

blished by the European Commission

Frank J. Qu DAMTP/KICC

University of Cambridge

in collaboration with

Blake Sherwin (University of Cambridge)

Niall MacrCrann (University of Cambridge)

Mathew Madhavacheril (University of Pennsylvania)

Dongwon Han (University of Cambridge)

+ ACT collaboration

COSMOLOGY FROM HIGH-PRECISION CMB ENSING MEASUREMENTS WITH THE ATACAMA COSMOLOGY TELESCOPE ACTPL

Frank J. Qu Thursday 18th of May 2023

RPM talk

THE ACT COLLABORATION

160 Collaborators at 45 institutions

THE CMB AS A SOURCE OF GRAVITATIONAL LENSING

CMB photon path

Frank J Qu Cambridge

Ideal Source for lensing

- Known redshift origin
- Known unlensed statistics
- Probing all the mass (dark matter) distribution

BACKLIGHTING THE UNIVERSE WITH THE CMB

Frank J Qu Cambridge

DARK MATTER

EFFECT OF CMB LENSING

Frank J Qu Cambridge

$T^{\text{lensed}} = T^0(\hat{n} + \nabla\phi)$

Small-scalearc minutedeflectionsdescribedbydeflectionfield $\nabla \phi$

Coherent over large degree-scales

Lensing convergence

LENSING RECONSTRUCTION VIA THE QUADRATIC ESTIMATOR (QE)

REAL SPACE

- **Unlensed CMB** translationally invariant.
- **Lensing** breaks the isotropy of the unlensed CMB statistics

Mode by mode reconstruction of lensing from quadratic CMB combinations

$$\hat{\phi}(\boldsymbol{L}) \sim \int d^2 \boldsymbol{\ell} T(\boldsymbol{\ell}) T^*(\boldsymbol{\ell} - \boldsymbol{L}) \ \boldsymbol{\gamma}$$

Frank J Qu Cambridge

FOURIER/ HARMONIC SPACE

$$\langle T^{0}(\boldsymbol{\ell})T^{0*}(\boldsymbol{\ell}-\boldsymbol{L})\rangle_{CMB}=0$$

Mode coupling $\langle T(\boldsymbol{\ell})T^*(\boldsymbol{\ell}-\boldsymbol{L})\rangle_{\mathsf{CMB}}\sim \phi(\boldsymbol{L})$

 $\sim QE(T_{CMB}, T_{CMB})$

QUADRATIC ESTIMATOR INTUITION

Lensing inferred from the local stretching/shearing of the local CMB power spectrum

Shift to larger angular scales

LENSING RECONSTRUCTION VIA THE QUADRATIC ESTIMATOR

$$\hat{\phi}(\boldsymbol{L}) \sim \int d^2 \boldsymbol{\ell}'$$

Use **small scale** CMB modes to reconstruct large scale lenses

Typically use $600 < \ell < 3000$

Frank J Qu Cambridge

 $T(\boldsymbol{\ell})T^{*}(\boldsymbol{\ell}-\boldsymbol{L})$

Reconstructed CMB Lensing Matter Distribution

Benefit from **high resolution** CMB measurements

KEY STATISTICS: LENSING POWER SPECTRUM

Bright regions = High Density

Reconstructed mass map

Frank J Qu Cambridge

MOTIVATION: WHY IS CMB LENSING INTERESTING?

- Lensing probes the projected mass distribution to high redshifts.
- Hence the lensing power spectrum is the projected matter power spectrum

$$L^{4}C_{L}^{\phi\phi}/4 = \int_{0}^{1100} dz (\tilde{W}^{\kappa}(z))^{2} P(k = L/\chi, z)$$

lensing power spec.

redshift kernel

matter power spectrum

Frank J Qu Cambridge

Fractional mass

 $\kappa(\hat{\mathbf{n}}) \sim$

overdensity ۶Z* $\delta(\hat{\mathbf{n}},z)$

Projection kernel

Redshift origin of the signal: mean at $z \sim 2$, peak at $z \sim 1$, broad support over extended redshifts z=0.5~6

10

COSMOLOGICAL PARAMETER DEPENDENCE

Combination of clumpiness (amplitude of clustering on scales of 8Mpc/h) and the total amount of matter

Frank J Qu Cambridge

11

MOTIVATION: LENSING MASS MAPS AS TESTS OF STRUCTURE GROWTH

- CMB lensing provide a powerful test of the Standard Cosmological model.
- Do observations match predictions of standard structure growth (dark matter, dark energy and GR)?

