UNIVERSITY OF CAMBRIDGE

Frank J. Qu

DAMTP

Advised by Blake D. Sherwin

TESTING FUNDAVENTA PHYSICS WITH HIGH RESOLUTION CMB LENSING MASS

Tuesday 8th of November

BCCP/COSMOLOGY SEMINAR

OUTLINE

Progress on new CMB lensing measurements with AdvACT DR6 and implications on structure growth

- CMB lensing introduction
- High precision lensing measurement with AdvACT
- Towards a robust lensing measurement. Null test suite
- Challenges with ground based CMB.
 - Systematic modelling: Instrument noise
 - Foregrounds

Tracking structure growth across redshifts with high redshift only lensing maps

- Constructing a high redshift lensing map
- Tomographic measurement of amplitude of structure

BACKLIGHTING THE UNIVERSE WITH THE CMB

CMB

Ideal Source

- Known redshift origin
- Known unlensed statistics
- Matter mainly linear
- Probing all the mass (dark matter) distribution

EFFECT OF CMB LENSING

$T^{\text{lensed}} = T^0(\hat{n} + \nabla\phi)$

Small-scalearc minutedeflectionsdescribedbydeflectionfield $\nabla \phi$

Coherent over large degree-scales

Lensing convergence

LENSING RECONSTRUCTION VIA THE QUADRATIC ESTIMATOR

REAL SPACE

- **Unlensed CMB** translationally invariant.
- **Lensing** breaks the isotropy of the unlensed CMB statistics

Mode by mode reconstruction of lensing from quadratic CMB combinations

$$\hat{\phi}(\boldsymbol{L}) \sim \int d^2 \boldsymbol{\ell} T(\boldsymbol{\ell}) T^*(\boldsymbol{\ell} - \boldsymbol{L})$$

FOURIER/ HARMONIC SPACE

$$\langle T^{0}(\boldsymbol{\ell})T^{0*}(\boldsymbol{\ell}-\boldsymbol{L})\rangle_{CMB}=0$$

Mode coupling

 $\langle T^{(\ell)}T^{*}(\ell-L)\rangle_{CMB} \sim \phi(L)$

LENSING RECONSTRUCTION VIA THE QUADRATIC ESTIMATOR

$$\hat{\phi}(\boldsymbol{L}) \sim \int d^2 \boldsymbol{\ell}'$$

Use **small scale** CMB modes to reconstruct **large scale** lenses

Typically use $600 < \ell < 3000$

Benefit from **high resolution** CMB measurements

 $T(\boldsymbol{\ell})T^{*}(\boldsymbol{\ell}-\boldsymbol{L})$

Reconstructed CMB Lensing Matter Distribution

KEY STATISTICS: LENSING POWER SPECTRUM

Bright regions = High Density

Reconstructed mass map

WHAT DOES CMB LENSING TELL US?

- power spectrum

- CMB Lensing therefore sensitive to:
 - Neutrino mass sum via power spectrum suppression
 - Combination of **clumpiness** (amplitude of clustering on scales of 8Mpc/h) and the total amount of matter

MOTIVATION: WEIGH IN CLAIMS ON S8 TENSION

- Discrepancy of 2-3 σ appearing in the amplitude of structure between low z probes and extrapolation result from CMB.
- Useful to test this further with a direct probe like CMB lensing. Independent of galaxies and Planck
 - Completely different systematics.
 - Clean probe. *caveat of extragalactic foregrounds

Probes involving galaxies are very powerful, but also challenging: Photo-zs, blending, baryonic effects, intrinsic alignments...

Direct measurement

CMB LENSING POWER SPECTRA: TOWARDS PRECISION COSMOLOGY

10

ATACAMA COSMOLOGY TELESCOPE

Arcminute resolution CMB telescope, located in the Chilean Atacama desert

11

HIGH RESOLUTION CMB LENSING MEASUREMENTS FROM ADVACT

New DR6 AdvACT maps: 15uk 18000 sq degrees

HIGH RESOLUTION CMB LENSING MEASUREMENTS FROM ADVACT

PRELIMINARY AdvACT lensing Map

Signal dominated reconstruction enables seeing dark matter by eye! Dusty forming galaxy emissions CIB contours highly corrélated with reconstructed lensing field.

