = 03(0,/0.3)%2

Results from non Gaussian statisties with DES Y3




Outline

Main goal: stress-test the standard
cosmological model with new methods!

1) Toolbox essential: weak lensing mass maps

2) Why non Gaussian statistics?
3) Results from non Gaussian statisties with DES Y3
4) New promising probes: wavelet based estimators

5) Future obstacles & analyses robustness

Takeaways:
- Best constraints on S8 from a WL analysis to date
- Results compatible with other DES constraints
- ~2 sigma tension with Planck

Results from non Gaussian statisties with DES Y3
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New promising probes: wavelet based estimators



Wavelet-based Non Gaussian estimators

E.g.: Isotropic Wavelets (Jeffrey in prep.), Wavelet Phase Harmonics (Allys 2021), Scattering Transform (Cheng 2021)

New promising probes: wavelet based estimators



Wavelet-based Non Gaussian estimators

Isotropic wavelet filter smoothed convergence map
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New promising probes: wavelet based estimators



Wavelet-based Non Gaussian estimators

Isotropic wavelet filter smoothed convergence map

0

120
20.

100

85 &8 8 8

Real part Imaginary part

Smoothed maps well localised in ~ **
real space and Fourier space i

10° 10! 10? 10°
multipole

New promising probes: wavelet based estimators



Wavelet-based Non Gaussian estimators

2D convergence map Directional, complex wavelet filter

120 1

100 1

|
Z | 2

5 & 8 8

o

T

0 25 550 75 100 1250 25 50 75 100 125

Real part Imaginary part

amplitude

New promising probes: wavelet based estimators



Wavelet-based Non Gaussian estimators

2D convergence map Directional, complex wavelet filter

120

N N =

85 &8 8 8

=]

0 25 5 75 100 1250 25 5 75 100 125

Real part Imaginary part

New promising probes: wavelet based estimators



Wavelet Phase Harmonics

Second moments of the
smoothed & accelerated maps:

I:> | (PH(«j, ¢, p = P1), PH(kj,.6,, P = P2)),

+  Probe couplings betweens

| >

PH(x, p) = |k| exp'P2&(¥)

scales & non Gaussian
features of the fields

+  More robust against noise
outliers

Accelerates phases,
but leaves amplitude
unaltered

amplitude amplitude

New promising probes: wavelet based estimators



Wavelet Phase Harmonics

(PH(Kjl,fpp =P1),PH(Kj2,£2’P =P2))’ |
—— 2nd+3rd moments
—— Phase wavelet harmonics

le—7 bins 33 [

14 1 -4~ DES Y3sims .

12 - [
10 -
08 1 5 \
4 — : —
I
l

064 \{
I

04 4 / \1 I' - - ~|.+ 66

02 \':'

0.0 1 \ W 08F

\ \ 07

pl=0,p2=1, pl=0, p2=1, different : \
same filter scale (j1=j2) filter scales (j1 !=j2) 02 03 04 07 08 09

Qm Sg

PRELIMINARY (Gatti et al in prep.)

New promising probes: wavelet based estimators




Outline

Main goal: stress-test the standard
cosmological model with new methods!

1) Toolbox essential: weak lensing mass maps

2) Why non Gaussian statistics?
3) Results from non Gaussian statistics with DES Y3

4)  New promising probes: wavelet based estimators

- “h
5) Future obstacles & analyses robustness 4"V
e,
Takeaways: 7
- WBEs are CNN without training \‘,‘o ’
- WBLEs isolate better scales (= easier handle on systematics) .‘-, 3
- More robust against noise outliers N
- Very constraining! O

New promising probes: wavelet based estimators
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Exciting future perspectives:

- Larger datasets with stage IV surveys = more constraining power!

- Larger parameter space: neutrinos, wCDM, modified gravity, baryonic feedback

- Non Gaussian statistics of LSS combined probes (galaxies, CMB secondary anisotropies,
ete).