Fit standard cosmological model to the CMB at early times.

t = 0.0004Gyr

Frank J Qu Cambridge

Predict size of structure formation at late times

Parametrize structure size today with σ_8 , RMS of matter density fluctuations smoothed on scales of 8Mpc/h

Compare with observations

t > 1Gyr

MOTIVATION : LENSING MASS MAPS AS TESTS OF STRUCTURE GROWTH ' S_8 tension'

We will present ~2% measurements of $\sigma_8 \Omega_m^{0.25}$, S_8 and σ_8

Frank J Qu Cambridge

HOW CAN CMB LENSING CLARIFY THE S_8 TENSION?

Can give insight into systematics and test z/k dependence of any new physics

MOTIVATION 2 : MEASURING NEUTRINO MASS SUM

Neutrinos affect structure growth: the more massive the neutrinos, the more the small scale growth are suppressed.

Massless neutrino

Probes approaching the 60meV lower limit using AdvACT, SPTPOL, SO, S4

Frank J Qu Cambridge

Massive neutrino

ATACAMA COSMOLOGY TELESCOPE

Arcminute resolution CMB telescope, located in the Chilean Atacama desert

16

HIGH RESOLUTION CMB LENSING MEASUREMENTS FROM ADVACT

New DR6 AdvACT maps: 15uk 18000 sq degrees

HIGH RESOLUTION CMB LENSING MEASUREMENTS FROM ADVACT

Gravitational Lensing Convergence

- Signal dominated lensing maps covering a quarter of the sky.
- These are high fidelity-> enabling seeing the dark matter by eye!

Frank J Qu Cambridge

ACT DR6 CMB lensing mass map

Low (voids)

ZOOM IN OF 900 SQ. DEG OF THE 9400 SQ. DEG. MASS MAP

RA (°)

ZOOM IN OF 900 SQ. DEG OF THE 9400 SQ. DEG. MASS MAP

Gravitational potential + CIB (contours)

RA (°)

Correlation with dusty galaxies seen by eye

MEASURING THE CMB LENSING POWER SPECTRUM (NEW LENSING PIPELINE)

 $C_L^{\phi\phi}\sim \langle \phi({f L})\phi^*({f L})
angle - {
m Gaussian ~bias}$

Schematically

Our lensing spectrum pipeline subtracts **noise biases** from naive power spectrum

Frank J Qu Cambridge

 $\langle TT
angle \langle TT
angle$ $\langle TTTT \rangle$

Gaussian contractions give large bias

21

BLINDED ANALYSIS FRAMEWORK WITH EXTENSIVE NULL TEST SUITE

- DR6 lensing analysis follows blinded analysis procedure. (No comparison with theory/ other data, parameter runs)
- DR6 dataset allows rigorous check for consistency and presence of systematics.

200 null tests broadly divided into the following categories:

Foreground tests

- Polarization vs temperature consistency
- Frequency consistency in map and spectrum.
- Shear estimator
- Galactic foreground/ sky area tests

Signal Isotropy tests

Cross linking tests Patch based tests North vs South

Curl deflection tests

SYSTEMATIC CHALLENGES FOR OUR MEASUREMENT

Generally, CMB lensing quite robust: known redshift and source, near-linear matter with baryonic effects currently negligible.

Key challenges:

- Accuracy of ground-based noise bias subtraction
- **Foregrounds! Mainly extragalactic**

Also investigated instrument-related systematics with simulations and data crucial work led by DW. Negligible effects found (earlier simulations also show subdominant levels at our SNR).

Frank J Qu Cambridge

Today's focus

CHALLENGE I: NOISE BIAS SUBTRACTION

Frank J Qu Cambridge

Run data noise only maps through lensing power spectrum pipeline.

Expectation Result should be consistent with zero. Reality **U** shape failure

CHALLENGE I: NOISE BIAS SUBTRACTION

Noise complexities for ground based surveys difficult to model.