Demo

MEASURING THE LENSING POWER SPECTRUM

NULL TEST SUITE

CHALLENGES OF HIGH RESOLUTION GROUND BASED MEASUREMENTS AND SOLUTIONS

ROBUST LENSING MEASUREMENT WITH COMPREHENSIVE NULL TEST SUITE

More than 200 null tests for robust lensing measurement

Foreground tests

- Polarization vs temperature consistency
- Frequency consistency in map and spectrum.
- Shear estimator
- Galactic foreground/ sky area tests

Signal Isotropy tests

Cross linking tests Patch based tests North vs South

Curl deflection tests

KEY FOR PASSING

- Cross correlation based estimator. (Immune to instrumental noise)
- Two different methods for foreground mitigation
 - Profile hardening
 - Frequency cleaning

CHALLENGE: GROUND BASED NOISE IS VERY COMPLICATED TO MODEL

Challenge: Noise modelling. Why do we need accurate noise sims?

 $C_L^{\phi\phi}\sim \langle \phi({f L})\phi^*({f L})
angle - {
m Gaussian ~bias}$

Schematically

3000

 $\langle TT \rangle \langle TT \rangle$ $\langle TTTT \rangle$

Gaussian contractions give large bias

- Lensing power spectrum measures a 4 point function. Large bias arises from chance correlations from CMB signal and instrumental noise.
- Method to subtracting this uses combination of data and simulations. Arguably robust...

Challenge: Noise modelling, Noise only null test failure

- Take difference of splits to remove the CMB signal and obtain noise only maps.
- Run these noise only maps in the lensing pipeline. Including the subtraction of the gaussian bias using the data/sim method.

Expectation Result should be consistent with zero. Reality **U** shape failure

Solution: Cross correlation based estimator

- Divide data into splits with independent noise. Estimator immune to noise mis-simulations.
- Non trivial combination of splits makes computational cost $\mathcal{O}(\text{splits}^2)$ instead of naive $\mathcal{O}(\text{splits}^4)$

 $C_{T}^{\phi\phi,{
m cross}}\sim \langle T_{1}T_{2}T_{3}T_{4}
angle$

maps with independent noise

- Take difference of splits to remove the CMB signal and obtain noise only maps.
- Run these noise only maps in the lensing pipeline. Including the subtraction of the gaussian bias using the data/sim method.

Pass the null test with robust cross estimator!

CHALLENGE II: CONTAMINATION FROM EXTRA-GALACTIC FOREGROUNDS

Challenge I: Biases From Extragalactic foregrounds

Foreground induced biases

CMB maps contains from radio point sources, cosmic infrared background (CIB), thermal and kinetic SZ effects.

$$T = T + f$$

$C_L^{\phi\phi}\sim \langle Q[T_{ m CMB},T_{ m CMB}]Q[T_{ m CMB},T_{ m CMB}] angle+$

 $2\langle Q[T_{ ext{CMB}},T_{ ext{CMB}}]Q[f,f]
angle+4\langle Q[T_{ ext{CMB}},f]Q[T_{ ext{CMB}},f]
angle$ $+\langle Q[f,f]Q[f,f]
angle$

Foreground mitigation pipeline (Simulate bias estimates)

Implement curvedsky foreground mitigation methods

Test methods with simulations

AdvACT Lensing: Repertoire of mitigation methods

Geometric methods

- Profile hardening
- Shear

Multifrequency

CIB deprojection + Profile hardening

Simulated biases negligible in both methods (2 different sims)

Compare simulation results with data based null tests to reduce reliance to particular set of simulations.

BASELINE MITIGATION TECHNIQUE: PROFILE HARDENING

Namikawa+2013 Osborne+2013 Sailer+2020 Sailer+2022

Construct estimators that are insensitive to mode couplings generated by a particular field (tSZ clusters/CIB/point sources)

Null tests leveraging the 90 and 150 GHz frequencies to isolate the different foreground biases

Testing the foreground trispectrum

Testing the primary bispectrum

23

FULL SKY SHEAR ESTIMATOR

See <u>Schaan+Ferraro 2019</u>, <u>Ou, Challinor, Sherwin 2022</u>

Foreground bias

- Multipole expansion of the standard lensing estimator.
- Discarding the monopole motivated by symmetry of foregrounds leads to smaller biases.
- **First** application of shear estimator on data.
- Important role for SO as a foreground mitigation strategy Darwish + 2021 <u>Sailer+ 2021</u>
- Important role in mitigating extragalactic foreground biases in delensing applications **Baleato+Ferraro 2022**

OTHER NULL TESTS HIGHLIGHT

No evidence of curl modes detected in the lensing field.

Constrast with $\sim 3\sigma$ failure observed in Planck 2018

PRECISION COSMOLOGY WITH THE DR6 LENSING POWER SPECTRUM

2% MEASUREMENT OF LENSING POWER SPECTRUM

SNR 42-44 using the actual error bars.

Using CMB maps covering 30% of the sky.