Obstacles:
- Computational needs.
- In the forward modelling approach, the number of simulations needed to explore a larger
parameter space increases exponentially. We need faster simulations & approximate methods

to sample the posterior, and more efficient ways to include baryonic physics.

- Better control over systematics.
- Blind simulated challenges!

Future obstacles & analysis robustness



More about systematics

Many of the effects/systematics we thought are negligible for Gaussian statistics might not be negligible for non
(Graussian statistics. We cannot rely on our ‘Gaussian experience’

Future obstacles & analysis robustness



More about systematics

Source clustering: we preferentially sample the shear field in overdense location.
It has a much larger effect on map-based non Gaussian statistics compared to Gaussian statistics

bins: 11 bins: 31 bins: 33

LTI P

-
-
A

gbs) - (

(K
o

1
o

{ |
o

L

bins: 311 bins: 333

’TTH:H;H 1 4 27 ':;——{-r{ I N\ Gatti et al., in prep.

V””_? {(V*' _:- T Iil

x10~ bins: 111

obs)
o

3

(K
&

102 101 102 101 102
6 (arcmin) 6 (arcmin) 6o (arcmin)
sim. source clust.  ----- sim. no source clust. { data
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More about systematics

Source clustering introduces a spurious correlation between pixel noise and shear signal;

bins: 111 bins: 311 bins: 333
0 e I,
= il — 0 p—y
©
: T
=]
= Lo o =14
S Gatti et al., in prep.
6o (arcmin) 6y (arcmin) o (arcmin)
sim. source clust.  ----- sim. no source clust. { data
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More about systematics

Source clustering depends on cosmology & on the galaxy-matter bias of the source sample

%10-6 bins: 311

—=—=—'sim. no source clust.
—— sim. source clust.

—-— sim. source clust. (b, = 1.2)

L | e AL | e sim. source clust. (noiseless)
=1 « =« sim. source clust. (alt. cosmo.) Gattietal,, in prep.
¢ data
-2

IR
0o (arcmin)
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More about systematics

Source clustering: we know how to incorporate it into simulations!

%10-6 bins: 311
1 === sim. no source clust.
— sim. source clust.
5 0 —-— sim. source clust. (b, = 1.2)
- B < S [ PPN sim. source clust. (noiseless)
=11 ==« sim. source clust. (alt. cosmo.) Gattietal,, in prep.
, ¢ data

IR
0o (arcmin)
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More about systematics

Source clustering - results.
- We found that the impact is larger for non Gaussian statistics compared to Gaussian statistics.
- It has been overlooked so far.
- Cutting scale is (for now!) a sufficient mitigation strategy for the analyses I presented.
- Every non Gaussian analysis has to test the impact of this effect.

%«10—6 bins: 311

=== sim. no source clust.

— sim. source clust.

—-+=— sim. source clust. (b, = 1.2)
""""" sim. source clust. (noiseless)

: sim. source clust. (alt. cosmo.) Gattietal,, in prep.
¢ data

T
0o (arcmin)
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Intro to a public challenge for WL non Gaussian statisties

Marco Gatti, Bhuv Jain with Elisabeth Krause, Francois Lanusse, and others — all

welcome!

How to establish community trust in say deep learning applied to lensing data?

By running the pipeline on mocks developed by a ‘third party’
By including systematics that are unknown, in both the model and the details

(e.g. whether TA is NLA or TATT with unknown parameterization)
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Intro to a public challenge for WL non Gaussian statisties

Goal: groups aim at recovering input cosmology from maps provided by a third party

Learning phase ‘A’ Learning phase ‘B’ Challenge phase
No blinding, no No blinding, with known With blinding, simulated data
systematics systematics with unknown systematics

| Timeline >

The challenge will be divided into phases:
- Learning phase
A) convergence maps/catalogs are provided, along with input cosmology. No systematics included.
B) convergence maps/catalogs are provided, along with input cosmology. Systematics are included one at a time and fully described.