- atmospheric noise
- spatial inhomogeneities from scan strategy

Frank J Qu Cambridge

Lot of noise simulation improvements

See Atkins et al 2023

SOLUTION: CROSS CORRELATION BASED ESTIMATOR

Use 4 CMB maps with independent noise. Immune to noise modelling

Madhavacheril, Smith, Sherwin, Naess et al 2020, JCAP

 $\gamma \phi \phi$, cross $\sim \langle T_1 T_2 T_3 T_4
angle$

maps with independent noise

now pass the null test with robust cross estimator

CHALLENGE II: Contamination from Extra-galactic Foregrounds

image credit: Dongwon Han

Frank J Qu Cambridge

Challenge II: Biases From Extragalactic foregrounds

Frank J Qu Cambridge

CMB maps contains from radio point sources, cosmic infrared background (CIB), thermal and kinetic SZ effects.

$$T = T_{\rm CMB} + f$$

 $C_L^{\phi\phi} \sim \langle QE[T_{CMB}, T_{CMB}]QE[T_{CMB}, T_{CMB}] \rangle$ Lensing signal $+2\langle QE[T_{CMB}, T_{CMB}]QE[f,f] \rangle + 4\langle QE[T_{CMB},f]QE[T_{CMB},f] \rangle$ $+\langle QE[f,f]QE[f,f]\rangle$ Foreground induced biases

Foreground mitigation pipeline (Simulate bias estimates)

Implement curvedsky foreground mitigation methods

Test methods with simulations

AdvACT Lensing: Repertoire of mitigation methods

- Geometric methods
- Namikawa+2013 Osborne+2013 Sailer+2020
- Profile hardening <u>Sailer+2022</u>
- Schaan+Ferraro 2019, Qu+2022
- Multifrequency
 - CIB deprojection + Profile hardening
- Simulated biases negligible in both methods (2 different sims)

Gives foreground bias < 0.2 x statistical uncertainty

Frank J Qu Cambridge

BASELINE MITIGATION TECHNIQUE: PROFILE HARDENING

Construct estimators that are insensitive to mode couplings generated by a particular field (tSZ clusters/CIB/point sources)

Null tests leveraging the 90 and 150 GHz frequencies to isolate the different foreground biases

Testing the foreground trispectrum

Testing the primary bispectrum

NULL TESTS NOW PASSES! ONE EXAMPLE:

combinations, instrument arrays, time,...

Frank J Qu Cambridge

• **Consistent** lensing spectra obtained across scales, regions, frequencies, polarization

NULL TESTS NOW PASSES! STABILITY OF THE LENSING SPECTRUM

Consistent amplitude of lensing spectrum Alens

Difference in Amplitude of lensing

Frank J Qu Cambridge

PWV high-PWV low time split 1 - time split 2 TT-POL TT+POL-POL only TT+POL-TT only TT shear CIB deprojection TT f090-f150 TT+POL f090-f150 South patch - North patch Poor cross-linking region 40% mask Aggressive ground pick up $1500 < \ell_{CMB} < 3000$ $800 < \ell_{CMB} < 3000$ $600 < \ell_{CMB} < 2500$ $600 < \ell_{CMB} < 2000$ 0.2

at different times

in polarization

w. different foreground cleaning

at different frequencies

in different parts of sky

on different scales

+... many more tests!

CMB LENSING POWER SPECTRUM: RESULTS AND IMPLICATIONS

Frank J Qu Cambridge

PLANCK CMB ANISOTRPY PREDICTION

Frank J Qu Cambridge

Neelima Sehga Dongwon Han Blake Sherwin Adriaan Duivenvoorde Mathew Madhavacheril (he... Irene Abril Cabezas Niall MacCrann Amanda Macinnis Cai, Hongbo Alexander Van Engelen Cai, Hongbo Frank Qu Gerrit Farrer Thibaut Louis Joshua Kim 🖌 Lukas Wenzl Shabbir Isak Shaikh Thibaut Louis Joshua Kim -Toshiya Namik... Fiona McCarthy Darby Kramer (she/her) lan Harrison (he/him) Toshiya Namikawa V Omar Kosowsky, Arth... Yogesh Mehta Kosowsky, Arthur B Omar

10³

UNBLINDED RESULTS: ACT DR6 LENSING POWER SPECTRUM

Frank J Qu Cambridge

- Excellent agreement of our measurement (with no free parameters) with the LCDM theory predictions based on *Planck* 2018 CMB power spectra. A PTE of 0.17
- Amplitude of lensing (relative to theory amplitude) determined to 2.3%

