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Harmony in the CMB

Simple flat ΛCDM model with 6 parameters 
(Ωcdm,Ωb,ns,As,h,τ) is an excellent fit 
For T, l>30, we have χ2eff=1.06 (PTE 9.6%)

Nolta et al. 08

– 18 –

Fig. 2.— The WMAP 5-year TT power spectrum along with recent results from the ACBAR

(Reichardt et al. 2008, purple), Boomerang (Jones et al. 2006, green), and CBI (Readhead et al.

2004, red) experiments. The other experiments calibrate with WMAP or WMAP’s measurement

of Jupiter (CBI). The red curve is the best-fit ΛCDM model to the WMAP data, which agrees well

with all data sets when extrapolated to higher-!.
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WMAP agrees with low z mass distribution (modulo the bias)
(same for 2dF)

– 22 –

predict significantly different galaxy power spectra (e.g., Blanchard et al. (2003)).

Using only the WMAP data, together with linear theory, we can predict the amplitude
and shape of the matter power spectrum. The band in Figure 6 shows the 68% confidence

interval for the matter power spectrum. Most of the uncertainty in the figure is due to
the uncertainties in Ωmh. The points in the figure show the SDSS Galaxy power spectrum

(Tegmark et al. 2004b) with the amplitude of the fluctuations normalized by the galaxy
lensing measurements and the 2dFGRS data (Cole et al. 2005). The figure shows that the
ΛCDM model, when normalized to observations at z ∼ 1100, accurately predicts the large-

scale properties of the matter distribution in the nearby universe. It also shows that adding
the large-scale structure measurements will reduce uncertainties in cosmological parameters.

Fig. 6.— The prediction for the mass fluctuations measured by galaxy surveys

from the ΛCDM model fit to the WMAP data only. (Left) The predicted power
spectrum (based on the range of parameters consistent with the WMAP-only
parameters) is compared to the mass power spectrum inferred from the SDSS

galaxy power spectrum (Tegmark et al. 2004b) and normalized by weak lensing
measurements (Seljak et al. 2005b). (Right) The predicted power spectrum is

compared to the mass power spectrum inferred from the 2dFGRS galaxy power
spectrum(Cole et al. 2005) with the best fit value for b2dFGRS based on the fit to
the WMAP model. Note that the data points shown are correlated.

When we combine WMAP with large-scale structure observations in subsequent sections,
we consider the combination of WMAP with measurements of the power spectrum from the

two large-scale structure surveys. Since the galaxy power spectrum does not suffer the
optical depth-driven suppression in power seen in the CMB, large scale structure data gives

an independent measure of the normalization of the initial power spectrum (to within the
uncertainty of the galaxy biasing and redshift space distortions) and significantly truncates

the {τ, ωb, As, ns} degeneracy. In addition the galaxy power spectrum shape is determined

Cosmological contrasts... and yet concordance 

Spergel et al.  06
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One standard model
Cosmology now has a standard model and is going through an era of observational 

concordance. The  flat ΛCDM fits all current data (CMB, LSS, SN, WL) with only six 
parameters

The current strong “phenomenological” success means:

The primordial inhomogeneities are mostly adiabatic with a nearly scale 
invariant power spectrum

We have a successful GR based theory of linear perturbations to evolve them

We have a good description of the main components even if we do not know what 
they are

We can now ask various sets of questions:

Ask question within the model

What else can we learn about the components of the model, e.g. neutrino?
Did the Universe really undergo an Inflationary phase? 
What is Dark Energy?
What is Dark Matter?

How did the Universe get reionized?

Explore further the data and look for “anomalies”, i.e. deviations from this 
model
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Outline

Do we live in an Inflationary Universe? How can 
we address this question with coming large 
scale surveys?

What is the nature of Dark Energy? Is there 
really Dark Energy? How to test gravity on 
cosmological scales?
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Inflation was introduced to solve the problems of the “standard Big 
Bang” model like flatness and the horizon problem

Key feature: during an extended period of time, the universe is 
expanding exponentially. Fluctuations are generated during this 
phase

This is achieved by introducing in the matter sector (a) new scalar 
field(s) Φ with a well chosen potential V(Φ)

For a given V(Φ) there are relations between derivatives of V and 
observables like ns , r and dns /dlnk

Testing Inflation is mostly testing these consistency relations

Current data support the simplest predictions of Inflation
Flat Universe
Nearly scale invariant power spectra
ICs are mostly Gaussian

Guth 81, Sato 81, Linde 82, Albrecht & Steinhardt 82
Guth & Pi 82, Starobinsky 82, Mukhanov & Chibisov 81, Hawking 82, Bardeen et al. 83

Linde 05, Lyth & Riotto 99 for reviews

What is Inflation?
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Inflation, non-gaussianity and density peaks

The CMB as we observe it is Gaussian but simplest inflationary models predict small but 
nonzero non-gaussianity (non-linear evolution of the potential)

The statistical analysis of this map supports the simplest Inflation predictions:

Geometry of the universe Flat at ~3% (WMAP 5 + HST)
Power spectrum index nearly scale invariant ns=0.963±0.015 (WMAP5 only)
Limits on Non-Gaussian component to ~0.1% in power

Gaussianity observationally supports Inflation as much as Flatness... so the level of non-
Gaussianity predicted by Inflation has to be looked after too
for Φ → Φ + FNL (Φ2-<Φ2>), simplest models predict FNL ~ O(0.1) (e.g. Salopek & Bond 90, 
Maldacena 2003) but other models also predict higher FNL (~100) so that seeing or not-
seeing primordial NG is important

Current WMAP constraints (from T bispectrum): fNL ≲ O(100) (CL 95%)  and we Can expect 
fNL ≲ O(10) from Planck

– 62 –

Fig. 22.— Normalized one point distribution function of temperature anisotropy,

defined in equation (17), for the template-cleaned Q (left), V (middle) and W
(right) band maps outside the Kp2 cut. The sky maps have been degraded to
Nside = 256 for this figure. The red line shows the Gaussian distribution, which

is an excellent fit to the one point distribution function.

Fig. 23.— Normalized one point distribution function of temperature anisotropy,
defined in equation (17), for the template-corrected V band data maps outside

the Kp0 cut. The sky maps have been degraded to Nside = 16(left), 64(middle)
and 256(right) for this figure. The red line shows the best fit Gaussian, which is

an excellent fit to the one point distribution function.
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Non-Gaussianity and Peak density

Looking again at the CMB as setting the ICs

The abundance of rare peaks at low and high z is strongly 
affected by skewness in the ICs: 

Can we constrain fNL using halo statistics like dN/dM or bias?

So far, qualitative estimates of dN/dM have been made using 
(extended) Press-Schechter (Verde et al. 01, Scoccimarro 04, 
Sefusatti et al. 06)

Simulations are obviously required to properly address the 
effect of fNL on dN/dM (Kang et al. 07, Grossi et al. 07)
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Large Scale structures depends on FNL

Same initial Conditions, different fnl

Slice through a box in a simulation Npart=5123, L=800 Mpc/h
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Since we have been working with the clustering of
peaks in the initial density distribution, the above ex-
pression for the bias applies only to the early-time, La-
grangian bias. Translating these results to late-time, Eu-
lerian bias is straightforward, however. The bias of Eule-
rian halos is simply b = 1+bL : the excess of halos in some
Eulerian volume with overdensity δ is bδ = bLδ + δ. The
first term corresponds to the excess of peaks in the initial
Lagrangian volume, which are advected into the Eulerian
volume. The second term arises because an Eulerian vol-
ume with overdensity δ has δ times more mass than an
average volume, and therefore δ times more peaks.

In summary, local NG generates a scale-dependent cor-
rection to the bias of galaxies and halos, of the form

∆b(k) = 2(b − 1)fNLδc
3Ωm

2a r2
Hk2

(32)

where b here now refers to the Eulerian bias of the tracer
population. In subsequent sections, we show that this
simple expression, despite the underlying assumptions
and approximations in its derivation, matches surpris-
ingly well the halo clustering measured in our numerical
simulations.

III. NUMERICAL SIMULATIONS

We numerically simulate the growth of structure in
nongaussian cosmologies using the adaptive P3M par-
allel N-body code GRACOS

1 [65, 66]. Non-gaussian ini-
tial conditions were generated using the following pro-
cedure. First, we generated a Gaussian random poten-
tial field φ(x) using a power-law power spectrum with a
scalar (density) index ns = 0.96, and normalized so that
σ8 = 0.76 [6] when multiplied by the matter transfer
function. Following Refs. [1, 57, 61], we then computed
the nongaussian potential Φ by adding a quadratic cor-
rection in configuration space,

Φ(x) = φ(x) + fNL(φ2 − 〈φ2〉). (33)

We then multiplied Φ by matter transfer functions in
Fourier space for Ωm = 0.24, ΩΛ = 0.76, and computed
particle displacements and velocities using the Zeldovich
approximation [67].

One immediate drawback to this approach is that, due
to the strong Fourier mode coupling generated by the
fNL term, our results may be affected by the absence
of modes below the fundamental frequency or above the
Nyquist frequency of our simulation volume. All N-body
simulations can cover only a finite dynamic range, and
therefore have zero power outside of their k-space vol-
umes. For Gaussian simulations, this is believed not to

1 http://www.gracos.org

FIG. 1: Slice through simulation outputs at z = 0 gener-
ated with the same Fourier phases but with fNL =−5000,
−500, 0, +500, +5000 respectively from top to bottom. Each
slice is 375 h−1 Mpc wide, and 80 h−1 Mpc high and deep.
We can easily match by eye much of the large scale struc-
ture; for example, an overdense region sits on the left, while
an underdense region (void) falls on the right, in all panels.
Note that for positive fNL, overdense regions are more evolved
and produce more clusters than their Gaussian counterparts,
while underdense regions are less evolved (e.g. grid lines are
still visible). For negative fNL, underdense regions are more
evolved, producing deeper voids, while overdense regions are
less evolved, as illustrated by the grid lines apparent in the
left of the top panel.

be a serious defect, because mode coupling is unimpor-
tant on linear scales, and on nonlinear scales, the mode
coupling generally transfers power to small scales. In our
case, however, the fNL term couples all the modes sam-
pled in our simulation to all the modes absent in our
simulation. We have performed rudimentary estimates
of the magnitude of this effect, by running simulations in
which we high-pass or low-pass filter the fNL correction,
and do not observe significant changes in the overall be-
havior. Strictly speaking, however, it must be borne in
mind that our results apply only for power spectra that
are non-vanishing only over the finite range covered by
our simulation volume.

We have performed several simulations using both
Gaussian and nongaussian initial conditions. For each
Gaussian realization, we construct non-Gaussian realiza-
tions using the same Fourier phases, with various fNL,
e.g. fNL = ±500, ±50, and ±5. We ran simulations from
a starting expansion factor a = 0.02 until the present
time, a = 1, using 5123 particles in a box of sidelength
L = 800h−1 Mpc. For these parameters, each particle

fNL=-5000

fNL=-500

fNL = 0

fNL=5000

fNL=500

Under-dense 
regions evolution 
decrease with fnl

Over-Dense 
regions evolution 
increase with fnl
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One cluster at a time...

fNL=+5000
M = 1.2 1016 M⊙

fNL=0
M = 5.1 1015 M⊙

fNL=+500
M = 5.9 1015 M⊙

fNL=-500
M = 4.3 1015 M⊙

Most massive cluster in a 5123 simulation
For small enough fnl, same peaks arise, but with different 

heights (implying different masses) 
Can we extend to any cluster?
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Measured Halo Mass functions
6

FIG. 2: Mass functions measured from simulations with vari-
ous fNL and identical phases (3 sets of initial conditions were
used for each fNL). The top panel shows the mass function
as well as the Gaussian fitting formula (dashed yellow line)
from Warren et al. [68]. The bottom panel shows the ratio
between the measured fNL = 0 Gaussian mass functions and
the respective non-Gaussian ones.

has a mass mp = 2.52 × 1011h−1M", so that clusters
with masses exceeding M > 1014h−1M" are resolved
with N >∼ 400 particles. Since we are interested mainly in
the masses and positions of cluster-sized halos, and not
their internal structure, we have not used high force res-
olution: we employ a Plummer softening length l of 0.2
times the mean interparticle spacing. We have checked
that using higher force resolution (l half as large) does
not appreciably change the mass function. All simula-
tions were performed at the Sunnyvale cluster at CITA;
depending upon the value of fNL, the simulations com-
pleted in 2-3 hours each on typically 8-10 nodes. As a
consistency check, we have also run a small number of
10243 particle simulations with the same particle mass
and force softening as above, but with twice the box size.
These larger runs typically completed in 18-20 hours on
64 nodes. In Figure 1, we plot slices through our simula-
tion volume at redshift z = 0, and the effects of varying
fNL are readily apparent. Large positive fNL accelerates
the evolution of overdense regions and retards the evolu-
tion of underdense regions, while large negative fNL has
precisely the opposite effect.

