Chasing The Demons of the Cosmic Dawn with 21cm

Aaron Ewall-Wice

Berkeley Astronomy Department and Center for Cosmological Physics.

We want to use 21cm to fill in our cosmic timeline

21cm Tomography Lets us Observe the Impact of the first Galaxies on Intergalactic Gas

21cm Tomography

λ= 1.68m f=158 MHz

Mesinger 2011

z = 6

Mesinger 2011

How Astrophysics Affects 21cm Emission

 δT_b =Differential Brightness Temperature = Brightness temperature of 21cm - Brightness temperature of CMB

How Astrophysics Affects 21cm Emission

 δT_b =Differential Brightness Temperature = Brightness temperature of 21cm - Brightness temperature of CMB Temperature of cosmic microwave background $\delta T_b \propto x_{HI} \times \rho \times \left(1 - \frac{T_{\rm CMB}}{T_{\rm s}}\right)$

- **X**HI: The Neutral Fraction -> ionizations?
- Ts: Spin Temperature -> Temperature of Hyperfine Transition
- ρ: Density

X-rays: Raise Thermal Temperature

Simulations from 21cmFAST (Mesinger+ 2011)

200

Мрс

Heating

Blue = Emission against CMB Yellow/Red=Absorption against CMB Black=Same brightness as CMB with Ts=Tcmb or xHI=0

 $\delta T_b \propto x_{HI} \times \rho \times \left(1 - \frac{T_{\rm CMB}}{T_{\rm s}}\right)$ (mK)

Lyman Continuum Photons: Ionize the IGM

Simulations from 21cmFAST (Mesinger+ 2011)

Early Detections of 21cm will be Statistical

Slide adopted from Josh Dillon

Barkana (2009), Morales & Wyithe (2010)

Eos Simulation: Mesinger et al. 2016

2018: The first claimed "Detection": EDGES k=0 h/Mpc

Could be systematics

Residual Reflection/beam ripple

Hills+ 2018: Fit data just as well With a sinusoid (Also Sing+2018)

Resonance between ground plane and Moist Soil

Bradley+2018: Demonstrates possible production by resonance between soil layers and ground plane.

If EDGEs is taken at face value...

Option 1: Cool T_s below the adiabatic limit!

$$\delta T_b \propto x_{HI} \times \rho \times \left(1 - \frac{T_{\rm CMB}}{T_{\rm s}}\right)$$

Dark Matter is one substance cold enough to do this!

Barkana+2018 Flalkov+2018 Munoz+2018

Requires new radio sources at high redshift!

(Feng+2018, AEW+2018/2019, Mirabel+2018, Fraser+2018, Fialkov+2019)

Some Evidence for new radio sources already existed.

Excess radio background claimed by ARCADE-2

Some Potential Sources of Radio Emission at z>17.

• Star forming galaxies. (Mirocha+2018)

- Annihilation of a µeV dark matter particle. (Fraser+2018)
- Active Galactic Nuclei: Black Holes.

(AEW+ 2018 / 2019)

At z~1 radio galaxies produce ~10% of the CMB at ~GHz

Cygnus A

Differences

- 1. Any Black holes at $z \sim 17$ would have to be far less massive.
- 2. Such black holes would have to be heavily obscured
 - A. To prevent heating from erasing feature.
 - B. To prevent Early Reionization ($z \sim 16$).
- 3. Magnetic Fields must be substantially larger then low-z AGN.

We consider several scenarios explain the ~billon solar mass quasars at z~7

Artist impression of ULAS J1120+0641

How did super-massive black holes (observed at z=7) form?

Three Potential Scenarios:

1. Remnants of Population III Stars

> (A) Form in ~ 10⁵-10⁷ M_{\odot} halos (B) Seed mass of ~10-1000 M_{\odot}

How did super-massive black holes (observed at z=7) form?

Three Potential Scenarios:

1. Remnants of Population III Stars

2. Cluster Collapse

(A) Form in ~ $10^8 M_{\odot}$ halos (B) Seed mass of ~1000 M_{\odot}

How did super-massive black holes (observed at z=7) form?

Three Potential Scenarios:

- Remnants of Population III Stars
 Cluster Collapse
- 3. Direct Collapse Black Hole

 M_{\odot}

- (A) Form in $\sim 10^8$ halos
- (B) Seed mass of ~10⁵ M_{\odot}
- (C) Most models require pristine "massive" halos with UV background

Can we get enough radio emission? Yes!

Differences

- 1. Any Black holes at $z \sim 17$ would have to be far less massive.
- 2. Such black holes would have to be heavily obscured (Compton Thick)
 - A. To prevent heating from erasing feature.
 - B. To prevent Early Reionization ($z \sim 16$).
- 3. Magnetic Fields must be substantially larger then low-z AGN.

