

Berkeley March 21st, 2023

MAX PLANCK INSTITUTE FOR ASTROPHYSICS

Filaments from the large-scale structure to the CGM

DANIELA GALÁRRAGA-ESPINOSA

Postdoc Fellow @ Max-Planck-Institute for Astrophysics (MPA-Garching)

Main collaborators: Nabila Aghanim (IAS-France), Mathieu Langer (IAS-France), Guinevere Kauffmann (MPA-Germany), Enrico Garaldi (MPA-Germany), Hideki Tanimura (IPMU-Japan)

danigaes@mpa-garching.mpg.de

THE COSMIC WEB

As reproduced by the IllustrisTNG (Nelson+ 2019, Pillepich+ 2019) numerical simulation:

THE COSMIC WEB

As reproduced by the IllustrisTNG (Nelson+ 2019, Pillepich+ 2019) numerical simulation:

THE COMPONENTS OF THE COSMIC WEB

According to the $\Lambda\text{-}\mathsf{CDM}$ model:

Biased tracers of the matter distribution

Data from TNG300-1 simulation

MATTER IN THE COSMIC WEB

Studies in numerical simulations:

The study of matter at the largest scales is inevitably tied to that of **filaments**

MATTER IN THE COSMIC WEB

Studies in numerical simulations:

At z=0:

Huge diversity of filaments (spanning 5 orders of magnitude in density!)

Are all filaments the same type of structure?

What are the imprints on the properties of matter? (e.g. gas observables)

PART I Large-scale structure & cosmic filaments

DETECTING COSMIC FILAMENTS

DETECTING COSMIC FILAMENTS

DETECTING COSMIC FILAMENTS

Filament catalogues

Analysis of five different publicly available simulations at $\underline{z=0}$:

- **TNG300-1** Nelson+ 2019, Pillepich+ 2019
- TNG300-2
- TNG100-2
- Illustris-2 Genel+2014, Vogelsberger+ 2014b, Sijacki+ 2015
- Magneticum (Box2b) Hirschmann+ 2014, Dolag+ 2015, Ragagnin+ 2017

Filament length distributions

Galaxy distribution around filaments

Galarraga-Espinosa+ 2020

+ Fit with different models (GNFW, beta, Einasto, simple and double power law)

Radial density profiles: variations with filament length

Galarraga-Espinosa+ 2020

Radial density profiles: variations with filament length

Galarraga-Espinosa+ 2020

Short and puffy, Long and thin

Densities in **short** are **~3x higher** than in **long**

Different Environments

Can we physically identify the two populations in the Cosmic Web?

- Excess of density (integrated quantity)
 - -> Short filaments are **denser** than long.
- Mass of the node connected to the filaments

Short
$$L_f < 9$$
 Mpc
Long $L_f \ge 20$ Mpc

-> Short filaments are **connected to more massive** nodes than long.

Different environments in the Cosmic Web: Short : trace more over-dense regions, Long : trace less dense regions

What about gas properties?

NOT ALL GAS IS THE SAME

Accretion, ejection, Heating, and cooling Gas is pushed into different physical states, or **phases**

Separation of gas in different phases, following Martizzi+ 2019

How are the phases distributed around filaments?

Daniela Galárraga-Espinosa - MPA Garching, Germany

How are the phases distributed around filaments?

Daniela Galárraga-Espinosa - MPA Garching, Germany

How are the phases distributed around filaments?

Daniela Galárraga-Espinosa - MPA Garching, Germany

Gas Temperature

Mean radial temperature profiles

 Different profiles for different populations of filaments

Short filaments are ~3 times hotter than long

 All filaments: isothermal core up to r ~ 1.5 Mpc

> In agreement with Klar & Mücket 2012 Gheller & Vazza 2019 Tuominen+ 2020 Ramsøy+ 2021 (smaller scale filaments)

Average temperature of filaments:

$$T_{\rm core} = 4 - 13 \times 10^5 \,\rm K$$

Gas Pressure

Pressure values are ~3 times higher in short filaments than in long

Pressure in cores of **filaments** is **~1000** times **lower** than in cores of **clusters**

Observing cosmic filaments with the Sunyaev-Zel'dovich (SZ) effect

Recap

Two populations in:	Short	Long
- Distribution of galaxies	Short and puffy	Long and thin
 Densities of matter Distribution of gas phases 	Trace denser environments	Trace less dense environments
- Gas properties	Hotter	Cooler
E Carlo	Higher pressure	Lower pressure

Three regimes:

WHIM + other hotter and/or denser phases (WCGM and Hot gas)	WHIM dominant phase (~ 80%)	Results independent from the resolution of the simulation!
Haloes rise T and P Isotherma	Accretion to filament Diffuse IGM —> WHIM	~ 100% of gas is Diffuse IGM and WHIM
0 CORE	OUTSKIRTS ~1 Mpc ~10 M	LARGE SCALES

Does gravity explain it all? What are the driving processes?

-> Ideal observable: the **baryon fraction** of filaments

BARYON FRACTION OF COSMIC FILAMENTS

Aim: exploring the relative distribution of matter components

$$f_{\rm b}(r) \equiv \frac{\rho_{\rm gas}(r) + \rho_{*}(r)}{\rho_{\rm DM}(r) + \rho_{\rm gas}(r) + \rho_{*}(r)}$$

BARYON FRACTION OF COSMIC FILAMENTS

Daniela Galárraga-Espinosa - MPA Garching, Germany

Baryon excess at filament outskirts

- Excess corresponds to WHIM gas
- Accretion of gas towards the cores (gravitational attraction)
 —> Diffuse gas is shock-heated and converted into WHIM

In agreement with the studies of gas properties!

