The last 10 billion years of cosmic structure growth

Carlos Garcia-Garcia

arXiv: 2105.12108

Jaime Ruiz-Zapatero, David Alonso, Emilio Bellini, Pedro Ferreira, Eva-Maria Mueller, Andrina Nicola, Pilar Ruiz-Lapuente

The S₈ tension

Troster et al. 2020 Abbott et al. 2017 Abbott et al. 2018 Joudaki et al. 2019

 $\sigma_8 \sim$ amplitude perturbations

Growth of structure

The power spectrum

Theory can only predict its statistical properties:

$$P(k) \sim \left\langle |\delta(\mathbf{k})|^2 \right\rangle$$

Tracers of matter

Galaxy clustering:

- $\delta_{g} = f[\delta_{M}] \sim b_{g} \delta_{M}$
- Local

Weak lensing:

- $e_i \sim \gamma_i \sim \delta_M$
- Integrated

Galaxy clustering

Weak lensing

Weak lensing

03/08/2022

Galaxy clustering and weak lensing

Galaxy clustering:

- $\delta_{\rm g} = f[\delta_{\rm M}] \sim b_{\rm g} \, \delta_{\rm M}$
- Local
- Spin-0

Weak lensing:

- $e_i \sim \gamma_i \sim \delta_M$
- LOS-integrated
- Spin-2

Hikage et al 2019

Photometric surveys

- No spectra

Projected clustering and shear

03/08/2022

Projected angular power spectra

CMB lensing

3x2pt as tomography

03/08/2022

The data

Weak lensing:

- DES Y1
- KiDS-1000

Galaxy clustering:

- DES Y1 (redMaGiC)
- DESI Legacy Survey (DELS)
- eBOSS QSO

CMB lensing:

- Planck 2018 convergence map

<u>Troxel et al. 2017; Elvin-Poole et al. 2017</u> <u>Asgari et al. 2017; Hang et al. 2020</u> <u>Neveux et al. 2020; Planck Coll. et al. 2018</u>

The data

Shear:

- DES Y1
- KiDS-1000

Clustering:

- DES Y1 (redMaGiC)
- DESI Legacy Survey (DELS)
- eBOSS QSO

CMB lensing:

- Planck 2018 convergence map

Troxel et al. 2017 Elvin-Poole et al. 2017 Asgari et al. 2017 Hang et al. 2020 Neveux et al. 2020 Planck Coll. et al. 2018

Data analysis: a new multisurvey pipeline

• Why?

- Independent & homogeneous analysis
- Combined in consistent way
- Pipeline:

03/08/2022

- Catalogs \rightarrow maps \rightarrow Nx2pt C_I
- Analytical Gaussian covariance with mode coupling.
- Optional: Marginalize noise, multiplicative bias, etc.

O		Sign up 📃 🗮
	Notifications Y Fork 1	☆ Star 1 🖕
<> Code () Issues 11 ()	Pull requests 3 🕟 Actions 🖽 Projects 🖽 Wiki	
^{№9} master - xCell / xcell / mappers /		Go to file
JaimeRZP final david comment	ACTk defautl mask power 2 ··· × 6 days a	ago 🖰 History
🗅initpy	CIs working need to figure out nl	23 days ago
mapper_2MPZ.py	all signal_maps homogenized and made into arrays also chan	19 days ago
mapper_ACTCMB.py	David comments	7 days ago
mapper_ACT_base.py	David comments	7 days ago
mapper_ACT_compsept.py	David comments	7 days ago
mapper_ACTk.py	final david comment ACTk defautl mask power 2	6 days ago
mapper_ACTtSZ.py	David comments	7 days ago
mapper_BOSS.py	Sdss superclass (#119)	6 months ago
mapper_CIBLenz.py	small fixes	28 days ago
mapper_CatWISE.py	all signal_maps homogenized and made into arrays also chan	19 days ago
mapper_DELS.py	all signal_maps homogenized and made into arrays also chan	19 days ago
mapper_DESY1gc.py	Homogeneous rerun (aka 'lite') data saving (#180)	3 months ago
mapper_DESY1wl.py	Homogeneous rerun (aka 'lite') data saving (#180)	3 months ago
mapper_HSC_DR1wl.py	all signal_maps homogenized and made into arrays also chan	19 days ago
mapper_KV450.py	all signal_maps homogenized and made into arrays also chan	19 days ago
mapper_KiDS1000.py	all signal_maps homogenized and made into arrays also chan	19 days ago
	all signal more homogonized and made into arrays also shan	10 dave ago

Data analysis: from catalogs to maps

Galaxy clustering

- Number overdensity
- Mask (w): Official mask
- Analytical noise (Poisson):

$$ilde{N}_\ell = rac{\langle w
angle}{ar{n}_\Omega}$$

Small differences between datasets.

