Constraining cosmology and baryonic physics with weak lensing, galaxy clustering, CMB lensing, and their cross-correlations

> Tim Eifler, Arizona Cosmology Lab, University of Arizona

Age of this Talk (45 mins)

and baryonic physics .

6) The Analysis with LSS CMB-

4) Details of baryonic feedback and cooling processes

1) The Beginning: Introduction into WL

systematics

4) Details of baryonic feedback and cooling processes

Age of this Talk (45 mins)

and baryonic physics .

6) The Analysis with LSS CMB-

Weak Lensing

DEFLECTION OF LIGHT RAYS CROSSING THE UNIVERSE, EMITTED BY DISTANT GALAXIES

 Statistical properties of the distortion reflect statistical properties of the projected density field

$$C_{\ell}^{AB} = \int \frac{d\chi}{\chi^2} W_A(\chi) W_B(\chi) P_m(k) = \frac{\ell + 1}{\chi}$$

 Shear power spectrum is a projection of the density power spectrum with redshift dependent weight functions called "lens efficiency"

Age of this Talk (45 mins)

and baryonic physics .

6) The Analysis with LSS CMB-

4) Details of baryonic feedback and cooling processes

Tracers of the density field

clusters, peaks (overdensities), voids (under densities) two-point correlations (galaxy positions, shapes)

three-point correlations,...

Photometric galaxy clustering

3x2pt Analysis (yes...real space) Weak Lensing and Galaxy Clustering

Galaxy Position Map

galaxies x galaxies: angular clustering

Galaxy Shear Map

galaxies x lensing: galaxy-galaxy lensing

lensing x lensing: cosmic shear

3) Dark Ages of

4) Details of baryonic feedback and cooling processes

Age of this Talk (45 mins)

and baryonic physics .

6) The Analysis with LSS CMB-

Shear Calibration

Shear Calibration uncertainties

galaxies

stars

original

Bridle et al. (2008)

Shear Calibration uncertainties

Typical galaxy used for cosmic shear analysis

Typical star Used for finding Convolution kernel

Photo-z uncertainties

Credit: Padmanabhan+ 2007

Photo-z uncertainties

- Measure Fluxes in many different photometric bands
- Collect spectra for representative galaxy sample
- Infer redshifts through mapping these flux measurements to galaxy spectra
- Much less accurate compared to spectroscopic redshifts

Photo-z uncertainties - catastrophic outliers

- Left: Simulated LSST PZ data showing two clear regions of outliers
- fraction -> marginzlization over this recovers outlier-based biases nicely

• Right: We develop an 2-island model that allows for freedom in the amplitude of outlier

Galaxy Intrinsic Alignment

Galaxy Intrinsic Alignment (IA)

- Cosmic shear relies on the idea that galaxies are randomly oriented
- Several effects can cause alignment of galaxies with tidal field
- Two Types of IA: GI and II
- Gl is more severe as a contaminant for cosmic shear

Galaxy Intrinsic Alignment (IA)

- Left shows simulated analysis for LSST Y10
- Data vectors are contaminated with nonlinear/linear alignment model
- Analysis marginalizes over 17 parameters for IA (incl luminosity function)
- Strong biases if unmitigated, significant increase in error bars if marginalized over
- **Useful:** If IA can be controlled at z<1, contamination largely vanishes

- Relation between a galaxy population and the matter field is the main uncertainty in clustering
- Linear relation on large scales, perturbative and HEFT methods on quasi-linear scales
- On small scales, several galaxies within massive halos: requires approximate (halo) models, or expensive sims+emulators
- All models are functions of redshift and galaxy type

HEFT application to DES Y1 data:

Linear approximation fails around k=0.15 Mpc^-1

Pushing to small scales yields increased constraining power

Galaxy Bias

- DESC SRD uses linear galaxy bias with scale cuts at 21 MPC/h
- Left shows the impact of different systematics on LSST Y1, Y3, Y6, Y10
- For these specific (DESC SRD) analysis settings galaxy bias is the most severe systematic affecting 3x2 LSST analyses

Age of this Talk (45 mins)

6) The Analysis with LSS CMB-.

Different Feedback Scenarios

Impact on the matter power spectrum

Impact study: LSST Y10 simulated analysis

Age of this Talk (45 mins)

5) Constraints on cosmology

and baryonic physics

6) The Analysis with LSS CMB-

.