Baryon depletion at filament cores

Need mechanism capable of ejecting gas away from filament cores

Feedback by AGNs?

Modification of the distribution of baryons up to several Mpc away from the sources (e.g. Chisari et al. 2018, in Horizon-AGN)

-> compare injected <u>kinetic</u> energy vs <u>potential</u> energy

pushing vs pulling of gas

AGNs can be powerful enough to deplete cosmic filaments cores!

Impact of baryonic model...

Results in simulation with (too) strong feedback model:

Internal processes in galaxies (such as feedback) have a strong impact on the matter distribution & properties in cosmic filaments

CONCLUSIONS: COSMIC FILAMENTS

A more complete picture of cosmic filaments at z=0

..Currently working on picture at higher z, using MTNG

PART II From the large-scale structure to the CGM

Filaments at different scales

Circum-galactic medium (CGM)

Tumlinson+ 2017

Cold and dense gas via **small-scale filaments (streams)**

Birnboim & Dekel 2003; Kereš+ 2005; Ocvirk+ 2008; Dekel+ 2009; Pichon+ 2011; Faucher-Giguère & Kereš 2011; Faucher-Giguère+ 2011; Danovich+ 2012; Ramsøy+ 2021, ...

Bauermeister+ 2010, Prescott+2015, Zabl+2019

Filaments at different scales

Circum-galactic medium (CGM)

Giguère & Kereš 2011; Faucher-Giguère + 2011; Danovich + 2012; Ramsøy + 2021,

Bauermeister+ 2010, Prescott+2015, Zabl+2019

Filaments at different scales

Circum-galactic medium (CGM)

FINDING THE STREAMS

Galarraga-Espinosa+ 2023

- TNG50-1 simulation
- <u>z=2</u> (peak of star-formation activity)

Galaxies

- Only centrals
- Mass selection: $M_* \ge 10^8 \,\mathrm{M_{\odot}}/h$
- 2942 galaxies

Streams

- DisPerSE to dark matter density grid
- Sub-boxes of 3 cMpc/h side length
- Grid resolution = 0.02 cMpc/h

1 galaxy = 1 set of small-scale filaments

Daniela Galárraga-Espinosa - MPA Garching, Germany

GALAXY CONNECTIVITY

Number of streams that cross the virial radius of the host halo.

GALAXY CONNECTIVITY

Number of streams that cross the virial radius of the host halo.

• Trends with **mass**: similar $1 + \delta_{\text{DTFE}}$ to studies of galaxy clusters - 5 1 High Aragón-Calvo+ 2010, Codis+2018, Darragh-Ford+ 2019, Sarron+ 2019, Malavasi+ 2020, Kraljic+ 2020, Gouin+ 2021 - 4 $\log(1 + \delta_{DTFE})$ 0 $\overline{\mathsf{N}}_{\mathsf{streams}}$ - 3 Trends with **local density** $^{-1}$ for low mass galaxies D В - 2 Stronger local tides => -2 Low disconnection from the local web - 1 Hahn+ 2009, Aragón-Calvo+ 2019 Α -3 10.5 11.0 11.5 9.5 10.0 8.5 9.0 0 $\log(M_*[M_{\odot}/h])$

Connectivity in the mass-overdensity plane

Galarraga-Espinosa+ 2023

GALAXIES IN THE LARGE-SCALE ENVIRONMENT

Cosmic skeleton detected from DM density, using DisPerSE on the full TNG50-1 box

	Total	Definition
All cosmic environments	2942	
Voids + Walls	1211	The rest
Filament outskirts	454	1 - 2 cMpc/h from filament axis
Filaments	1213	1 cMpc/h from filament axis
Cluster outskirts	28	Within 1 - 3 <i>R</i> ₂₀₀
Galaxy Clusters	36	Haloes $M>10^{12}~{ m M}_\odot/h$, within R_{200}

Galaxy connectivity in different cosmic environments

Galarraga-Espinosa+ 2023

Different distributions! Connectivity depends on location of galaxy in the cosmic web

Example: in zone B Mean = 2.34 ± 0.09 in voids+walls Mean = 1.43 ± 0.05 in filaments -> 8.480 difference

Explained by different strengths of the cosmic tidal flow Musso+ 2018; Paranjape+ 2018; Kraljic+ 2019, Jhee+ 2022

In agreement with Borzyszkowski+ 2017; Romano-Díaz+ 2017, Garaldi+ 2018

IMPACT ON STAR FORMATION

CONCLUSIONS: GALAXIES IN THEIR MULTI-SCALE ENVIRONMENT

At fixed mass and local density (z=2):

- Galaxy connectivity depends on location in cosmic web structures
- Low mass galaxies: **connectivity enhances the sSFR** (~6σ)!
- Cosmic filaments are rich environments to study galaxy evolution
 - Different populations of galaxies co-exist
 - Less extreme than clusters
 - Diversity in gas density and temperature (see first part of the talk)

Galárraga-Espinosa+ 2023

FUTURE PERSPECTIVES:

- Matter transport via DM streams? Gas properties?
- What fraction of gas accreted via the streams vs isotropic accretion?
- Picture from z=2 to z=0?

+ Currently working on detection of the streams in observations (J-PAS, Bonoli+2021)

THANK YOU FOR YOUR ATTENTION!

danigaes@mpa-garching.mpg.de