IV. THE HALO MASS FUNCTION

We constructed late-time halo catalogues at redshifts
z = 1, 0.5, and 0 using the friends-of-friends group finder
[69], with linking length b = 0.2. For Gaussian simu-
lations, the halo mass function constructed this way has
been extensively calibrated [68, 70]. Resulting mass func-
tions are plotted in Figure 2.

A. A new fitting formula

Having measured the halo mass function, we next
would like to construct a fitting function along the lines
of those used for Gaussian simulations [68, 70]. As men-
tioned above, previous techniques for estimating the non-
gaussian mass function have been based upon the Press-
Schechter [58] ansatz. Given that the Press-Schechter
mass function fails to match the halo mass function to
within an order of magnitude over the mass and redshift
ranges of interest to us [68], and given the lack of any
physical basis to the Press-Schechter ansatz [64, 71], we
have instead adopted an alternative approach which we
describe next.

We start by noting that the halo mass function dn/dM
has been precisely calibrated for Gaussian cosmologies.
Consider a Gaussian realization of the density field,
which at late times evolves to produce halos with mass
function dn/dM0. As we slowly vary fNL away from zero,
the structures forming at late times also slowly vary (c.f.
Figure 1), producing a different mass spectrum dn/dMf .
If we vary fNL slowly enough, we can track the change
in mass and position for individual halos: i.e., for each
halo of mass M0 for fNL = 0, we can uniquely identify a
corresponding halo of mass Mf for fNL #= 0, as long as
|fNL| is sufficiently small. Since we know precisely the
number of halos as a function of M0, if we can determine
the mapping M0 → Mf , we will then have an estimate
of the non-Gaussian mass function dn/dMf via

dn

dMf
=

∫

dM0
dn

dM0

dP

dMf
(M0), (34)

where dP/dMf (M0) is the probability distribution that a
Gaussian halo of mass M0 maps to a non-Gaussian halo of
mass Mf . Note that the probability distribution function
dP/dMf need not integrate to unity,

∫

dMf dP/dMf #= 1
in general, since the total number of halos is not con-
served: halos can merge or split as fNL is varied.

The next step is to determine the probability distribu-
tion dP/dMf (M0), by matching halos between Gaussian
and non-Gaussian simulations. We match halos by re-
quiring that matching pairs have significantly overlap-
ping Lagrangian volumes; i.e. by requiring that halos
have many particles in common, where particles are la-
beled by their Lagrangian coordinates in the initial con-
ditions. For each halo Mf in a non-Gaussian run, we
loop over the halo’s particles and identify which Gaus-
sian halos own those particles in the run with fNL = 0.
The Gaussian halo owning the largest fraction (exceed-
ing 1/3) of the particles is then identified as the match
for non-Gaussian halo Mf . Each Gaussian halo M0 can
have one, several, or zero matching non-Gaussian halos,
depending on fNL. By stacking Gaussian halos of similar
mass M0, we can determine dP/dMf (M0).

Examples of the probability distribution are shown in
Figure 4, and the mean and variance of the PDF are
plotted in Figure 5. The behavior of the mean 〈Mf 〉 and
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Measuring fnl with dN/dM?

We developed a simple but accurate enough prescription to compute the mass 
function as a function of cosmological parameters and fNL (More later if you 
are interested)

SPT like survey, ie 4000 sq. deg up to z=1.5
~7000 clusters with M>2 104 M⊙

|FNL|~< 100
Not really a nuisance for w 

-1.2 -1.1 -1 -0.9 -0.8

w

-200

-100

0

100

200

f N
L EPS

N-body simulations
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NG parametrized as

where Φ is a gaussian field

It follows that 

Since Φ is a Gaussian field, we know the joint statistics  
of Φ, ∇Φ and ∇2Φ and using poisson equation (∇2Φ ∝δ) we 
can write down the pdf of δNG as a function of δ. That 
leads to e.g. 

Near peaks, |∇Φ|2 is negligible and we get 

Halo clustering: 
Analytical estimates I

∇2ΦNG = ∇2φ+2 fNL
[
φ∇2φ+ |∇φ|2

]

S3 =
〈
δ2

NG
〉

σ4 = 12 fNL
〈φδ〉
σ2

δNG ! δ(1+2 fNLφ)

Φ = φ+ fNL(φ2−〈φ2〉)
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With this formula, 

it is easy to compute the peak-peak correlation function (δ>δcrit) (or 

the peak density) (à la BBKS)

Or more interestingly the bias of the peak-peak correlation (a la 
BBKS)

We obtain the following scale dependent bias

This result differs from the usual constant linear bias... but 
derivation of this result generally assumes locality of the 
“galaxy” formation process... whereas here our NG type is non 
local for  δ . If we were to consider a NG of the type δNG = δ+ fNLδ2, 
then we would not find any scale dependent bias

Halo clustering: 
Analytical estimates II

δNG ! δ(1+2 fNLφ)

ξpk = b2
L
[
ξδδ +4 fNLδcritξφδ

]

Ppk(k) = b2
LP(k)

[
1+4 fNLδcrit

3Ωm

2ar2
Hk2

]

∆b(k) = 2bL fNLδcrit
3Ωm

2ar2
Hk2
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Scale-dependent bias

Strong scale dependance in the linear regime
Good agreement with sims and analytics
5123 (10243) simulations with box size 800 (1600) Mpc/h
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the dotted lines represent the MVJ fitting function. The
results clearly indicate that, while the EPS and the MVJ
functions mutually agree2, they both overestimate the
effects of nongaussianity as found by our simulations, at
a level typically <∼ 100% although dependent upon mass
and redshift.

This result appears to disagree with the work of
Kang et al. [59], who find a large discrepancy between
EPS/MVJ and their simulations’ mass function, in the
sense that their simulations show a much larger effect of
nongaussianity than predicted by the EPS type formal-
ism. However, as noted by these authors, their simula-
tions used a rather small number of particles (∼ 1283) in
a volume nearly 20× smaller than ours, so it is unclear
how well they probe the statistics of the rare objects of
interest to us. In contrast, Grossi et al. [60] have found
very good agreement between the MVJ formula and their
simulations’ results. While our fitting function is in mild
disagreement with the MVJ fitting formula, it is unclear
whether our simulations are in disagreement with the
simulations of Grossi et al. [60]. Their simulations used a
somewhat different cosmological model (higher σ8) than
ours, they have plotted cumulative rather than differen-
tial mass functions, and of course the error bars in both
their plots and ours are considerable.

In summary, we conclude that our simple fitting func-
tion appears consistent with the measured mass function
from our simulations to within ∼ 10% over the entire
range of masses and redshifts that we consider. Since
this is the level of precision that various N-body codes
agree with each other in the mass function [72], we have
not attempted to achieve better agreement. EPS-like fit-
ting formulae, such as the model of MVJ [57], appear to
overestimate the effects of nongaussianity. The level of
discrepancy increases with increasing mass and redshift.

V. HALO CLUSTERING

Beyond one-point statistics like the halo mass function,
N-body simulations also allow us to compute higher or-
der statistics like the correlation function or its Fourier
transform, the power spectrum. As shown in Sec. II B,
we expect nongaussianity to produce pronounced effects
on the halo power spectrum, specifically in the form of
scale-dependent halo bias on large scales. This may seem
somewhat surprising, due to very general arguments pre-
viously given in the literature that galaxy bias is expected
to be independent of scale in the linear regime [76–78].
We can summarize the argument as follows. Suppose
that the halo overdensity is some deterministic function

2 The agreement between the EPS and MVJ is even better when
an alternative expression is used in for fNL > 0, as pointed
out Grossi et al. [60]; see their Eq. (4). We have not used this
correction in our Fig. 6.

FIG. 7: Cross-power spectra for various fNL. The upper panel
displays Phδ(k), measured in our simulations at z = 1 for ha-
los of mass 1.6×1013M! < M < 3.2×1013M!. The solid line
corresponds to the theoretical prediction for Pδδ with a fitted
bias b0=3.25. We see a strongly scale-dependant correction to
the bias for fNL "= 0, increasing towards small k (large scales).
The bottom panel displays the ratio b(k, fNL)/b(k, fNL = 0).
The errors are computed from the scatter amongst our simu-
lations and within the bins. Triangles correspond to our large
(10243 particle) simulations whereas diamonds correspond to
our smaller (5123 particle) simulations. The dotted lines cor-
respond to our fit for the bias dependence on fNL defined in
Eq. (46).

of the local matter overdensity, δh = F (δ). On large
scales, where |δ| # 1, we can Taylor expand this func-
tion, δh = a + b δ + . . .. Keeping only the lowest order
terms and requiring that 〈δh〉 = 0 then gives δh = b δ,
which is linear deterministic bias. The key assumption
in this argument was locality; i.e. that the halo abun-
dance is determined entirely by the local matter density.
N-body simulations with Gaussian initial conditions have
confirmed that halo bias tends to a constant on large
scales well in the linear regime.

Once we allow for primordial nongaussianity, however,
the above argument need not hold. For example, in this
paper we have considered NG of the form fNLΦ2, and
note that the gravitational potential is a nonlocal quan-
tity. Hence the locality-based argument above does not
apply for this form of nongaussianity, and our derived
scale-dependence of the bias is not surprising. The spe-
cific form we have derived is particular to the quadratic,
local form of NG that we have assumed, however we ex-
pect any NG that couples density modes with potential
modes will in general lead to scale-dependent bias. On
the other hand, nongaussianity of the form fNLδ2 does
not lead to scale-dependent bias.

In order to test our prediction for the scale dependence
of bias, we have computed halo bias in our N-body simu-
lations by taking the ratio of the matter power spectrum
Pδδ and the halo-matter cross spectrum Phδ = 〈δ∗hδ〉. We

∆b(k) = 2bL fNLδcrit
3Ωm

2ar2
Hk2

Halo-Matter cross 
power spectrum for 

1.6 1013<M<3.2 1013 M⊙ 
b~2.3

bias ratio
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Constraints from P(k): 
Galaxy surveys, BAO, and ISW

To measure the large scale bias offers a new opportunity to 
measure fnl

This effect should be easy to measure since there is a very 
specific k and z dependance on large scales

A LRG survey (bl=2, n=4. 10-5 (h-1Mpc)-3) out to z=0.7 could 
give fnl ≤5 fsky-1/2

This effect will also shift the first BAO peak at k=0.07h/
Mpc by 0.4% at z=1 for fnl=100, which would lead to a 1~2% 
bias in w if unaccounted for

It also opens the (unexplored yet) possibility to use void 
statistics to measure fnl. Can we do that with current (lyα?) 

sdss data?

Results studied and confirmed by various groups 
(Matarrese & Verde 07, Afshordi & Tolley 07, Slosar et al. 
07, Desjacques, Seljak & Iliev 08)
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First constraints

Most powerful currently are SDSS photometric quasars 
and LRGs

Slosar et al. 07  Finds  -29<fnl<69 (95% CL)
WMAP5 Temperature bispectrum : -9<fnl<111 (95% CL)
Together : -1<fnl<70 (95% CL)

Exciting and simple follow-up idea by seljak 08
By using different populations with different bias, you 
can measure the relative bias and not the absolute bias. 
This avoids cosmic variance.
Prospects for next generation LSS are FNL ~1 (Euclid, 
Adept) or ~8 for BOSS

Slosar et al. 07
seljak 08, 09
McDonald & Seljak 08
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Summary

We proposed a new and measurable observational signature 
of primordial non-gaussianity (constant fNL type)

We proposed a simple and accurate fitting formula for the 
halo mass function as a function of fnl

We showed how to calculate peak statistics for fNL 

cosmologies and in particular the bias shape

We tested our predictions against N-body simulations and 
fund a remarkable agreement

As a consequence, the measure of the large scale halo biases 
should lead to fNL constraints superior to Planck, i.e. fNL< 
O(1)

All those conclusions rely on one type of “local NG”, what 
happens if we take into account fnl(k) for example remains to 
be studied

18



Outline

Do we live in an Inflationary Universe?