4) Details of baryonic feedback and cooling processes

People involved

Hung-Jin Huang PD 19-22 -> Apple Dev

Jiachuan Xu Grad Student

JIACHUAN XU^D,¹ TIM EIFLER,¹ VIVIAN MIRANDA,^{2,3} XIAO FANG,^{1,4} EVAN SARAIVANOV,³ ELISABETH KRAUSE,^{1,5} Hung-Jin Huang,¹ Karim Benabed,⁶ and Kuniiao Ziiong³

Next version with DES Y3 and Planck PR4 is coming out soon

Modeling baryonic physics in future weak lensing surveys

Hung-Jin Huang,¹* Tim Eifler,^{2,3} Rachel Mandelbaum¹ and Scott Dodelson¹ ¹McWilliams Center for Cosmology, Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, USA ²Steward Observatory/Department of Astronomy, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721, USA ³Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA

2019

Dark Energy Survey Year 1 Results: Constraining Baryonic Physics in the Universe

Huang, TE ++ 2021

Constraining Baryonic Physics with DES Y1 and Planck data - Combining Galaxy Clustering, Weak Lensing, and CMB Lensing

Data Points excluded in DES Y1

- Baryonic effects ightarrowseverely contaminate small scale weak lensing
- All grey shaded data points were excluded from the DES Y1 analysis
- Modeling Baryons ulletallows us to include said data points.

How do we model baryons? - Simulations

Model vector for baryonic scenario "X"

Model vector for DM scenario

Amplitude of PCs (nuisance parameter, marginalized over)

$$\boldsymbol{B}_{x}(\boldsymbol{p}_{\mathrm{co}}) - \boldsymbol{M}(\boldsymbol{p}_{\mathrm{co}}) = \sum_{n=1}^{\mathsf{N}} Q_{n} \mathbf{P} \mathbf{C}_{n}(\boldsymbol{p}_{\mathrm{co}})$$

PCs containing baryonic physics (survey dependent)

How do we model baryons? - Simulations

Model vector for baryonic scenario "X"

Model vector for DM scenario

$B_x(p_{co}) - M(p_c)$

Amplitude of PCs (nuisance parameter, marginalized over)

PCs containing baryonic physics (survey dependent)

$$_{co}) = \sum_{n=1}^{N} Q_n \ \mathbf{PC}_n(\mathbf{p}_{co})$$

2 Games you can play now...

• Game 1 - Cosmology:

• Game 2 - Baryons: constraints on baryonic physics...

• Use info on baryonic physics info to tighten constraints on cosmology...

Add more information on cosmology (consistent experiments) to go after

Game 1: Cosmology - what priors?

DES Y1 3x2: DES Y1 3x2(+baryons): DES Y3 3x2: DES Y3 shear: KiDS 1000 shear:

Game 1: Cosmology

1) Inclusion of baryonic physics with conservative informative priors increases Y1 3x2 constraining power on S8 by ~20%. 2) Planck18 TT did not meet our consistency criterion -> chose Planck EE+BAO to be combined with DES for Game 2

Game 2: Baryonic Physics

- DES Y1 3x2 is in tension with cOWLS T8.7 at 2.1 sigma
- Combined DESY1+ Planck EE+BAO rules out cOWLS T8.7 at 2.8 sigma
- Disclaimer: Precise sigma statements are of course rely on analysis choices
- More data and more sims needed and are underway

Now let's add CMB Lensing - Xu+ 23

light deflected by tidal field of largescale structure

remapping of (primary) CMB anisotropies

CMB lensing affected by different systematics than galaxy shear estimates

Planck 18 × DES Y1 Footprint

- Adding CMB Lensing adds a 3rd field to the mix
- Now 6 2pt-functions, hence 6x2 analysis
- We use DES Y1 and Planck for our measurement
- Fully analytic non-Gaussian covariance that can model 3 different footprints for the different probes.

6x2 DES Y1 + PR3 cosmology results

Probes	S_8		Ω_m
	1D Marg.	MAP	1D Marg.
cosmic shear	$0.771\substack{+0.034\\-0.025}$	0.797	$0.288\substack{+0.048\\-0.084}$
$3{ imes}2$	0.779 ± 0.022	0.792	$0.290\substack{+0.028\\-0.036}$
$c3{\times}2$	0.801 ± 0.045	0.808	$0.267\substack{+0.041\\-0.063}$
6×2	0.799 ± 0.016	0.804	$0.262\substack{+0.022\\-0.025}$
$6 \times 2 + P2:BAO+BBN+SNe$ Ia	0.805 ± 0.016	0.805	0.288 ± 0.012
$6 \times 2 + P3$:Planck EE+lowE	0.813 ± 0.014	0.814	0.3009 ± 0.0090
$6 \times 2 + P2 + P3$	0.817 ± 0.011	0.825	0.3067 ± 0.0059