 $A_{
m lens} = 1.013 \pm 0.023$

SNR of 43

UNBLINDED RESULTS: ACT DR6 LENSING POWER SPECTRUM

Frank J Qu Cambridge

- Signal-to-noise ratio in baseline range ~43 competitive with all other weak lensing probes and Planck
- SNR 20 using polarization data only (consistent)

PUTTING OUR MEASUREMENT IN CONTEXT

RAPID PROGRESS OVER THE LAST DECADE WITH ACT AND OTHER EXPERIMENTS

Frank J Qu Cambridge

COSMOLOGY FROM DR6 CMB LENSING

Frank J Qu Cambridge

EXCELLENT AGREEMENT WITH PREDICTION FROM CMB POWER SPECTRA-OUR LENSING IS NOT LOW

Frank J Qu Cambridge

ACT+PLANCK COMBINATION: TOWARDS THE MOST PRECISE CMB LENSING MEASUREMENT TO DATE

- - different noise and instrument related systematics. Ο
 - different sky overlap. \bigcirc
 - different angular scales. Ο

Frank J Qu Cambridge

Planck lensing map

ACT lensing and *Planck* lensing maps have significantly independent information.

COMPARING ACT AND PLANCK NPIPE LENSING CONSTRAINTS

Frank J Qu Cambridge

- As expected, they are very consistent. Can combine!
- Since partial overlap in scales in area, must compute covariance.
- Use simulated ACT and Planck analyses of same sky to get covariance and joint likelihood

CONSTRAINT FROM ACT LENSING AND PLANCK NPIPE LENSING JOINT LIKELIHOOD

ACT+NPIPE constraint:

$$S_8^{
m CMBL} = 0.813 \pm 0.018$$

2.2% constraint from single weak lensing observable alone

DR6 CMB LENSING SPECTRUM + PLANCK COMBINATION: IMPLICATIONS

- trispectrum in ACT – agrees to 2%. Signal is not low!
- Agreement with Planck lensing + CMB no evidence for Planck systematics
- Disfavours new physics explanations that change structure growth at high z(z>1) and low k.

Frank J Qu Cambridge

Planck 2018 CMB aniso. ACT DR4+*WMAP* CMB aniso. ACT DR6+*Planck* NPIPE Lensing Planck NPIPE Lensing ACT DR6 Lensing (baseline)

A success for LCDM: fit Planck CMB at z~1100, predict structure to low-z, predict lensing signal arising over a wide range of z and

DR6 CMB LENSING + BAO

CMB lensing alone measures $\sigma_8 \Omega_m^{0.25}$ Combination with BAO* isolates σ_8

*BAO data set includes 6df, SDSS MGS, BOSS and eBOSS LRGs

DR6 CMB LENSING + BAO

CMB lensing alone measures $\sigma_8 \, \Omega_m^{0.25}$ Combination with BAO isolates σ_8

 $\sigma_8 = 0.819 \pm 0.015$

1.8% measurement

DR6 + PLANCK CMB LENSING + BAO

CMB lensing alone measures $\sigma_8 \Omega_m^{0.25}$ Combination with BAO isolates σ_8

 $\sigma_8 = 0.812 \pm 0.013$

1.6% measurement for

ACT+Planck lensing

combination

COMPARISON WITH OTHER WEAK LENSING PROBES

0.9 Shown against various cosmic **shear** measurements with consistent priors and BAO 0.8 Wider range of scales probed by д 8 0.7 CMB lensing allows tight

constraint compared to cosmic shear

0.6

OUTLOOK FOR S_8

- CMBLens from z=0.5-5 and **linear scales** is consistent with early universe prediction
- Probes of z<~0.5 and **smaller** scales generally fall lower
- **New outlook:** Motivates not just CMB vs. LSS comparisons, but intermediate-z/linear-scales vs. low-z/non-linear scale

CMB: Planck CMB aniso. CMB: Planck CMB aniso. ($+A_{lens}$ marg.) CMB: WMAP+ACT CMB aniso. CMBL: Planck CMB lensing + BAO CMBL: SPT CMB lensing + BAO CMBL: ACT CMB lensing + BAO CMBL: ACT+Planck CMB lensing + BAO WL: DES-Y3 galaxy lensing WL: DES-Y3 3x2 WL: HSC-Y3 galaxy lensing (Real) WL: HSC-Y3 galaxy lensing (Fourier) WL: HSC-Y3 3x2 WL: KiDS-1000 galaxy lensing WL: KiDS-1000 3x2 GC: BOSS EFT 2-pt + 3-pt GC: eBOSS BAO+RSD CX: SPT/Planck CMB lensing x DES CX: Planck CMB lensing x DESI LRG CX: Planck CMB lensing x unWISE

CONSTRAINING NEUTRINO MASSES

- We combine with CMB anisotropies which predict low-redshift clustering amplitude
- Translate observed low-redshift clustering amplitude to suppression caused by massive neutrinos

• m<0.12 eV 95% c.l.