27

2% MEASUREMENT OF LENSING POWER SPECTRUM

We have recently unblinded!

- SNR 42-44 using the actual error bars.
- Using CMB maps covering 30% of the sky.

28

- $S_8 = \sigma_8 \left(\frac{\Omega_m}{0.3}\right)^{0.25}$ to ± 0.021 CMB lensing only constraints
 - ACT+BAO σ_8 to ± 0.014
- ACT+Planck to ± 0.017 (Only if ACT compatible with Planck)

+ new tight constraints on the neutrino mass sum of 70 meVwith BOSS BAO/ 40meV with DESI BAO. Compared with 60meV normal hierarchy

Direct measurement

ENABLING EXCITING CROSS CORRELATIONS WITH LSS

Lensing tomography: Probing structure growth at low redshifts.

E.g., AdvACTxUnWISE lensing cross-correlation data

Many exciting cross correlation projects with DESI!

>10 projects and more with upcoming DESI x ACT MOU

[Farren et Al (including Qu), in prep]

THE FUTURE: SIMONS OBSERVATORY AND CMB STAGE-IV High-Precision Lensing Power Spectra

Co-lead development of the SO lensing pipeline ready for SO analysis.

SO Large Aperture Telescope

- Observation from 2023-2028
- $f_{sky} \approx 30\%$
- Noise 2-3 times < ACT</p>

$$\sigma(\sum m_{\nu}) \approx 20 - 30 \mathrm{meV}$$
 (Simons Obs.
/ CMB-S4)
c.f. limit. >60meV

31

CMB LENSING: FORECASTING OPPORTUNITIES AT HIGH-Z

MOTIVATION

- Lensing maps probe matter density, projected over a wide redshift range peaking at z~2. Unique z>5 reach!
- If we can remove the low -z contribution we can have a new window to the high redshift universe!

HOW CAN WE ACCESS THE HIGH REDSHIFT INFO FROM LENSING

- **Delensing inspired approach.** Cleaning the lensing map with suitably scaled galaxy tracers. (This work)
- Cross correlation based methods. Analysing all cross and auto spectra

Qu++2022

OBTAINING A HIGH Z LENSING MAP: METHODOLOGY

- Galaxy surveys will span a broad redshift range.
- Idea: Remove low z content of lensing with scaled galaxy density maps.

Minimisation problem:

$$\hat{\kappa}_{L}^{clean} = \hat{\kappa}_{L} - \frac{c(L)\hat{X}_{L}}{Filter Galaxy tracer}$$

Filter obtained by minimisation power spectrum of $\hat{\kappa}_{\mathbf{L}}^{clean}$

$$c(\boldsymbol{L}) = \frac{C_L^{\kappa X}}{C_L^{XX}}$$

TOWARDS HIGH Z LENSING MAP: CONSTRUCTING THE GALAXY TRACER FIELD

- Construct $\hat{X}_{\mathbf{L}}$ by combining LSS tracers \hat{g}_i in narrow redshift bins.
- Tracers weighted appropriately to maximise correlation with the lensing field.
- Weights $c_{i,L}$ can be obtained empirically from measured auto and cross spectra.

EXAMPLE WITH LSST SURVEY

 $c_{i,L} = \sum_{j} (\operatorname{Cov}_{L}^{gg})_{ij}^{-1} C_{L}^{\kappa g_{j}}.$

MEASURING HIGH Z AMPLITUDE OF STRUCTURE

- Low z cleaned maps have projection kernel close to 0 at low z. Hence effectively probing high z S₈
- **4% measurement** of S_8 at z = 5 with CMB S4 and LSST

6

 + Neutrino mass measurements robust to biases from Dark energy models.

SUMMARY

- AdvACT DR6 datasets will provide the highest precision ground based CMB lensing power spectra to date . We are unblinded. The measurement is robust against systematics and can provide interesting insights regarding S_8 and $\sum M_{\nu}$
- Methodology of obtaining a high redshift only lensing map. Many interesting applications! Tomographic S_8 measurements, neutrino mass sum measurement without bias, sharpening cross correlation measurements.

Stay tuned for later this year

- •**Qu**, Sherwin, Madhavacheril et al ACT in prep (expected 2022): Lensing power spectra and lensing only S8 •Madhavacheril, **Qu**, Sherwin et al ACT in prep (expected 2022): Lensing map and cosmology
- •MacCrann, Sherwin, **Qu** et al ACT in prep (expected 2022): Foreground bias mitigation
- •Atkins,Duivenvoorden,Coulton,**Qu** et al ACT (expected 2022): Map-Based Noise Simulations for AdvACT DR6