 $v_i \equiv ext{weight of galaxy} \ i \qquad n_p \equiv ext{weighted number of galaxies}$

Data analysis: from catalogs to maps

Cosmic shear (Nicola, CGG+20)

- Shear: $\gamma_{i,p} = \langle e_{n,i} \rangle_{i \in p}$
- Mask (w): n_p
- Analytical noise: •

$$\widetilde{N}_{\ell>2} = A_{\text{pix}} \left\langle \sum_{i \in p} v_i^2 \sigma_{e,i}^2 \right\rangle_{\text{pix}}$$

Same for KiDS and DES.

$$\sigma_{e,i}^2 = (e_{i,1}^2 + e_{i,2}^2)/2$$

Data analysis: from catalogs to maps

CMB lensing

- Convergence: $\kappa_p \text{ from } \kappa_{LM}$
- Mask (w): Planck 2018
- Noise: Planck 2018

Data analysis: from maps to C

- **Problem: Mask couples scales**
 - The observed field is $\tilde{a}(\hat{\mathbf{n}}) = w(\hat{\mathbf{n}})a(\hat{\mathbf{n}}).$.
 - Then, the angular power spectra •

NaMaster **Solution: Pseudo-C**₁**estimator:**

- Bin the observed 1)
- Invert Mode Coupling Matrix 2)
- Bin-couple-decouple theory 3)

Data analysis: from maps to C₁

Garcia-Garcia+19, Nicola, CGG+21.

Analytical covariance matrix:

- Narrow Kernel Approximation
- Spin-0 Approximation (for KiDS)
- Efficient (~I³max vs I⁶max) and accurate

Analytical marginalization:

Noise (eBOSS)

MCMC set up: modelling

Galaxy clustering:

- Linear bias $\rightarrow \qquad \delta_{\rm g}$ = f[$\delta_{\rm M}$] ~ b_g $\delta_{\rm M}$ $k_{\rm max} = 0.15 {\rm Mpc}^{-1}$
- Magnification effect for QSOs (fixed)

Cosmic shear:

- Multiplicative bias
- Intrinsic alignments
 - $q_{\gamma^i}
 ightarrow (1+m^i) q_{\gamma^i} IA(z)$

Redshift distributions uncertainty:

• Marginalize over z-shift $N(z)
ightarrow N(z+\Delta z)$

MCMC set up: the likelihood

Gaussian likelihood

$$-2\log(\text{Likelihood}) = (C_{\ell} - C_{\ell}^{\text{data}})^T \text{Cov}^{-1} (C_{\ell} - C_{\ell}^{\text{data}})$$

Conservative scale cuts:

- Galaxy clustering: $k_{\rm max} = 0.15 {
 m Mpc}^{-1}$
- Cosmic shear: $\ell_{max} = 2000$
- ℓ_{\min} per dataset

45 sampled parameters 1275 data points

Data analysis: validation

- B-modes compatible with 0
- Recover official results
- Residuals ~ Gaussian
- Good fits: 0.1 < p-value < 0.9

ACDM

Results:

- **ACDM** excellent fit
- North (~KiDS) and South (~DES) datasets compatible
- ND + SD = S_8 error reduced by $\sqrt{2}$
- 3.4 σ tension with Planck
- Driven by cosmic shear

SD = DESgc + DESwl + eBOSS QSOs + CMBk ND = DESI Legacy Survey + KiDS + eBOSS QSOS + CMBk FD = ND + SD

ACDM

Results:

- **ACDM** excellent fit
- North (~KiDS) and South (~DES) datasets compatible
- ND + SD = S_8 error reduced by $\sqrt{2}$
- 3.5σ tension with Planck
- Driven by cosmic shear

FD = ND + SD

ΛCDM

Best constraints at the moment

Reconstructing the growth

We constrain

$$S_8(z) = \sigma_8(z) \sqrt{rac{\Omega_{
m m}}{0.3}}$$

by decoupling the background and perturbations:

- Keep ACDM background
- Modify perturbations as $P_k(z) = D(z)^2 P_k^{P18}(z = 0)$

with the linear growth (D(z)) as $D(z) = quadratic_spline(\tilde{D}_z)$

32

SD = DESY1 + eBOSS QSO's + CMBK

ND = KiDS-1000 + DESI Legacy survey + eBOSS QSO's + CMB*K*

FD = SD + ND

03/08/2022

Results:

Results:

03/08/2022

- Lower growth (~ 2σ) at 0.2<z<0.6
- North and South data recover compatible growth histories
- Tension driven by shear data
- Clustering + CMB*k* compatible with Planck (but also with shear).

But see <u>Krolewski et al. 2021</u> & White et al. 2021

SD FD 1.0 ND Planck 18 0.6 1.2 FD no y FD 0.8 0.8 0.8 FD no δ_a Planck 18 $S_8(z) = \sigma_8(z)$ 7.0 9.0 0 7.0 9.0 0 7.0 9.0 0 7.0 9.0 0 7.0 10 0 7.0 0 0.2 0.0 + 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 Ζ

Results:

- Lower growth ($\sim 2\sigma$) at 0.2<z<0.6
- North and South data recover compatible growth histories
- Tension driven by shear data
- Clustering + CMB*k* compatible with Planck (but also with shear).
- Most constraining power at 0.2<z<0.8. QSOs vital for high-z growth.

03/08/2022

Beyond ACDM

- Modify the linear pert.:
 - Growth equation: $\mu(z)$
 - Lensing: $\Sigma(z)$
- Re-calibrate HALOFIT
- Reconstruct them

Summary

1.2

0.2

- Combination of 6 projected LSS surveys
- Reconstructed growth at z < 2
- Growth compatible with LCDM
- But in tension with Planck (~ 2σ)
- Constraining power at 0.2 < z < 0.7
- Future:

03/08/2022

- Better data at low-z (already exists) and high-z (LSST and DESI will help). ²
- **Beyond ACDM**

FD no y

FD no δ_a

FD

Planck 18