Self Consistent Obscured Models Reproduce EDGEs.

EDGES typically Requires 10 Myr Salpeter Times

AEW+2019

Differences

- 1. Any Black holes at $z \sim 17$ would have to be far less massive.
- 2. Such black holes would have to be heavily obscured
 - A. To prevent heating from erasing feature.
 - B. To prevent Early Reionization ($z \sim 16$).
- 3. Magnetic Fields must be substantially larger then low-z AGN.

Large B-fields (> mG) required To prevent Inverse Compton Losses.

Black holes may be a ~plausible explanation of EDGEs

"The Scream" - Edvard Munch

But eliminating the systematics explanation requires validation with independent measurements

Fluctuation Experiments — Targeting the Cosmic Dawn

Hydrogen Epoch of Reionization Array... South Africa Lesotho

2017-2018 initial deployment of 61, 100-200 MHz PAPER RF chains.

139 Dishes (~61 signal chains) Currently deployed at SKA-MID Site

Currently being replaced with 350, 50-250 MHz RF chains

Funded to build and analyze 350 dishes/signal chains.

Radio Foregrounds: ~104x the signal level!

Supernova Remnant

The Galaxy

Distinguishing Foregrounds from Signal

Fluctuations can be isolated using the Fourier transform.

 $\tau_{2=}$ $\dot{o}_2 \cos \Theta / c$

b₂

Nine In

PK PK P

康康

01

 $K_{\parallel} \sim \tau$

b₁ $K_{\perp} \sim b \frac{b_2}{\tau_2} = b_2 \cos\theta/c$

PR

 $\boldsymbol{\tau}_2$

$\tau_1 = b_1 \cos \theta / c$

 τ_1

The Wedge motivates two strategies

1: Remove

Foregrounds stay in the wedge only when each antenna has No spectral structure.

f(MHz)

k_I (hMpc⁻¹)

Spectrally Smooth*

"All you need is paperclips and a supercomputer"

-Don Backer

*up to one part in ~10⁻⁵

Example: Coaxial Cables

AEW+2016

All of the fluctuation measurements are limited by

instrumental spectral structure.

Calibration should remove spectral structure

Calibration by the numbers

Measurements

N(N-1)/2 Measured Visibilities

Unknowns

- N Complex Gains
- N(N-1)/2 True Visibilities

Two Kinds of Calibration

Sky-Based

Redundant

Measurements

N(N-1)/2 Measured Visibilities

Unknowns

- N Gains
- N(N-1)/2 True Visibilities assumed to be known

Sky-based calibration errors Exceed the power-spectrum level

Barry+ 2017

Will also limit nominal SKA-low designs.

also AEW+ 2017, Patil+ 2017, Trott+2017

Sky modeling errors are prohibitive for all experiments

Bias = $\{1, 5, 10\} \times 21$ cm Signal

AEW+2016

Two Kinds of Calibration

Sky-Based

Redundant

Measurements

• N(N-1)/2 Measured Visibilities

Unknowns

- N Gains
- · <<N(N-1)/2 True Visibilities</p>

Wieringa 1992, Liu+ 2010, Zheng+ 2014

Redundant Calibration Faces Similar Issues

Non-redundancies introduce calibration errors that also fill in the "window".

Orosz+2018

How do we move foreward?

1. Make sure our signal path is "spectrally smooth".

2. Figure out ways to robustify redundant calibration against non-redundancy and sky-model incompleteness.

We use Electromagnetic Simulations to optimize the spectral performance of HERA's feed and RF chain

AEW+2016, Thyagarajan+ 2016 Fagnoni+ 2016 Fagnoni+ in prep.

Delay Kernel from RF Simulation

Many experiments are switching to RF over fiber to reduce reflections.

Modulate an optical laser in a fiber by the RF signal.

HERA, HIRAX, MWA

How do we move foreward?

1. Make sure our signal path is "spectrally smooth".

2. Figure out ways to robustify calibration against nonredundancy and sky-model incompleteness.

Calibrating with Short Baselines: Can help with all calibration strategies!

Take Aways

- Claimed "Detections" are already here. EDGES -> Exotic physics or new radio sources? We showed that Black holes are a plausible explanation.
- 2. 21cm Fluctuation measurements
 I. Can characterize the first stars and galaxies.
 II. Offer a way to validate EDGEs.
 III. Better foreground separation but instruments much more complicated/difficult to characterize.

3. All existing fluctuation experiments are systematics limited.

- I. Primary hurdle is **instrumental spectral structure**.
- II. Progress is being made in <u>Calibration</u> and <u>Instrument</u> <u>design.</u>