How can we address this question with coming 
large scale surveys?

What is the nature of Dark Energy? Is there 
really Dark Energy? 

How to test gravity on cosmological scales?
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Dark Energy: the evidences
3

0.0 0.5 1.0

0.0

0.5

1.0

1.5

2.0

FlatBAO

CMB

SNe

No Big Bang

FIG. 1: Observational constraints in the (Ωm, ΩΛ) plane: joint constraints from supernovae (SNe), baryon
acoustic oscillations (BAO) and CMB (from [4]).

magnitude smaller than each of the terms.1 It is possible that the quantum vacuum energy is much
smaller than the Planck scale. But even if we set it to the lowest possible SUSY scale, Esusy ∼ 1TeV,
arguing that at higher energies vacuum energy exactly cancels due to supersymmetry, the required
cancellation is still about 60 orders of magnitude.

A reasonable attitude towards this open problem is the hope that quantum gravity will explain
this cancellation. But then it is much more likely that we shall obtain directly Λvac + Λ = 0 and
not Λvac + Λ " 24πGρm(t0). This unexpected observational result leads to a second problem, the
coincidence problem: given that

ρΛ =
Λeff

8πG
= constant , while ρm ∝ (1 + z)3 , (8)

why is ρΛ of the order of the present matter density ρm(t0)? It was completely negligible in most
of the past and will entirely dominate in the future.

These problems prompted cosmologists to look for other explanation of the observed accelerated
expansion. Instead of a cosmological constant, one may introduce a scalar field or some other
contribution to the energy-momentum tensor which has an equation of state w < −1/3. Such a
component is called ‘dark energy’. So far, no consistent model of dark energy has been proposed
which can yield a convincing or natural explanation of either of these problems (see, e.g. [10]).

Alternatively, it is possible that there is no dark energy field, but instead the late-time ac-
celeration is a signal of a gravitational effect. Within the framework of general relativity, this
requires that the impact of inhomogeneities somehow acts to produce acceleration, or the appear-
ance of acceleration (within a Friedman-Lemâıtre interpretation). A non-Copernican possibility
is the Tolman-Bondi–Lemâıtre model [5]. Another (Copernican) possibility is that the ‘backre-
action’ of inhomogeneities on the background, treated via nonlinear averaging, produces effective
acceleration [11].

A more radical version is the ‘dark gravity’ approach, the idea that gravity itself is weakened
on large-scales, i.e., that there is an “infrared” modification to general relativity that accounts for

1 In quantum field theory we actually have to add to the cut-off term Λvac ! E4
c /M2

pl the unmeasurable ‘bare’
cosmological constant. In this sense, the cosmological constant problem is a fine tuning between the unobservable
‘bare’ cosmological constant and the term coming from the cut-off scale.
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Fig. 11.— Constraint on the time-independent (constant) dark energy equation of state, w, and the present-day dark energy density, ΩΛ,
assuming a flat universe, Ωk = 0 (§ 5.2). Note that we have imposed a prior on w, w > −2.5. (Left) Joint two-dimensional marginalized
distribution of w and Ωk. The contours show the 68% and 95% CL. The WMAP-only constraint (light blue) is compared with WMAP+HST
(gray), WMAP+BAO (red), WMAP+SN (dark blue), and WMAP+BAO+SN (purple). This figure shows how powerful a combination
of the WMAP data and the current SN data is for constraining w. (Middle) One-dimensional marginalized constraint on w for a flat
universe from WMAP+HST (gray), WMAP+BAO (red), and WMAP+SN (dark blue). The WMAP+BAO+SN result (not shown) is
essentially the same as WMAP+SN. (Right) One-dimensional marginalized constraints on ΩΛ for a flat universe from WMAP+HST (gray),
WMAP+BAO (red), and WMAP+SN (dark blue). The WMAP+BAO+SN result (not shown) is essentially the same as WMAP+SN.
See Fig. 12 for the constraints on w for non-flat universes. Note that neither BAO nor SN alone is able to constrain w: they need the
WMAP data for lifting the degeneracy. Note also that BAO+SN is unable to lift the degeneracy either, as BAO needs the sound horizon
size measured by the WMAP data.

Fig. 12.— Joint two-dimensional marginalized constraint on the time-independent (constant) dark energy equation of state, w, and the
curvature parameter, Ωk (§ 5.3). Note that we have imposed a prior on w, w > −2.5. The contours show the 68% and 95% CL. (Left)
The WMAP-only constraint (light blue; 95% CL) compared with WMAP+BAO+SN (purple; 68% and 95% CL). This figure shows how
powerful the extra distance information from BAO and SN is for constraining Ωk and w simultaneously. (Middle) A blow-up of the left
panel, showing WMAP+HST (gray), WMAP+BAO (red), WMAP+SN (dark blue), and WMAP+BAO+SN (purple). This figure shows
that we need both BAO and SN to constrain Ωk and w simultaneously: WMAP+BAO fixes Ωk, and WMAP+SN fixes w. (Right) The
same as the middle panel, but with the BAO prior re-weighted by a weaker BAO prior from the SDSS LRG sample (Eisenstein et al.
2005). The BAO data used in the other panels combine the SDSS main and LRG, as well as the 2dFGRS data (Percival et al. 2007). The
constraints from these are similar, and thus our results are not sensitive to the exact form of the BAO data sets. Note that neither BAO
nor SN alone is able to constrain w or Ωk: they need the WMAP data for lifting the degeneracy. Note also that BAO+SN is unable to lift
the degeneracy either, as BAO needs the sound horizon size measured by the WMAP data.

that is tilted with respect to the WMAP+BAO line.
The WMAP+BAO and WMAP+SN lines intersect
at Ωk ∼ 0 and w ∼ −1, and the combined con-
straints are −0.0179 < Ωk < 0.0081 (95% CL) and
−0.14 < 1 + w < 0.12 (95% CL).46 It is remarkable
that the limit on Ωk is as good as that for a vacuum
energy model, −0.0178 < Ωk < 0.0066 (95% CL). This
is because the BAO and SN yield constraints on Ωk and
w that are complementary to each other, breaking the
degeneracy effectively.

46 The 68% limits are Ωk = −0.0049+0.0066
−0.0064 and w =

−1.006+0.067
−0.068 (WMAP+BAO+SN).

These limits give the lower bounds to the curvature
radii of the observable universe as Rcurv > 33 h−1Gpc
and Rcurv > 22 h−1Gpc for negatively and positively
curved universes, respectively.

Is the apparent “tension” between the WMAP+BAO
limit and the WMAP+SN limit in Fig. 12 the signa-
ture of new physics? We have checked this by the BAO
distance scale out to z = 0.35 from the SDSS LRG sam-
ple, obtained by Eisenstein et al. (2005), instead of the
z = 0.2 and z = 0.35 constraints based on the combi-
nation of SDSS LRGs with the SDSS main sample and
2dFGRS (Percival et al. 2007). While is it not an inde-
pendent check, it does provide some measurement of the

Komatsu et al. 08

Free Ωk

Ωk =0
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learning about Dark Energy

Evidences for Dark Energy are solid and diverse

Geometry (SN, BAO, peaks of the CMB)
Growth of perturbations (Galaxy surveys, Cluster 
counts, WL) 

But theoretical interpretation is more difficult, i.e. new 
physics

is DE a new “substance”, e.g. a cosmological constant, 
or a quintessence field, ...?
Is it a breakdown of gravity on cosmological scales? Is 
it a manifestation of extra-dimensions (DGP) or more 
complex metric theory like f(R) theories?
Can we distinguish both? 

It will require both geometry and growth... but it is 
not theoretically granted at linear order (e.g. 
Bertschinger & Zukin 08)
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Weak-gravitational lensing

courtesy of S. Colombi, IAP
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Cosmic shear holds its promises 
14 L. Fu et al.: Very weak lensing in the CFHTLS Wide
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Fig. 12. Left panel: Comparison (1, 2, 3σ) between our results (bold lines) and the 100 square degree survey (B07,
filled contours), using ξE in both cases. The redshift distribution is fitted in the range of [0.2; 1.5] to be consistent with
B07. Right panel: Comparison (1, 2σ) between WMAP3 (green contours, Spergel et al. 2007) and our 〈M2

ap〉-results
between 2 and 230 arc minutes (purple). The combined contours of WMAP3 and CFHTLS Wide are shown in orange.

In the right panel of Fig. 10 the results for small and
large scales are shown. By using only small scales we ob-
tain tighter constraints than by using only large scales, as
the signal-to-noise ratio is higher. Using the aperture-mass
dispersion, the constraints derived from the three angular
ranges are in very good agreement, with all mean values
within 1σ:

σ8(Ωm/0.25)0.66 =0.780 ± 0.044 for 2′ < θ < 35′;

σ8(Ωm/0.25)0.54 =0.780 ± 0.060 for 35′ < θ < 230′;

σ8(Ωm/0.25)0.53 =0.837 ± 0.084 for 85′ < θ < 230′.

These results are stable to changes in the smallest an-
gular scale used. For example, σ8 changes by half a percent
when only scales larger than 4 arc minutes are used.

We checked that these constraints are not sensitive to
possible systematics on angular scales between 50 and 130
arc minutes, where the B-mode shows a significant bump.
We fit cosmological parameters using scales with 2′ < θ <
50′ plus 130′ < θ < 230′, and found the same results for
Ωm and σ8. On the other hand, fitting only the affected
scales, 50′ < θ < 130′, we get σ8 = 0.840 ± 0.063 for
Ωm = 0.25, which is consistent with the results from other
scales.

6.5. Comparison with other data sets

Our results on cosmological parameters are in very good
agreement with the most recent cosmic shear analysis
which combined the first CFHTLS Wide data release,
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Fig. 13. Comparison (1, 2σ) between WMAP3 (green
contours, Spergel et al. 2007) and our 〈M2

ap〉-results in lin-
ear scale only (85′–230′, purple). The combined contours
of WMAP3 and CFHTLS Wide are shown in orange.

the RCS, the VIRMOS-Descart and the GaBoDS sur-
veys (the ‘100 square degree survey’, B07). In order
to compare the two results we construct a new Wide
n(z) histogram that has a consistent redshift distribution.
Following B07, we only use CFHTLS Deep galaxies with

L. Fu et al. 07

CFHTLS current analysis: 57 square degree (3 times more 
already observed and now being analyzed), down to a 
magnitude i’=24.5
We are now able to measure weak-lensing in the linear 

regime, i.e. from 1’ up to 4 Deg here
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fix the scale θ0 to 1 arc minute, and further set ξGI = 0
on scales larger than 1 degree.

We perform a combined likelihood analysis using the
six cosmological parameters as described in Sect. 6.2 and
the GI amplitude A. The sum ξE+ξGI is fitted to the data.
Since the 7D-likelihood analysis is very time-consuming,
we use the marginalised 2σ likelihood-region from the pure
lensing analysis (Sect. 6.3) as a flat prior and do not con-
sider models outside this region. The marginalised result
on A is consistent with zero. We find for the amplitude A
in units of [10−7h/Mpc arcmin],

A = 2.2+3.8
−4.6 for 1′ < θ < 230′,

where the error indicates the 68% confidence region.
Figure 14 shows there is no significant signal detected at
any scales. The positive (negative) limit from all scales
imply a +32% (-13%) contamination of the total signal
by GI at one arc minute.

Although the confidence region for the constrained GI
amplitude is large it favours positive correlations, whereas
from theory we would expect the GI signal to be negative
(Hirata & Seljak 2004). As a consistency check we used a
cosmology prior given by the marginalised 1σ likelihood
region from a pure lensing analysis of the large scale re-
sults with θ > 60 arc minutes. The model ξE + ξGI is then
fitted on scales with θ < 60 arc minutes. The resulting
marginalised likelihood for A favours negative GI models
but is still consistent with zero. This ansatz gives a high
weight to the large-scale cosmic shear signal, and any sys-
tematics still present will influence the result. The large
scale increase in the measured star-galaxy cross correla-
tion shown in Fig. 7 highlights this concern. As we can-
not currently distinguish between GI and other possible
systematic effects we can only conclude from our simple
analysis that we find no evidence for a non-zero GI signal.