- Challenge phase: convergence maps/catalogs are provided, with multiple unknown systematics and blinded cosmology.

https://github.com/megatti29 /ML challenge cosmology
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https://github.com/mgatti29/ML_challenge_cosmology

Outline

Main goal: stress-test the standard
cosmological model with new methods!

1) Toolbox essential: weak lensing mass maps

2) Why non Gaussian statistics?
3) Results from non Gaussian statistics with DES Y3
4) New promising probes: wavelet based estimators

5) Future obstacles & analyses robustness

Takeaways:
- Problem: scalability / computing resources
- Systematics affect non Gaussian stats. differently
- Blind challenges can establish community trust
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Summary

1) Toolbox essential: weak lensing mass maps

2)  Why non Gaussian statistics?
3) Results from non Gaussian statistics with DES Y3
4) New promising probes: wavelet based estimators

5) Future obstacles & analyses robustness

Main goal: stress-test the standard
cosmological model with new methods.
Non Gaussian statistics are a great tool to
achieve this!

Future obstacles & analysis robustness



Summary

There’s a growing interest in non Gaussian analyses of WL data - great benefits:

improved constraints & robustness checks against systematics!

Results from 2 independent analyses using high order statistics and DES Y3 data (peaks

& moments). Consistent results with other DES analyses, <3 sigma tension with Planck.

More non Gaussian analyses very soon with DES! LFI peaks, wavelet-based moments,

deep learning, etc.



T17

(k3)

Covariance, likelihood & data compression

correlation matrix ({k2), (k3))
[1,1],[1,41,[4,41,[1,1,1],[1,4,4],[4,4,4]

F

FLASK

(k3)

0.4+
0.3
0.2
0.1+

0.0

Covariance matrix - it’s usually estimated from mocks. To

avoid biases, # mocks >> length data vector!

Data vector compression - it reduces the dimensionality of

the DV, and ‘Gaussianizes’ the likelihood.

compr T A=l
d"™" = (dyL.C71d = b;d,
b
K2 K3 K2 + K3
0.4 0.4
0.3 1 0.3 1 — N@©.1)
FLASK
0.2 0.2
0.1 1 0.1 1
y T T 0.0 T T 0.0 y T T
=2 0 2 =2 0 -2 0 2
Residual/o Residual/o Residual/o
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Scattering transform

Input field 7,
Coefficients: Sy = ()

Fields I; = |I0 * Y |

Coefficients: S} = (I;)

Fields I, = | [Ty * v | *l//2|

Coefficients: S, = (L)

1.20

1=4, j2=2

. £
J1=0, j>=4

0.67

1=0,j2=6

1=2,j2=6

h=4,J2=06




(projected) WL mass map (or
convergence)
Not observable directly
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Mass Map reconstruction
(e.g., Kaiser-Squires)

<9

redshift /

distance

observable!

Using measured galaxies ellipticity, we can estimate the shear
field (2 components)
. H

L |

.\',‘,

»

1o, 1 |
Convergence K= SVZO s (Q.ll i 0.22) Mass
N | ‘ o
I TENTIR= (9,11 — ¢,22) +i9 12
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Analysis robust against
different analysis choices

© XN N

I =
=W N = O

2nd+3rd moments +
2nd moments *—0—
3rd moments & :

2nd+3rd moments no bin 1
2nd+3rd moments no bin 2
2nd+3rd moments no bin 3
2nd+3rd moments no bin 4
2nd+3rd moments hyperrank
2nd+3rd moments small scales

. 2nd+3rd moments large scales

. 2nd+3rd moments no TA

. 2nd+3rd moments no SR

. 2nd+3rd moments cov: FLASK + T17

. 2nd+3rd moments cov: FLASK + PKDGRAV

0.4

0.5 0.6 0.7 0.8
Sg = Og(Qm/0.3)0'5

0.9