Compare to: (m<0.14 eV; Planck lensing) (m<0.16 eV; no lensing, only CMB+BAO)

FUTURE DIRECTIONS: DR6 ACT LENSING X LSS

3D tomographic information of the matter distribution!

- 1. (in prep)... + > 10 ongoing projects with DESI
- Tests of gravity: ACT x SDSS, Wenzl et al. (in prep)... 2.
- Astrophysics at high-z: ACT x Planck CIB, Mehta et al (in prep)... 3.

. . . .

Probe of structure growth vs. redshift: ACT x unWISE, Farren et al. (in prep), ACT x **DES**, Marques et al. (in prep), Shaikh et al (in prep), Darwish et al. (in prep), Kim et al.

FUTURE DIRECTIONS: DR6 ACT LENSING X LSS

ACT DR6 lensing map will be released upon publication of the 3 papers, likelihood available here:

(NASA LAMBDA: https://lambda.gsfc.nasa.gov/product/act/actadv_prod_table.html)

FUTURE DIRECTIONS: FURTHER IMPROVEMENTS ON MASS MAPPING

More great lensing science from the ACT collaboration in the near future!

- **Inclusion of the daytime data:** ~ 1.7x amount of the data
- Additional Seasons (Season 2021-2022)
- **Optimal Filtering (10-15% improvement)**
- **Increase the number of splits used for the cross**estimator (~10% improvement)
- Improve sky-cuts (~10% improvement)
 - **Map-level combination with Planck**

SUMMARY

- CMB lensing power spectrum with high precision, SNR~43; tested extensively
- High-fidelity lensing map over 1/4 sky
- Excellent agreement with Planck or ACT CMB power spectrum predictions. No evidence for low value

THANK YOU FOR YOUR ATTENTION

jq247@cam.ac.uk

Papers available on arxiv

Qu, Sherwin, Madhavacheril, Han, Crowley et al 2304.05202 A Measurement of the DR6 CMB Lensing Power Spectrum and its Implications for Structure Growth Madhavacheril, Qu, Sherwin, MacCrann, Li et al 2304.05203 DR6 Gravitational Lensing Map and Cosmological Parameters MacCrann, Sherwin, Qu, Namikawa, Madhavacheril et al 2304.05196 Mitigating the impact of extragalactic foregrounds for the DR6 CMB lensing analysis

COSMIC SHEAR 1.7 TO 2.1 SIGMA LOWER THAN CMB LENSING

- Quantify tension in S_8 space, where both CMB lensing and cosmic shear have good constraining power
- But σ_8 constrained significantly better by CMB lensing

Planck CMB aniso. Planck CMB aniso. (+A_{lens} marg.) Planck CMB lensing + BAO SPT CMB lensing + BAO **ACT CMB lensing + BAO** ACT+Planck CMB lensing + BAO DES-Y3 galaxy lensing + BAO KiDS-1000 galaxy lensing + BAO HSC-Y3 galaxy lensing (Fourier) + BAO HSC-Y3 galaxy lensing (Real) + BAO

HUBBLE CONSTANT FROM LENSING

DR6 lensing+ BAO $H_0 = 68.3 \pm 1.1 \,\mathrm{km s^{-1} Mpc^{-1}}$

DR6+Planck CMB lensing+BAO $H_0 = 68.1 \pm 1.0 \mathrm{km s^{-1} Mpc^{-1}}$

Sound horizon independent constraint

 $H_0 = 64.9 \pm 2.8 \mathrm{km s^{-1} Mpc^{-1}}$

CURL MODES

CROSS CORRELATIONS

Offdiagonal covmat ACT+Planck

0.4

- 0.2
- 0.0
- -0.2
- -0.4

Baryonic effects - suppression negligible where our SNR arises (L<500)