If our galaxy sample is strongly dominated by high-
redshift spiral galaxies, then the GI signal may be con-
siderably weakened, as one can anticipate from the mor-
phological analysis of Mandelbaum et al. (2006). We do
not have enough colour data to explore in detail the spec-
tral/morphological types of the galaxies used in this work.
However, Zucca et al. (2006) pointed out that about 80%
of the VVDS spectroscopic galaxy sample up to i′AB = 24
is composed of spiral-like galaxies. It is then possible that
the fraction of spirals is much higher than elliptical galax-
ies in the population we are sampling with cosmic shear. If
so, it would reduce the contamination to a very small effec-
tive contribution (Heymans et al. 2006b). A more detailed
investigation of the shear-shape analysis using photomet-
ric redshifts and spectrophotometric information of galax-
ies is therefore needed and will be discussed in a forthcom-
ing paper.

8. Summary and conclusions

We have presented the weak lensing analysis of the
CFHTLS T0003 Wide data. The survey covers 57 deg2,
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Fig. 14. The measured ξE and ξB (open symbols and
error bars) with the lensing-only best-fit curve (solid blue
line) and the allowed fractional ±1σ-contribution of ξGI

to the total signal (shaded cyan region).

about two times the size of the previous analysis by
Hoekstra et al. (2006), and includes a new independent
field W2.

The galaxy shape measurements of a homogeneous
sample of two million galaxies down to i′AB = 24.5 have
been validated using the STEP1 and STEP2 simulations
(Heymans et al. 2006a; Massey et al. 2007b). The top-
hat shear variance, aperture-mass dispersion and the two-
point shear correlation functions show a significant signal,
with no galaxy-star correlations, from 1 arc minute up to
4 degrees. The B-mode is consistent with zero on most
of these angular scales. It shows, however, a statistically
significant feature in the range 50-130 arc minutes, of un-
known origin. We have verified that this feature does not
influence the cosmological results.

The two-point statistics show all expected properties of
a cosmic shear signal up to angular scales 10 times larger
than the largest non-linear scales of the survey. Hence,
for the first time the cosmic shear signal can be explored
with enough confidence to physical scales of about 85 Mpc
assuming lenses at z = 0.5, for a flat Universe with h =
0.72 and Ωm = 0.27. This is by far the widest scale ever
probed by weak lensing at that depth.

The weak lensing Wide data and the photometric red-
shifts sample of Ilbert et al. (2006) are both part of the
CFHTLS T0003 release and cover common fields. The
redshift distribution of the Wide data can therefore be
calibrated using these photometric redshifts, assuming
with a high confidence level that the two galaxy popu-
lations are similar. Taking into account the selection cri-
teria of the weak lensing sample, we find a mean redshift of
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A first (simplistic) approach
ADDING A YUKAWA TERM TO THE USUAL NEWTONIAN POTENTIAL
“Generic” extension to a linearized metric theory of gravity
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Zhytnikov & Nester 94 

...
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generic feature of such linearized extension to GR is to
modify the standard Poisson equation relating the den-
sity field to the gravitational potential. In turn, Uzan
and Bernardeau [55] considered an alternative modifi-
cation to the Poisson equation that encompasses DGP
theories. Shirata et al. [56] and Sealfon et al. [57] con-
strained the Yukawa type extension to GR using galaxy
clustering measurements. Note that Sealfon et al. [57]
also introduced a power-law extension to gravity. Such
modifications to the Poisson equation were later studied
using numerical simulations [45, 47].

Our work is an extension to the latter works [45, 47,
54, 55, 56, 57]. In particular, we use the latest weak
gravitational lensing and clustering data to test gravity
on Mpc scales at low redshift. The two alternate the-
ories of gravity we constrain are introduced in Sec. II,
before detailing their phenomenology. We then describe
our data-sets and methodology in Sec. III before present-
ing and discussing our results in Sec. IV.

II. MODIFIED THEORIES OF GRAVITY AND
CONSTRAINT METHODS

A. Theoretical motivations

To allow for deviations from general relativity opens
up many possibilities and a wide range of gravity the-
ories that we cannot explore exhaustively. We restrict
ourselves to a few somewhat phenomenological models
that offer both a physical motivation and observationaly
tractable cosmological implications.

We will consider two different models that we intro-
duce below: the Yukawa and the Uzan-Bernardeau type
models.

As White and Kochanek [54], we follow Zhytnikov and
Nester [53] who within well defined postulates presents
some general arguments regarding the shape of a lin-
earized metric theory of gravitation. These postu-
lates comprise post-Newtonian slow motion extension
((v/c)2 ! 1) and weak gravitational field regime relevant
to the scale we consider in this work. Their description
includes forces mediated by massless or massive scalar
and tensor modes. The metric reduces to

g00 = (−1 + 2Φ) (1)

gij = (+1 + 2Φ)δij (2)

where the potential Φ is given by

Φ(r) = (1 − α)Φ(r, 0) + αΦ(r, m) (3)

Φ(r, m) = G

∫

ρ(r′)d3r′

|r − r′|
e−m|r−r

′|. (4)

Thus, to the usual Newtonian potential Φ(r, 0) a Yukawa
type potential Φ(r, m) is added corresponding to propa-
gating massive modes.

Considering the evolution of over-density, δ(r, t) or its
Fourier transform, δ̃(k, t) the standard linear theory of

perturbations leads to the Poisson equation relating the
gravitational potential to the over-density. The Pois-
son equation writes in comoving coordinates and Fourier
space [58]

Φ̃(k, a) = −
3

2

H2
0Ωm0

a

δ̃(k, t)

k2
f(k, a) (5)

where a is the scale factor, H0 is the Hubble constant,
Ωm0 the present matter density. f is a deterministic func-
tion equal to 1 for the standard gravity. It can easily be
shown that the inclusion of a Yukawa type potential as
in Eq. 4 leads to

fY uk(k) ≡ f(k) = 1 − α
1

1 +
(

k
a m

)2 . (6)

As such, exploring alternative theories of gravity will be
equivalent for us to test the Poisson equation.

Observational constraints on similar models (but with
slightly different notations) coming from galaxy surveys
[56, 57], as well as using also their non-linear evolution us-
ing N-body simulations [45, 47], have already been stud-
ied. Note that our notation matches that of White and
Kochanek [54] and corresponds to that of Shirata et al.
[56] and Sealfon et al. [57] with (α → −α, λ → −1/m)
and [45] with (α → −α, λ → −1/rs).

Another set of models captures, in the context of su-
perstring theories, some brane induced phenomenology.
In such a scenario, a generic feature seems to be the exis-
tence of two scales below/above which standard gravity
is altered [59, 60, 61, 62]. The smaller scale (of order a
millimeter or less), irrelevant to our measurements, cor-
responds to the existence of Kaluza-Klein gravitons. On
the other hand, above the branes separation scale, we
also expect gravity to be altered. Since this scale is ex-
ponentially larger than the previous one, it becomes cos-
mological. The use of large scale structures as a probe
of this form of deviation from standard gravity as been
advocated by [29, 55, 63], who include the model of [62].
Uzan and Bernardeau [55] focus in particular on weak
gravitational lensing, as such we will follow their work
more closely. They describe in real space the violation of
Newton’s law above a given physical scale, rs, as a mul-
tiplicative function to the standard Newtonian potential,
Φ(r, 0),

Φ(r) = Φ(r, 0)
1

1 + r
rs

(7)

so that on small scales, r ! rs, we recover the usual
Newtonian gravity. As before, this translates into a mod-
ification to the Poisson equation with a multiplicative
function, fUB [47, 55]

fUB(k, a, rs) ≡ f(k, a) (8)

= krs

2a

[

−2 sin(krs/a)

∫ ∞

krs/a

cos(t)

t
dt

+ cos(krs/a)

(

π − 2

∫ krs/a

0

sin(t)

t
dt

)]

. (9)
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ing N-body simulations [45, 47], have already been stud-
ied. Note that our notation matches that of White and
Kochanek [54] and corresponds to that of Shirata et al.
[56] and Sealfon et al. [57] with (α → −α, λ → −1/m)
and [45] with (α → −α, λ → −1/rs).

Another set of models captures, in the context of su-
perstring theories, some brane induced phenomenology.
In such a scenario, a generic feature seems to be the exis-
tence of two scales below/above which standard gravity
is altered [59, 60, 61, 62]. The smaller scale (of order a
millimeter or less), irrelevant to our measurements, cor-
responds to the existence of Kaluza-Klein gravitons. On
the other hand, above the branes separation scale, we
also expect gravity to be altered. Since this scale is ex-
ponentially larger than the previous one, it becomes cos-
mological. The use of large scale structures as a probe
of this form of deviation from standard gravity as been
advocated by [29, 55, 63], who include the model of [62].
Uzan and Bernardeau [55] focus in particular on weak
gravitational lensing, as such we will follow their work
more closely. They describe in real space the violation of
Newton’s law above a given physical scale, rs, as a mul-
tiplicative function to the standard Newtonian potential,
Φ(r, 0),

Φ(r) = Φ(r, 0)
1

1 + r
rs

(7)

so that on small scales, r ! rs, we recover the usual
Newtonian gravity. As before, this translates into a mod-
ification to the Poisson equation with a multiplicative
function, fUB [47, 55]

fUB(k, a, rs) ≡ f(k, a) (8)

= krs
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generic feature of such linearized extension to GR is to
modify the standard Poisson equation relating the den-
sity field to the gravitational potential. In turn, Uzan
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FIG. 1: Ratio of linear growth factor of modified gravity versus ΛCDM at z = 0. From left to right, the Yukawa model and
the UB model.

i′ band was used for this analysis. The area used to pro-
duce this data-set is about twice larger than the previous
release of the CFHTLS (but only 35% of the total size of
the survey) but explores much larger scales. The width
of this area turns out to be crucial to our analysis since
the cosmic shear is now measured from 1 arcmin up to 4
degree, well into the linear regime. Since we are looking
for variation in the shape of the power spectrum, this
wide range of scales is particularly valuable. Although it
would be highly beneficial to our project, no tomography
measurements has been carried out with these data yet.
Systematic effects are constrained to be smaller than sta-
tistical errors. “B-modes” in particular are negligible at
all scales we use. To constrain gravity, we choose two
lensing statistics whose properties are slightly different :
the shear E/B correlation functions, ξE , and the com-
pensated filter known as aperture mass statistic, Map

[66, 71]. The former is defined as

ξE(θ) =
1

2π

∫ ∞

0
dk kPκ(k)J0(kθ) (14)

whereas the latter is defined as

M2
ap(θ) =

288

πθ4

∫ ∞

0

dk

k3
Pκ(k)J2

4 (kθ) (15)

where

Pκ($) =
9H4

0Ω2

4c4

∫ ωH

0
dω

(

W (ω)

a(ω)

)2

D(k, w)Pδ ($/fK($)) .

(16)

Pδ is the density power spectrum at z = 0 and the ge-
ometry factor W is defined as

W (ω) =

∫ wH

w
dw′n(w′)

fK(w′ − w)

fK(w′)
(17)

with the redshift distribution given by

n(z) =
β

zsΓ
(

1+α
β

)

(

z

zs

)α

exp

[

−

(

z

zs

)β
]

(18)

and where fK is the comoving angular diameter distance.
Both statistics involve a different weighting of the con-
vergence power spectrum depending on whether a wide
or narrow kernel is favored in real or Fourier space [72].
As illustrated in [66], the use of two different statistics
provide an extra consistency check for the measurements
and their interpretation.