- CMB Lensing auto and cross-probes are highly complementary to 3x2
- Our 6x2 Planck+DES Y1 is more constraining than 3x2 DES Y3
- Did not combine with Planck TT since tension is too large

6x2 DES Y1+PR3 baryon physics results

- 6x2 prefers higher feedback compared to 3x2 (Bahamas T8.0 or cOWLS T8.0 compared to Bahamas T7.6)
- strengths possible -> more data, stay tuned
- To fit Planck discrepancy you need feedback stronger than cOWLS T8.7

• Combination with priors P2, P3 tighten constraints, clear detection of baryonic physics but wide range of feedback

6x2 DES Y1+PR3 baryon physics results

Preview: DESY3xPR4 (simulated)

• DES Y3 + PR4 shows a significant boost in constraining power - exciting! May translate into 3+ sigma tension with strongest AGN feedback models in sims

Preview: DES Y3 x PR4 (simulated)

Horizon-AGN TNG100 cOWLS-AGN(T8.0) cOWLS-AGN(T8.5) cOWLS-AGN(T8.7) BAHAMAS(T7.8) BAHAMAS(T7.6) BAHAMAS(T8.0) Y1 6×2 (Eagle)

20

- Comparison between DES Y3 + PR3 and DES Y3 + PR4 analysis
- Data vectors are contaminated with two different scenarios (Illustrious and Eagle)

Age of this Talk (45 mins)

and baryonic physics

4) Details of baryonic feedback and cooling processes

6) The future: **Analysis strategies** with LSST, Roman, CMB-S4 et al

Roman Space Telescope

- Roman has a 0.3 square deg wide FoV
- Survey will overlap with LSST
- Wide area survey in the reference design is 2000 deg² only...
- For multi-probe synergies going wider would overlap more with CMB surveys
- Idea of a wide survey with 1 Roman band is being discussed

432 Hubble WFC3/IR pointings

Roman Rubin Synergies

Looking into the future...adding CMB Why stop at 6x2? There's kSZ, tSZ... so many fields to add

Cosmology from weak lensing, galaxy clustering, CMB lensing and tSZ: I. 10×2pt Modelling Methodology

Xiao Fang^{*},^{1,2} Elisabeth Krause,^{2,3} Tim Eifler,² Simone Ferraro,^{4,1} Karim Benabed,⁵ Pranjal R. S.,² Emma Ayçoberry,⁵ Yohan Dubois,⁵ & Vivian Miranda⁶

Cosmology from weak lensing, galaxy clustering, CMB lensing and tSZ: II. Optimizing Roman survey design for CMB cross-correlation science

Tim Eifler^{*1,2}, Xiao Fang^{1,3}, Elisabeth Krause^{1,2}, Christopher M. Hirata^{4,5,6}, Karim Benabed⁷, Simone Ferraro^{8,3}, Vivian Miranda⁹, Pranjal R. S.¹, Emma Ayçoberry⁷, Yohan Dubois⁷

In prep... delayed, my fault...

10x2 analysis Roman + CMB-S4

- Significant increase in FoM when pushing Roman to larger area (true for 3x2, 6x2, 10x2)
- Larger area means 1 band instead of 4 bands -> analyses include larger systematics
- Interestingly, lens=source (1 galaxy sample) idea outperforms the statistically more powerful 2 sample concept

Roman wide survey idea - systematics

- Simulated analyses for different survey areas (survey time is kept fixed)
- Reduce to 1 broad band bands to keep depth and cover more area (fewer bands means systematics danger)
- Even when increasing the observational systematics budget 3x for a Roman 10k survey, the larger area still outperforms the 2k reference survey (yellow vs green)

Idea of a 2 tier survey

TE, Hirata 23 Roman white papers

- Two tier survey idea
- One smaller area (e.g. 1000 deg^2 with 4 bands) for systematics control
- Complemented by a wide tier in just 1 band
- Between 6000-15000
 deg^2 depending on
 depth and band chosen

Summary

- 3x2 DES Y1 prefers low baryonic feedback scenarios at the level of Bahamas T7.6 sims
- Including CMB lensing (6x2 DES Y1 x PR3) prefers medium feedback scenarios at the level of Bahamas T8.0 or cOWLS T8.0
- 3x2 and 6x2 consistent with Illustris/cOWLS T8.5 at ~1-2 sigma, cOWLS T8.7 shows mild ~2+ sigma tension
- DES Y3 + PR4 analysis is running (many upgrades incl. new sims) stay tuned
- Somewhat unrelated: Let's make Roman a wider survey such that we can have more overlap with future CMB experiments!