We assumed here that the estimators have been prop-
erly calibrated and that ξ+ = ξE ( in the notations of
[66, 69]). As Fu et al. [66] we will discard the four small-
est angular scales when using the M2

ap statistic due to
excessive E/B mixing. We will use the exponential red-
shift distribution defined in Eq. 18 as Benjamin et al.
[69]. It contains three free parameters zs, α and β that
are determined using the photometric redshift calibrated
on the VIRMOS VLT Deep Survey [73]. The uncertain-
ties in α and β are sufficiently small that we can fix α
and β to respectively 0.838 and 3.43. However we still
need to marginalize over the zs uncertainties, as it will
be described in the next sub-section. The choice of the
Benjamin et al. [69] redshift distribution instead of the
Fu et al. [66] seems somewhat inconsistent and may look
like a useless complication. It is primarily motivated by
the huge computational gain in keeping α and β con-
stant. Although the Benjamin et al. [69] distribution is
sligthly less accurate than the power-law one used in Fu
et al. [66], the few percent difference is not relevant for
our purpose but it would be if we were trying e.g. to con-
strain the overall amplitude instead of marginalizing over
it.

The large-scale real-space power spectrum Pδ(k) is
measured using a sample of 2×106 galaxies from the
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Any deviation from GR?
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FIG. 2: Likelihood contours at 68% and 95% confidence levels for the 1/m and α parameters of the Yukawa type modification to
gravity. The left panel corresponds to the CFHTLS-Wide constrains while the right panel corresponds to SDSS LRGs. Colored
contours correspond for CFTHSL-Wide to the use of the M2

ap statistic with the halofit non-linear prescription. The dashed
lines were obtained using the M2

ap statistic with the Peacock and Dodds [76] prescription whereas the dot-dashed lines were
obtained with the halofit non-linear prescription but using the ξE statistic. The agreement between these various prescriptions
and statistics is a satisfying of robustness of our measurement. As expected given the wider area covered by SDSS (42 times
bigger than the current status of CFHTLS-Wide), the SDSS constraints are much narrower despite the bias uncertainty.

IV. RESULTS AND DISCUSSIONS

Fig. 2 displays the 2D 68% and 95% contour lev-
els for the Yukawa model m−1 and α parameters us-
ing CFHTLS-Wide (left panel) and SDSS LRGs (right
panel). Other parameters have been marginalized over.
Focusing on the CFHTLS panel first, we display several
set of contours. The colored contours correspond to the
M2

ap statistic (Eq. 15) with the Smith et al. [77] halofit
prescription to model non-linearities. The long dashed
lines correspond to the M2

ap statistic with the Peacock
and Dodds [76] prescription. The dot-dashed lines corre-
spond to the ξE statistic (Eq. 14) with the Smith et al.
[77] halofit prescription. To the level of accuracy we
are interested in this work, this figure shows that those
various methods and measurements are consistent with
one another. This is a reassuring statement regarding
the robustness of our constraints. We will from now on
quote numbers from the M2

ap statistic using the halofit
prescription (colored contours).

In the case of Yukawa type models, for a given 1/m the
deviation from gravity increases with increasing |α| (see
Fig. 1) hence it is expected constraints be centered on our
favored value α = 0. Therefore, Fig. 2 first shows that no
deviation from standard gravity is favored by CFHTLS
data. Since weak-lensing constrains small scales best
(small 1/m), we observe narrower constraints at lower
1/m. The broadening of the contours at high 1/m shows
the limits of our data in terms of large scale sensitivity.
Below this broadening, say below 1/m ≤ 0.5 Mpc, we can
see that α and 1/m are decorrelated, i.e. the constraints
on α seem independent of 1/m and vice versa. This can

be understood as follows. For a given 1/m, the transition
to modified gravity is set and α will modify the amplitude
of the effect on the linear growth rate as visible in the
right panel of Fig. 1. Since for weak-lensing the relevant
quantity is a weighted projection of the linearly evolved
power spectrum (with non-linear corrections applied for
each z considered), we expect a degeneracy between α
and the overall amplitude of the power spectrum set by
As. This is illustrated in Fig. 3 where we plot the 2D con-
tours in the α − As plane for 1/m ≤ 0.1Mpc. The range
of As shown here corresponds to our uniform prior on As

motivated in section III B. Clearly this choice of prior
is a key for weak-lensing measurement and tightening it
more would also strengthen our constraints on α but we
choose a fairly conservative prior in order to secure the
consistency with the latest CMB and Lyα observations.

The right panel of Fig. 2 shows the same constraints
using the SDSS LRGs. Clearly, they are much tighter.
The reason for this difference can be understood in the
following way. Since we marginalize over the amplitude
of the power spectrum within our As priors (and also on
the bias in the case of SDSS), our test of gravity basically
relies on constraining the shape of the power spectrum.
Because the SDSS data we are using cover about 2400
square degrees with accurate photo-z for all of those (and
a median redshift of z # 0.1), the power spectrum we are
using covers the range 0.02 h/Mpc≤ k ≤0.3h/Mpc. On
the other hand, CFHTLS-Wide data, makes uses of only
57 square degrees so that the errors on the same mode
are at least 6 times larger due to cosmic variance only.
In addition, since cosmic shear is sensitive to a weighted
projection of the matter power spectrum (see Eq. 16), the

We do not find any evidence from deviation from GR on scales > 
0.4h/Mpc and <10 h/Mpc
Because of projection effects and sheer volume difference, SDSS 
performs much better
A combined limit on m is : M>67.6Mpc (95%CL), that is M<9.4 10-32 ev
Simple parametric approach, only a foretaste of what is to come
Conclusions are limited to the parametrization we choose
A more promising approach might consist in testing GR directly 
through a set of consistency relations 
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A natural extension

Given the theoretical uncertainties, i.e. the large freedom in 
the choice of theories to test,  it seems more sensible to 
develop a model independent approaches

A promising program consists in developing a set of self-
consistency cosmological tests for GR

As a first step in developing this program, we study how to use 
jointly galaxy and weak gravitational surveys

This starts from the simple fact that any weak-lensing survey 
is also a galaxy count survey

In particular, we show how to predict the weak gravitational 
lensing signal from a galaxy survey

We will combine probes of δm and of ∇(Ψ-Φ) to test both the 
poisson equation and the anisotropic stress constraints

Y.-S. Song & O.D. 08
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A simple test

SDSS

We compare the continuous integral of the lensing kernel to 
a discretized version build with galaxy templates
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Predicting the weak gravitational lensing  
from galaxy density

Quasi-static evolution of perturbations, i.e. perturbations 
constant within a redshift shell
From the galaxy projected density, we can build a template for 
the lensing signal

FIG. 4: Left panels: The top panel show the fractional errors for the reconstructed P
ΘgΘg

using the Fisher matrix formalism written in

Eq. 26. The bottom plot shows the corresponding fractional errors for Pgg. Right panels: 68% CL contour plots in the w − wa plane.
The top panel shows the constraints obtained using PΘgΘg (no bias marginalization) only and P

ΘgΘg
+Pgg (with bias marginalization).

The bottom panel shows the constraints using P
ΘgΘg

+Pgg and various value of the parameters σth that quantifies the accuracy of the

modeling of the Finger of God effect (see Eq. 15 of White et al. [43] for details).

Some promising SNR numbers are given in Tab. II where
we used all the ! up to ! = 500, assumed σz = 0.03
and considered a redshift binning for the WL signal from
z=0 to 3.2 with ∆z = 0.4. Note that for this evaluation,
unlike in the previous section we did not vary the other
cosmological parameters but here again, we expect the
DE parameters to be non-degenerate with the bias when
we include the the projected galaxy and weak gravita-
tional lensing cross-correlation.

TABLE II: Signal to noise ratio estimate for the total bias as
defined in Eq. 29 in selected bins.

zj 0.05 0.55 1.05 1.55 2.05 2.55 3.05
(S/N)j 160 430 300 170 88 35 6.6

∆bj/bj(%) 0.63 0.23 0.33 0.58 1.1 2.8 15

IV. CONSISTENCY TESTS

Now that we have presented how to obtain accurate
estimates of the projected matter angular power spec-
trum using galaxy surveys, we proceed to the core of our
study, that is the details of our cosmological consistency
tests. We will propose two tests. Either we predict the
lensing convergence power spectra using a galaxy survey

and compare it to the measured lensing power spectra,
or we predict the cross-correlation between matter and
galaxy. While the first constitutes an observational im-
plementation of both the metric test written in Eq. 3 and
the non-dynamical constrain test, the second one is a di-
rect implementation of the non-dynamical constrain test
written in Eq. 5.

A. Predicting the lensing power spectra

The density perturbations are measured on the redshift
shell labeled by i at the comoving distance Di from the
observer. In the approximation of a quasi-static evolu-
tion of perturbations, i.e. considering the perturbations
constant within a redshift shell, the projected angular
power spectrum can be written as

Ci gg
l =

2π3

(l + 1/2)3
∆DiDiW

g(Di)W
g(Di)∆ΦΦ(ai, k) .

(31)
Similarly, the weak lensing power spectra can be dis-
cretized as

Cs dd
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2π2

l + 1/2

n
∑

i=1

∆DiDi
4(Ds − Di)2

D2
sD

2
i

∆ΦΦ(ai, k) .(32)

If we first assume that there is no dark energy pertur-
bations, then ∆ΦΦ(ai, k) can be written in terms of the
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or we predict the cross-correlation between matter and
galaxy. While the first constitutes an observational im-
plementation of both the metric test written in Eq. 3 and
the non-dynamical constrain test, the second one is a di-
rect implementation of the non-dynamical constrain test
written in Eq. 5.

A. Predicting the lensing power spectra

The density perturbations are measured on the redshift
shell labeled by i at the comoving distance Di from the
observer. In the approximation of a quasi-static evolu-
tion of perturbations, i.e. considering the perturbations
constant within a redshift shell, the projected angular
power spectrum can be written as
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If we first assume that there is no dark energy pertur-
bations, then ∆ΦΦ(ai, k) can be written in terms of the

FIG. 5: Left panel: Cdd
l at z=0.4, 1.0 and 3.2 (from bottom to top) with redshift spacing ∆z = 0.4. (top panel) The solid curves represent

the original WL power spectra, and the dash curves represent the reconstructed ones in which the discrete pieces of galaxy templates above
FoG threshold (here k ∼ 0.3Mpc−1) are removed. (bottom panel) The solid curves represent the original WL power spectra, the dotted
curves represent the reconstructed ones with photo-z error of σz = 0.03 and the dash curves represent the predicted ones corrected for
the photo-z bias. The agreement is obviously good except at low z were the photo-z bias is harder to correct for. Right panel: Expected
relative uncertainties in the lensing predicted angular power spectra at three various redshifts (0.2, 1.0 and 3.0 respectively from top to
bottom panels). Dash curves are errors estimated when using WL-galaxy correlations (as in Sec. III D 2) and dotted curves are error
estimated using the galaxy-peculiar velocity correlations (as in Sec. III D 1). The solid curves correspond to predictions for f(R) theories
with B0 = 10−6 (see Sec. V for more details).

angular power spectrum of galaxies within this shell as

∆i
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Substituting this into Eq. (32), we are lead to define the
reconstructed lensing power spectra

C̃s dd
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n
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Note that this estimator is the simplest we can device
and that we considered the noise to be negligible. We
also ignore correlations within redshift bins, which is true
if they are wide enough. If these hypothesis are not full-
filed, it is straightforward to generalize our estimator to
handle those effects in an optimal manner. In the right
panel of Fig. 5, we plotted several several reconstructed
power spectra, before and after photo-z bias reconstruc-
tion for ∆z = 0.4 bins and photo-z errors defined by
σz = 0.3. Obviously, the reconstructed estimator agrees
well with the input ones once corrected from the photo-z

bias. As expected following the results of Fig. 3 though,
this bias is harder to correct at low z.

Once this estimator is defined, we can calculate the
variance of ∆C̃s dd

l as

∆C̃s dd
l =
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2
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which gives a fractional error
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Resulting uncertainties in the predicted angular power
spectrum for one redshift bin is illustrated in Fig. 5 with
the blue error bars. The survey parameters are the same
as for Fig. 4. Percent accuracy is possible with coming
surveys and the powerful cosmological test resulting from
the comparison between the reconstructed and measure
lensing power spectra will be discussed in later in Sec. V
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estimated using the galaxy-peculiar velocity correlations (as in Sec. III D 1). The solid curves correspond to predictions for f(R) theories
with B0 = 10−6 (see Sec. V for more details).

angular power spectrum of galaxies within this shell as

∆i
ΦΦ =

9

8π2(l + 1/2)

D3
i

∆Di

(

dz

dD
nibi

)−2 Ω2
mH4

0

a2
i

Ci gg
! .

(33)
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and that we considered the noise to be negligible. We
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bias. As expected following the results of Fig. 3 though,
this bias is harder to correct at low z.

Once this estimator is defined, we can calculate the
variance of ∆C̃s dd

l as
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which gives a fractional error
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Resulting uncertainties in the predicted angular power
spectrum for one redshift bin is illustrated in Fig. 5 with
the blue error bars. The survey parameters are the same
as for Fig. 4. Percent accuracy is possible with coming
surveys and the powerful cosmological test resulting from
the comparison between the reconstructed and measure
lensing power spectra will be discussed in later in Sec. V

FIG. 5: Left panel: Cdd
l at z=0.4, 1.0 and 3.2 (from bottom to top) with redshift spacing ∆z = 0.4. (top panel) The solid curves represent

the original WL power spectra, and the dash curves represent the reconstructed ones in which the discrete pieces of galaxy templates above
FoG threshold (here k ∼ 0.3Mpc−1) are removed. (bottom panel) The solid curves represent the original WL power spectra, the dotted
curves represent the reconstructed ones with photo-z error of σz = 0.03 and the dash curves represent the predicted ones corrected for
the photo-z bias. The agreement is obviously good except at low z were the photo-z bias is harder to correct for. Right panel: Expected
relative uncertainties in the lensing predicted angular power spectra at three various redshifts (0.2, 1.0 and 3.0 respectively from top to
bottom panels). Dash curves are errors estimated when using WL-galaxy correlations (as in Sec. III D 2) and dotted curves are error
estimated using the galaxy-peculiar velocity correlations (as in Sec. III D 1). The solid curves correspond to predictions for f(R) theories
with B0 = 10−6 (see Sec. V for more details).

angular power spectrum of galaxies within this shell as
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Substituting this into Eq. (32), we are lead to define the
reconstructed lensing power spectra
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Note that this estimator is the simplest we can device
and that we considered the noise to be negligible. We
also ignore correlations within redshift bins, which is true
if they are wide enough. If these hypothesis are not full-
filed, it is straightforward to generalize our estimator to
handle those effects in an optimal manner. In the right
panel of Fig. 5, we plotted several several reconstructed
power spectra, before and after photo-z bias reconstruc-
tion for ∆z = 0.4 bins and photo-z errors defined by
σz = 0.3. Obviously, the reconstructed estimator agrees
well with the input ones once corrected from the photo-z

bias. As expected following the results of Fig. 3 though,
this bias is harder to correct at low z.

Once this estimator is defined, we can calculate the
variance of ∆C̃s dd

l as
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Resulting uncertainties in the predicted angular power
spectrum for one redshift bin is illustrated in Fig. 5 with
the blue error bars. The survey parameters are the same
as for Fig. 4. Percent accuracy is possible with coming
surveys and the powerful cosmological test resulting from
the comparison between the reconstructed and measure
lensing power spectra will be discussed in later in Sec. V

k2φ = 4πGa2ρmδmDiscretized form of Poisson equation  
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Measuring the bias

Using galaxy-lensing correlation

Using Velocity or Galaxy velocity measurements
Bias not degenerate with other cosmological 
parameters like w0 and wa

redshift bins to the reconstructed lensing power spectra
is not significant. It means that we can treat in a first
approximation the biasing due to the limited photo-z er-
ror as scale independent. Within this hypothesis, Cgg

! is
a linearly bias tracer of the matter angular power spec-
trum, with a total bias b2

T = b2
gb

2
z, where bg denotes the

bias due to galaxy and bz denote the bias due to photo-z
uncertainty. The measure of the 3-D galaxy power spec-
trum allows us to measure bg separately but we can also
measure directly the total bias in a redshift bin, i, as will
be detailed in Sec. III D 2.

D. Galaxy bias and associated uncertainties

We now present two alternative ways to measure the
linear galaxy bias, assuming either a precise spectroscopic
survey or a weak-lensing based photometric survey.

1. Using a spectroscopic survey

Using precise spectroscopic redshift measurements, we
are able to separate the peculiar velocity power spec-
tra from the redshift-space power spectrum P obs

g (k) of
a galaxy redshift survey [38]. The latter is commonly
modeled as

P obs
g (k) =

[

Pgg(k) + 2µ2PgΘg
(k) + µ4PΘgΘg

(k)
]

× F
(

k2σ2
v(z)µ2

)

. (25)

The separation of is Pgg(k) and PΘΘ(k) made possible
using the angular dependence of P obs

g (k) and where Θ =
θ/aH [43].

We quantify how well this separation can be performed
using a Fisher matrix formalism. The Fisher matrix anal-
ysis relevant to this separation for a given k and z bin is
given by [43]

Fαβ(ki, zj) =

∫ kmax

i

kmin

i

k2dk

2(2π)2

∫ 1

−1
dµ Veff(k, µ, zj)

×
∂ lnP obs

g (k, µ, zj)

∂pα

∂ lnP obs
g (k, µ, zj)

∂pβ
(26)

where α and β run from 1 to 2 and denote respectively
Pgg and PΘΘ. Note that PgΘg

is considered to be 1 in this
separation which is valid on the linear scales of interest
to us. The effective volume V j

eff in each redshift bin j is

Veff(ki, µ, zj) =

[

njP obs
g (ki, µ, zj)

njP obs
g (ki, µ, zj) + 1

]2

Vsurvey(z
j)

(27)
where nj is the shot noise term coming from the finite
galaxy density supposed constant here, and Vsurvey(zj)
is the survey volume in a given redshift bin. For the
large scales of interest to us, the cosmic variance term

dominates over the shot noise and Veff(ki, µ, zj) is nearly
identical to Vsurvey(zj). For our estimation, we will con-
sider a full sky survey with a constant galaxy density of
n̄ = 5 × 10−3 h3Mpc−3 and a constant bias equals to
1. As illustrated in left panels of Fig. 4, we are able to
separate properly Pgg and PΘΘ for wide k and z bins.

Following this measurement of Pg and PΘΘ, we can
constrain simultaneously the cosmological parameters
and the galaxy biases. If the galaxy bias is scale-
independent and depends only on redshift, then the
real space galaxy power spectrum Pgg can also be writ-
ten in terms of the fundamental cosmological parame-
ters plus a vector of bias parameters. If we consider
for example a survey up to z = 3.2 with 8 redshift
bins of width ∆z = 0.4, the standard DE cosmologi-
cal parameter set – as the one used in the Dark En-
ergy Task Force report [44] – is extended to 16 elements,
q = (w, wa, wm, wb, AS , nS , zreion, θS , bj=1−8). For this
extended cosmological space, the Fisher matrix simply
writes

Fmn =
∑

ij

∑

αβ

∂pα

∂qm
Fαβ(ki, zj)

∂pβ

∂qm
. (28)

Since PΘΘ is independent of bias, the degeneracy between
cosmological parameters and the bias is broken [45], and
we can simultaneously measure in each redshift bin the
bias and e.g. the dark energy parameters. The resulting
bias uncertainties are given for each redshift bin in Ta-
ble III D 1 and are typically at the percent level. Note
that the galaxy bias is measurement is not detrimental
to the dark energy parameters as illustrated in the right
panels of Fig. 4.

TABLE I: The fractional error of bias in some selected redshift
bins using Eq.28.

zj 0.05 0.55 1.05 1.55 2.05 2.55 3.05
∆bj

bj
(%) 0.75 0.37 0.33 0.38 0.45 0.53 0.57

2. Using a photometric survey

As introduced earlier, redshift uncertainties as big as
the ones resulting from photometric redshift measure-
ments introduce an extra, almost linear bias, bz. Since
this bias does not affect the cross-correlation between
galaxy and peculiar velocity, we can only determine the
“total bias” by cross-correlating the weak gravitational
lensing signal and the projected galaxy density. The
signal-to-noise ratio for this correlation is simply given
by

(
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)2
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∑
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gds
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redshift bins to the reconstructed lensing power spectra
is not significant. It means that we can treat in a first
approximation the biasing due to the limited photo-z er-
ror as scale independent. Within this hypothesis, Cgg

! is
a linearly bias tracer of the matter angular power spec-
trum, with a total bias b2

T = b2
gb

2
z, where bg denotes the

bias due to galaxy and bz denote the bias due to photo-z
uncertainty. The measure of the 3-D galaxy power spec-
trum allows us to measure bg separately but we can also
measure directly the total bias in a redshift bin, i, as will
be detailed in Sec. III D 2.

D. Galaxy bias and associated uncertainties

We now present two alternative ways to measure the
linear galaxy bias, assuming either a precise spectroscopic
survey or a weak-lensing based photometric survey.

1. Using a spectroscopic survey

Using precise spectroscopic redshift measurements, we
are able to separate the peculiar velocity power spec-
tra from the redshift-space power spectrum P obs

g (k) of
a galaxy redshift survey [38]. The latter is commonly
modeled as
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The separation of is Pgg(k) and PΘΘ(k) made possible
using the angular dependence of P obs

g (k) and where Θ =
θ/aH [43].

We quantify how well this separation can be performed
using a Fisher matrix formalism. The Fisher matrix anal-
ysis relevant to this separation for a given k and z bin is
given by [43]

Fαβ(ki, zj) =

∫ kmax
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kmin
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where α and β run from 1 to 2 and denote respectively
Pgg and PΘΘ. Note that PgΘg

is considered to be 1 in this
separation which is valid on the linear scales of interest
to us. The effective volume V j

eff in each redshift bin j is

Veff(ki, µ, zj) =

[

njP obs
g (ki, µ, zj)
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g (ki, µ, zj) + 1

]2

Vsurvey(z
j)

(27)
where nj is the shot noise term coming from the finite
galaxy density supposed constant here, and Vsurvey(zj)
is the survey volume in a given redshift bin. For the
large scales of interest to us, the cosmic variance term

dominates over the shot noise and Veff(ki, µ, zj) is nearly
identical to Vsurvey(zj). For our estimation, we will con-
sider a full sky survey with a constant galaxy density of
n̄ = 5 × 10−3 h3Mpc−3 and a constant bias equals to
1. As illustrated in left panels of Fig. 4, we are able to
separate properly Pgg and PΘΘ for wide k and z bins.

Following this measurement of Pg and PΘΘ, we can
constrain simultaneously the cosmological parameters
and the galaxy biases. If the galaxy bias is scale-
independent and depends only on redshift, then the
real space galaxy power spectrum Pgg can also be writ-
ten in terms of the fundamental cosmological parame-
ters plus a vector of bias parameters. If we consider
for example a survey up to z = 3.2 with 8 redshift
bins of width ∆z = 0.4, the standard DE cosmologi-
cal parameter set – as the one used in the Dark En-
ergy Task Force report [44] – is extended to 16 elements,
q = (w, wa, wm, wb, AS , nS , zreion, θS , bj=1−8). For this
extended cosmological space, the Fisher matrix simply
writes

Fmn =
∑

ij

∑

αβ

∂pα

∂qm
Fαβ(ki, zj)

∂pβ

∂qm
. (28)

Since PΘΘ is independent of bias, the degeneracy between
cosmological parameters and the bias is broken [45], and
we can simultaneously measure in each redshift bin the
bias and e.g. the dark energy parameters. The resulting
bias uncertainties are given for each redshift bin in Ta-
ble III D 1 and are typically at the percent level. Note
that the galaxy bias is measurement is not detrimental
to the dark energy parameters as illustrated in the right
panels of Fig. 4.

TABLE I: The fractional error of bias in some selected redshift
bins using Eq.28.

zj 0.05 0.55 1.05 1.55 2.05 2.55 3.05
∆bj

bj
(%) 0.75 0.37 0.33 0.38 0.45 0.53 0.57

2. Using a photometric survey

As introduced earlier, redshift uncertainties as big as
the ones resulting from photometric redshift measure-
ments introduce an extra, almost linear bias, bz. Since
this bias does not affect the cross-correlation between
galaxy and peculiar velocity, we can only determine the
“total bias” by cross-correlating the weak gravitational
lensing signal and the projected galaxy density. The
signal-to-noise ratio for this correlation is simply given
by
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FIG. 4: Left panels: The top panel show the fractional errors for the reconstructed P
ΘgΘg

using the Fisher matrix formalism written in

Eq. 26. The bottom plot shows the corresponding fractional errors for Pgg. Right panels: 68% CL contour plots in the w − wa plane.
The top panel shows the constraints obtained using PΘgΘg (no bias marginalization) only and P

ΘgΘg
+Pgg (with bias marginalization).

The bottom panel shows the constraints using P
ΘgΘg

+Pgg and various value of the parameters σth that quantifies the accuracy of the

modeling of the Finger of God effect (see Eq. 15 of White et al. [43] for details).

and the fractional error on the galaxy bias is

∆bt

bt
=

1

S/N
. (30)

Some promising SNR numbers are given in Tab. II where
we used all the ! up to ! = 500, assumed σz = 0.03
and considered a redshift binning for the WL signal from
z=0 to 3.2 with ∆z = 0.4. Note that for this evaluation,
unlike in the previous section we did not vary the other
cosmological parameters but here again, we expect the
DE parameters to be non-degenerate with the bias when
we include the the projected galaxy and weak gravita-
tional lensing cross-correlation.

TABLE II: Signal to noise ratio estimate for the total bias as
defined in Eq. 29 in selected bins.

zj 0.05 0.55 1.05 1.55 2.05 2.55 3.05
(S/N)j 160 430 300 170 88 35 6.6

∆bj/bj(%) 0.63 0.23 0.33 0.58 1.1 2.8 15

IV. CONSISTENCY TESTS

Now that we have presented how to obtain accurate
estimates of the projected matter angular power spec-
trum using galaxy surveys, we proceed to the core of our

study, that is the details of our cosmological consistency
tests. We will propose two tests. Either we predict the
lensing convergence power spectra using a galaxy survey
and compare it to the measured lensing power spectra,
or we predict the cross-correlation between matter and
galaxy. While the first constitutes an observational im-
plementation of both the metric test written in Eq. 3 and
the non-dynamical constrain test, the second one is a di-
rect implementation of the non-dynamical constrain test
written in Eq. 5.

A. Predicting the lensing power spectra

The density perturbations are measured on the redshift
shell labeled by i at the comoving distance Di from the
observer. In the approximation of a quasi-static evolu-
tion of perturbations, i.e. considering the perturbations
constant within a redshift shell, the projected angular
power spectrum can be written as

Ci gg
l =

2π3

(l + 1/2)3
∆DiDiW

g(Di)W
g(Di)∆ΦΦ(ai, k) .

(31)
Similarly, the weak lensing power spectra can be dis-
cretized as

Cs dd
! =

2π2

l + 1/2

n
∑

i=1

∆DiDi
4(Ds − Di)2

D2
sD

2
i

∆ΦΦ(ai, k) .(32)
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FIG. 5: Relative uncertainties for the reconstructed Cdd
l . The dash

line corresponds to the statistical uncertainties when measuring the
bias using a large spectroscopic survey (as in Sec. III D1) and the
dotted line corresponds to the statistical uncertainties when using
a photometric survey (as in Sec. IIID 2). Other systematic bias are
illustrated in Fig. 6.

and compare it to the measured lensing power spectra,
or we predict the cross-correlation between matter and
galaxy. While the first constitutes an observational im-
plementation of both the metric test written in Eq. 3 and
the non-dynamical constrain test, the second one is a di-
rect implementation of the non-dynamical constrain test
written in Eq. 5.

A. Predicting the lensing power spectra

The density perturbations are measured on the redshift
shell labeled by i at the comoving distance Di from the
observer. In the approximation of a quasi-static evolu-
tion of perturbations, i.e. considering the perturbations
constant within a redshift shell, the projected angular
power spectrum can be written as

Ci gg
l =

2π3

(l + 1/2)3
∆DiDiW

g(Di)W
g(Di)∆ΦΦ(ai, k) .

(31)
Similarly, the weak lensing power spectra can be dis-
cretized as

Cs dd
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2π2

l + 1/2
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∆DiDi
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D2
sD

2
i

∆ΦΦ(ai, k) .(32)

If we first assume that there is no dark energy pertur-
bations, then ∆ΦΦ(ai, k) can be written in terms of the

angular power spectrum of galaxies within this shell as

∆i
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Substituting this into Eq. (32), we are lead to define the
reconstructed lensing power spectra

C̃s dd
! =

n
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bi 2
t
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Note that this estimator is the simplest we can device
and that we considered the noise to be negligible. We
also ignore correlations within redshift bins, which is true
if they are wide enough. If these hypothesis are not full-
filed, it is straightforward to generalize our estimator to
handle those effects in an optimal manner. In Fig. 5 we
show the statistical errors for the reconstructed power
spectra using our nominal survey. Obviously, the recon-
struction performs very well. In the right panel of Fig. 6,
we plotted several reconstructed power spectra, before
and after photo-z bias reconstruction for ∆z = 0.4 bins
and photo-z errors defined by σz = 0.03. Obviously, the
reconstructed estimator agrees well with the input ones
once corrected from the photo-z bias. As expected fol-
lowing the results of Fig. 3 though, this bias is harder to
correct at low z.

Once this estimator is defined, we can calculate the
variance of ∆C̃s dd

l as

∆C̃s dd
l =

{

n
∑

i=1

[

1

b2
i

F i
l
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2
∆bi

bi

)]2
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which gives a fractional error

∆C̃s dd
l I
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1
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We show the predicted lensing signal accuracy in Fig. 6
using the same survey parameters as for Fig. 4. The
resulting statistical uncertainties in the predicted angu-
lar power spectrum (right panel) are much smaller than
the potential reconstruction biases from non-linear effect,
limited photometry measurement accuracy and discrete-
ness effects. Percent accuracy is still possible with com-
ing surveys and we will discuss further in Sec. V the sub-
sequent cosmological interpretation.

The number of galaxy redshift bins used to approxi-
mate the continuous kernel of lensing potential along the
line of sight in Eq. 34 is limited. The choice of the opti-
mal bin width is motivated by several issues. We chose
the thickness of the bins to be larger than any correla-
tion length between two subsequent bins. Besides, since

Mean source z

•Full sky
•ng = 5x10-3 (h/Mpc)3

•Δz = 0.1
•σz=0.03
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Photo-z effects

When projecting the galaxy over-density, inaccuracy in 
photo-z introduces an extra bias, almost linear 

FIG. 3: Left panel, top: ng distribution plotted for three various σz, i.e. 3× 10−4, 3× 10−3, 3× 10−2 and the underlying galaxy
distribution. Bottom : Corresponding galaxy overdensity angular power spectrum, Cgg

! . Photometric redshift error entails
an important bias. Right panel: Relative difference between Cgg

l power spectra with or without photo-z errors considering
σz = 0.03. Solid, long dash, short dash and dotted curves correspond respectively to Cgg

l at z=0.3, 0.5, 1.5 and 2.5.

C. Photometric uncertainties and angular power
spectra

We now consider a photometric survey and discuss the
effects of redshift errors on the projected galaxy angular
power spectrum. We assume for the latter Gaussian error
with rms

σ(z) = σphz(1 + z) . (24)

A subset i of galaxies whose photometric redshift is such
that zi−1 <z< zi, follows the distribution [40]

ni(z) =
Ai

2
ng(z)

[

erfc

(

zi−1 − z√
2σ(z)

)

− erfc

(

zi − z√
2σ(z)

)]

,

where erfc is the complementary error function and Ai

is determined by a normalisation constraint. Through-
out this work, we will choose Ai so that

∫

dzni(z) = 1.
Doing so, we discard the total number of galaxies as an
observable.

As an illustration, we consider three different levels of
photometric errors, respectively σz = 3×10−4, 3×10−3,
3 × 10−2. While the first noise level seems idealistic,
the second one seems achievable in a near future (e.g.
[41]) and the third one corresponds to what is currently
achieved with SDSS [42]. The corresponding window
function ng(z) defined in Eq. 25 is displayed in the left-
top panel of Fig. 3. The left-bottom panel of Fig. 3 shows
the simple projected angular power spectra of the galaxy

overdensity according to Eq. 6. As we can see, the pres-
ence of photometric errors introduces an important error
that has to be taken into account.

This error can be simply understood the following way.
Looking at the left panel of Fig. 3 one sees that whereas
the mean of each distribution and their integral – the to-
tal number of galaxies in each bin – are identical, their
variance are widely different. Since the curvature pertur-
bation power spectrum is weighted by the square of ng(z)
spectrum when Eq. 6 is applied to the galaxy overden-
sity, δg, this introduces the substantial bias we see in this
plot. If the true underlying distribution was known, i.e.
if we could deconvolve the observed distribution with the
photometric error distribution, then we could device eas-
ily weights that do not lead to such an error. In practice
though, it is unlikely that this deconvolution will be fea-
sible and we thus resort to another way to correct for this
effect by introducing another bias factor that we called a
photo-z bias, bz.

Since ng is a smooth function of z and since the mat-
ter power spectrum is mostly featureless, we expect bz

to be weakly dependent on scales. In the right panel of
Fig. 3, we plot the relative difference between the true
galaxy angular power spectrum, Ctrue gg

! , and Cgg
! with

σz = 0.03. In the low redshift bins, there are non-trivial
scale dependent in the angular range coming from bary-
onic features (100Mpc at z = 0.3 corresponds roughly to
# = 60). In the high redshift bins, the scale dependence is
ignorable. Fortunately, the contribution from those low

σphoto(z) = σz(1 + z)

Cgg
! (zi) ∝

∫
k2dkPmm(k)

[∫ zi,max

zi,min

dzA ng(z)2j!(kη)

]2
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Source distribution at 0.2, 1.0, 3.0
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FIG. 6: Left panel: Cdd
l for a source distribution at z̄=0.2, 1.0 and 3.0 (from bottom to top) with a redshift width ∆z = 0.4. (top

panel) The solid curves represent the original WL power spectra, and the dash curves represent the reconstructed one when the projected
galaxy angular power spectra have been cut below some non-linear threshold chosen here to be k ∼ 0.3Mpc−1.(bottom panel) The solid
curves represent the original WL power spectra, the dotted curves represent the reconstructed ones with photo-z error of σz = 0.03 and
the dash curves represent the predicted ones corrected for the photo-z bias. The agreement is obviously good except at low z were the
photo-z bias is harder to correct for. Right panel: Expected relative uncertainties in the lensing predicted angular power spectra for the
source distribution at two various redshifts (1.0 and 3.0 respectively from top to bottom panels and again ∆z = 0.4). The thin curves
represent the reconstructed lensing signal using all the information available from the projected galaxy density. The visible noise at low
" originates in the finite number of galaxy redshift bins available. The thick curves is obtained when removing all the galaxy information
above k ∼ 0.3Mpc−1 to stay in the linear regime. The black curves correspond to the reconstruction for a ΛCDM model. The blue curves
to the reconstruction for f(R) gravity with B0 = 1 (see Sec. V for more details). Whereas the reconstruction performs really well in the

the projected galaxy angular power spectra are defined in
redshift space, a larger width smooth the redshift distor-
tion effect as shown in Fig. 2. We find a width of roughly
∆z = 0.1 to be satisfying. The thin curves in the right
panel of Fig. 6 shows that whereas the accuracy of C̄dd

l at
z̄ = 0.2 is limited by discreteness effect (we can use only
4 z bins), it is nearly ignorable at high redshift lensing
bins.

Another important bias factor involves non-linear ef-
fects. Whereas the Poisson equation we used to predict
the lensing signal is valid on all scales, to reconstruct
a reliable projected density template from the galaxies
measured in redshift space might be challenging in the
non-linear regime. To illustrate how important this effect
is, we filter out the galaxy template for k < 0.3h/Mpc
and then project the galaxy density field. In the right
panel of Fig. 6, the stepwise curves represent the result-
ing predicted lensing signal. Because non-linearities are
stronger at low redshift, this bias is more important when
predicting the lensing signal at lower redshift.

The uncertainty due to photometry measurement can
be another significant bias as shown in the left-bottom
panel of Fig. 6. However, we presented in Sec. III D 2 how

to deal with such an effect using spectroscopic surveys
or photometric surveys. This bias should thus not the
practical applications of our test.

B. Adding cross-correlation with velocity

In addition to the comparison between the predicted
and the measured lensing power spectra at various red-
shifts, we can device another consistency test using cross-
correlations between galaxy and weak lensing. This test
will highlight in particular any deviation from the Pois-
son equation that we parametrize with the α parameter
defined by

k2Φ = 4πGNαa2ρmδm . (37)

source zmean ~0.2, 1.0, 3.0

32



What do we learn?

Several order improvement in constraints of f(R) theories
Current constraints on B0<1 (song et al. 06), blue curve here 
corresponds to B0~10-5

More generally a test of Poisson equation and of the lack of shear 
stress
Only one step in a more general program to be developed

FIG. 5: Left panel: Cdd
l at z=0.4, 1.0 and 3.2 (from bottom to top) with redshift spacing ∆z = 0.4. (top panel) The solid curves represent

the original WL power spectra, and the dash curves represent the reconstructed ones in which the discrete pieces of galaxy templates above
FoG threshold (here k ∼ 0.3Mpc−1) are removed. (bottom panel) The solid curves represent the original WL power spectra, the dotted
curves represent the reconstructed ones with photo-z error of σz = 0.03 and the dash curves represent the predicted ones corrected for
the photo-z bias. The agreement is obviously good except at low z were the photo-z bias is harder to correct for. Right panel: Expected
relative uncertainties in the lensing predicted angular power spectra at three various redshifts (0.2, 1.0 and 3.0 respectively from top to
bottom panels). Dash curves are errors estimated when using WL-galaxy correlations (as in Sec. III D 2) and dotted curves are error
estimated using the galaxy-peculiar velocity correlations (as in Sec. III D 1). The solid curves correspond to predictions for f(R) theories
with B0 = 10−6 (see Sec. V for more details).

If we first assume that there is no dark energy pertur-
bations, then ∆ΦΦ(ai, k) can be written in terms of the
angular power spectrum of galaxies within this shell as

∆i
ΦΦ =

9

8π2(l + 1/2)

D3
i

∆Di

(

dz

dD
nibi

)−2 Ω2
mH4

0

a2
i

Ci gg
! .

(33)

Substituting this into Eq. (32), we are lead to define the
reconstructed lensing power spectra

C̃s dd
! =

n
∑

i=1

1

bi 2
t

F i
! (34)

F i
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(" + 1/2)2
D2
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)−2 Ω2
mH4

0

a2
i

Ci gg
! .

Note that this estimator is the simplest we can device
and that we considered the noise to be negligible. We
also ignore correlations within redshift bins, which is true
if they are wide enough. If these hypothesis are not full-
filed, it is straightforward to generalize our estimator to
handle those effects in an optimal manner. In the right
panel of Fig. 5, we plotted several several reconstructed
power spectra, before and after photo-z bias reconstruc-
tion for ∆z = 0.4 bins and photo-z errors defined by

σz = 0.3. Obviously, the reconstructed estimator agrees
well with the input ones once corrected from the photo-z
bias. As expected following the results of Fig. 3 though,
this bias is harder to correct at low z.

Once this estimator is defined, we can calculate the
variance of ∆C̃s dd

l as

∆C̃s dd
l =

{

n
∑

i=1

[

1

b2
i

F i
l

(

2
∆bi

bi

)]2
}1/2

(35)

which gives a fractional error

∆C̃s dd
l I

C̃s dd
l I

=

{

∑n
i=1

[

1
b2i

F i
l

(

2∆bi

bi

)]2
}1/2

∑n
i=1

1
b2i

F i
l

. (36)

Resulting uncertainties in the predicted angular power
spectrum for one redshift bin is illustrated in Fig. 5 with
the blue error bars. The survey parameters are the same
as for Fig. 4. Percent accuracy is possible with coming
surveys and the powerful cosmological test resulting from
the comparison between the reconstructed and measure
lensing power spectra will be discussed in later in Sec. V
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Redshift distortions
On linear scales

δk → bδk(1 + fµ2/b)
Kaiser 87

On non-linear scales, “Finger of god effect”
Virialized 
motions

Pobs
g (!k) =

[
Pgg(!k) + 2 µ2

aH Pgθg (!k) + µ4

(aH)2 Pθgθg (!k)
]
F (k2σv(z)2µ2)
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Measuring velocities with 
spectroscopic surveys

Unbiased probe of δm

Limited by non-linear effects for k>0.2 h/Mpc
Required large volume spectroscopic survey

FIG. 4: Left panels: The top panel show the fractional errors for the reconstructed P
ΘgΘg

using the Fisher matrix formalism written in

Eq. 26. The bottom plot shows the corresponding fractional errors for Pgg. Right panels: 68% CL contour plots in the w − wa plane.
The top panel shows the constraints obtained using PΘgΘg (no bias marginalization) only and P

ΘgΘg
+Pgg (with bias marginalization).

The bottom panel shows the constraints using P
ΘgΘg

+Pgg and various value of the parameters σth that quantifies the accuracy of the

modeling of the Finger of God effect (see Eq. 15 of White et al. [43] for details).

and the fractional error on the galaxy bias is

∆bt

bt
=

1

S/N
. (30)

Some promising SNR numbers are given in Tab. II where
we used all the ! up to ! = 500, assumed σz = 0.03
and considered a redshift binning for the WL signal from
z=0 to 3.2 with ∆z = 0.4. Note that for this evaluation,
unlike in the previous section we did not vary the other
cosmological parameters but here again, we expect the
DE parameters to be non-degenerate with the bias when
we include the the projected galaxy and weak gravita-
tional lensing cross-correlation.

TABLE II: Signal to noise ratio estimate for the total bias as
defined in Eq. 29 in selected bins.

zj 0.05 0.55 1.05 1.55 2.05 2.55 3.05
(S/N)j 160 430 300 170 88 35 6.6

∆bj/bj(%) 0.63 0.23 0.33 0.58 1.1 2.8 15

IV. CONSISTENCY TESTS

Now that we have presented how to obtain accurate
estimates of the projected matter angular power spec-
trum using galaxy surveys, we proceed to the core of our

study, that is the details of our cosmological consistency
tests. We will propose two tests. Either we predict the
lensing convergence power spectra using a galaxy survey
and compare it to the measured lensing power spectra,
or we predict the cross-correlation between matter and
galaxy. While the first constitutes an observational im-
plementation of both the metric test written in Eq. 3 and
the non-dynamical constrain test, the second one is a di-
rect implementation of the non-dynamical constrain test
written in Eq. 5.

A. Predicting the lensing power spectra

The density perturbations are measured on the redshift
shell labeled by i at the comoving distance Di from the
observer. In the approximation of a quasi-static evolu-
tion of perturbations, i.e. considering the perturbations
constant within a redshift shell, the projected angular
power spectrum can be written as

Ci gg
l =

2π3

(l + 1/2)3
∆DiDiW

g(Di)W
g(Di)∆ΦΦ(ai, k) .

(31)
Similarly, the weak lensing power spectra can be dis-
cretized as

Cs dd
! =

2π2

l + 1/2

n
∑

i=1

∆DiDi
4(Ds − Di)2

D2
sD

2
i

∆ΦΦ(ai, k) .(32)

Song and Percival 08, McDonald & Seljak 08, White et al. 08

Veff (k, µ, z) =
[

nPg(k,µ,z)
nPg(k,µ,z)+1

]2
Vsurvey(z)

fsky=1
ng=5x10-3 
(h/Mpc)3

Fαβ(ki, zj) =
∫

k2dk
2(2π)2

∫ +1
−1 dµVeff (k, µ, zj)

∂Pg(k,µ,zj)
∂pα

∂Pg(k,µ,zj)
∂pβ
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A closed web of relations
and we shall call the observational test of this relation
the energy-momentum consistency test. As will be seen
below, whereas peculiar velocities can be traced directly,
probing matter density fluctuations requires to deal with
several observational artifacts. In this paper, we will as-
sume this relation to be satisfied and we will use it for
our observational determination of the galaxy bias. Note
however that it could be violated due to dark sector in-
teractions.

The second consistency relation stems from the lack of
anisotropic stress and relates metric perturbations. Since
in this paper, we neglect DE clustering, only the matter
component clusters and the no anisotropic stress approx-
imation is valid,

Φ + Ψ = 0 , (3)

which reduces the degrees of freedom of metric perturba-
tions. While the Newtonian force Ψ can be reconstructed
from the evolution of peculiar velocities, the curvature
perturbation Φ is given by matter fluctuations. Thus
both observables could be compared to determine the
presence of non-trivial anisotropic stress which is pre-
dicted in most modified gravity models and dark energy
clumping model. We call this test the metric consistency
test.

The other tests relate metric perturbations to matter-
energy fluctuations, dynamically or non-dynamically.
Newtonian force sources the dynamics of matter fluctu-
ations. If the time evolution of peculiar velocity can be
reconstructed, then so can Ψ through the Euler equation,

dθm

dt
= −Hθm +

k2Ψ

a
, (4)

which we label as the dynamical constraint test. Because
the degrees of freedom available in metric perturbations
are reduced by the no-anisotropy condition in GR, we
shall not use this constraint in this paper.

Finally, the relation between curvature perturbations
and matter fluctuations yield the non-dynamical con-
straint test, also known as the Poisson equation. It is
a key relation which we will use and test in this work. It
writes as,

k2Φ = 4πGa2ρmδm . (5)

Using previously defined relations, in principle both sides
of Eq. 5 are calibrated and can be readily used to test it.

This set of relation constitute a web of possible cosmo-
logical as illustrated in Fig. 1.

As we hinted at before, to test any of this relations,
we need various observables. To trace matter pertur-
bations, δm, we will use biased tracers like galaxies or
clusters, whose relevant observational caveats will be ad-
dressed below. Velocity surveys, direct (kinetic Sunyaev-
Zel’dovich or peculiar velocities measurements) or indi-
rect (galaxy redshift survey) allow us in principle to probe
Θm. Finally, metric perturbations are directly probed
by weak gravitational lensing which distorts the shape of

FIG. 1: Web of cosmological tests of GR.

source galaxies along the line of sight. Since the geodesics
are determined by the gradient of combination of both Φ
and Ψ, as ∇(Φ − Ψ), weak lensing will probe the inte-
grated effect of metric combination which is 2∇Φ. We
will introduce our notations for those observables below
before discussing in more details the specifics of the test
we are interested in.

III. TRACING MATTER PERTURBATIONS
WITH GALAXIES

Whereas there is no direct probe of matter density fluc-
tuations (even though peculiar velocity measurements
are usually considered to be a direct tracer of density
fluctuations, this requires the energy momentum con-
servation law written in Eq. 2 which is not granted in
our context), galaxies can still be used for this purpose
provided several observational artifacts are properly ac-
counted for.

Since we are working on large linear scales, we will ig-
nore non-linear effects which usually are another limiter.
We will nevertheless discuss in the next sections redshift
distortions, redshift measurement uncertainties and bias.
The information extracted from galaxy density fluctua-
tions will be limited by how well we can handle those
effects. Because the tests we are presenting require the
use of projected quantities, we will focus in particular
on how those artifacts affect the projected galaxy dis-
tribution within a redshift bin in its comparison to the
projected matter distribution.

In this paper we will restrict ourselves to compare

If we could probe independently each side of each equations, then 
we are de facto testing GR
Breaking any one would hint at different type of new physics
Can we do it in practice?
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What are the probes available?

Probing Ψ:
Velocities through large scale redshift 
distortions

Probing δm

Velocities through redshift distortions
Galaxy surveys, but beware of bias, redshift 
distortions (non-linear) and photometric 
redshift uncertainties

Probing ∇(Ψ-Φ)
Weak gravitational lensing

DE clustering, Dark sector interactions, DGP, 
f(R) will alter significantly these relations
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Summary

Future generation surveys (LSST, BOSS, etc.) hold 
exciting promises

We will learn about DE and its various parametrization 
We will also be able to construct various self-
consistency tests of GR. This is probably under-
emphasized so far and should be as important

We presented one example, based on testing the poisson 
equation and the lack of anisotropic stress on large 
scales using galaxies to predict the lensing signal

After having studied various possible contamination of 
this test, it seems practical and we plan to apply it to 
current data, e.g. CFHTLS

Only a first step and large program of self-consistency 
test of GR needs to be developed

38



FIN

39


