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Tensions in cosmology
With the avalanche of data over the past 10-20 years we are in the era of precision 

cosmology, where parameters are measured at the percent level. 
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Tensions in cosmology
ΛCDM parameters are not predicted but rather inferred from observations*.

We can obtain independent estimates of the parameters from different observables in our single universe to 

check for consistency between our universe and the ΛCDM model.
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Tensions in cosmology
While individual datasets do not favor extensions to the base model, we see significant 

tensions between some of the ΛCDM (derived) parameters from different observables.

Wong+ (2019)

Hikage+ (2019)
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Tensions in cosmology
Are cosmological parameters as accurate as they are precise?

Without answering this question we can’t know if tensions point to new physics.
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The Likelihood
The likelihood measures the extent to which a sample provides support for particular 

values in a statistical model.

Much of statistical inference is predicated on the likelihood:

- Maximum likelihood estimates 

- likelihood ratio

- posteriors

- Bayes factor

- ...



Gaussian likelihoods

Shear 2pt function (HSC)

Galaxy power spectrum (SDSS-III BOSS)

Galaxy clustering + weak lensing (KiDS-1000)

CMB power spectra (Planck 2018)

Gaussian likelihoods are very 

widespread: well understood, only 

need a covariance matrix, CLT…



Gaussian likelihoods
Gaussian likelihoods are very 

widespread: well understood, only 

need a covariance matrix, CLT…

However,

- CLT isn’t always applicable (e.g. power spectra at small 

wavenumbers)

- For estimated covariance, marginalize over the true 

covariance (Gaussian → t-distribution)

- Systematic effects can introduce non-Gaussian correlations

- Physics giving rise to an observable: a nonlinear function of 

Gaussian RVs is not Gaussian distributed (CMB vs. galaxy 

distributions) Sellentin+ (2016)



Gaussian likelihoods
Gaussian likelihoods are very 

widespread: well understood, only 

need a covariance matrix, CLT…

Using a wrong likelihood introduces a source of systematic uncertainty:

can bias parameters inferred from some data → are tensions created/amplified by the use of 

wrong likelihoods?



Gaussian likelihoods
There isn’t always a clear alternative/better likelihood:

ACT Thermal SZ one-point PDF (Hill+, 2015)

CFHTLenS shear correlation (Sellentin+, 2018)

Gaussianizing 

data 

Removing NG 

bins



An alternative: data-driven likelihoods (DDLs)
Data-driven likelihoods are learned from data:

- We can think of (mock) data as independent draws from the underlying true 

likelihood function.

- We can estimate the data’s PDF with sufficient samples from it.

      The hope is that DDLs can accurately capture non-Gaussianities in the data. 



An alternative: data-driven likelihoods (DDLs)
Gaussian Mixture Models (GMM)

Use expectation maximization to 

find parameters, BIC to determine K. 

weights
unknown 

parameters

Independent Component Analysis (ICA)

Rotate principal components to maximize 

statistical independence.

KDE



An alternative: data-driven likelihoods (DDLs)
Hahn+ (2018): Large-scale structure with non-Gaussian likelihoods (<0.5σ shifts)

Group multiplicity function (with GMM) Galaxy power spectrum (with ICA)

20,000 mocks

2,048 mocks



An alternative: data-driven likelihoods (DDLs)
Flow-based Likelihoods (FBLs, Diaz Rivero & Dvorkin 2020)

→ I will introduce flow-based generative models

→ Their minimization objective is what we will call a flow-based likelihood

See also literature on simulation-based inference and likelihood-free inference (e.g. 

DELFI), which have used flows for density estimation as well!



Generative models aim to learn the probability distribution that gave rise to data x, 

such that new samples can be drawn. 

In flow-based models, a simple distribution is repeatedly transformed to match p(x).
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Generative models aim to learn the probability distribution that gave rise to data x, 
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Flow-based generative models
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The goal is to train a model to learn these transformations.

- Transformations can involve (invertible) neural networks to make them very 

expressive. 

- The loss is the negative log-likelihood over the training set. 

If training is successful, the learned likelihood == the true data likelihood == a DDL.

Flow-based generative models



BUT, transformations must

- be easily invertible,

- have an easy-to-compute Jacobian determinant (scales as N 

3

),

which limits their expressivity.

 

Different tricks in the literature:

- Restrict the form of the transformation to exploit identities

- Make Jacobian triangular by making transformations auto-regressive or splitting up 

dimensions and applying affine transformations

Ideally also want quick density estimation and sampling.

Flow-based generative models



Flow-based generative models

Glow (Kingma & Dhariwal 2018)

arXiv:1903.00007

arXiv:2005.07694

arXiv:1910.10046



Transformation from prior to data is seen as 

evolution in time.

FFJORD (Grathwohl+ 2018)
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Samples vs likelihood quality
Non-singular covariance

Diaz Rivero & Dvorkin 

(2020)



Samples vs likelihood quality
Singular covariance

Diaz Rivero & Dvorkin 

(2020)



Quantifying non-Gaussianity in a dataset
We propose identifying non-Gaussianities (NG) in three ways:

1. t-statistic of skewness and excess kurtosis for every bin in the data

0 for a 

Gaussian

Diaz Rivero & Dvorkin 

(2020)



Quantifying non-Gaussianity in a dataset
We propose identifying non-Gaussianities (NG) in three ways:

  2.    Transcovariance matrix (Sellentin+ 2018), which considers the non-Gaussianity of 

all pairs of data points

Should be equal for 
whitened Gaussian data 

Total non-Gaussian 
contamination for each bin

Diaz Rivero & Dvorkin 

(2020)



Quantifying non-Gaussianity in a dataset
We propose identifying non-Gaussianities (NG) in three ways:

    3.    KL divergence of (the data w.r.t. a MVN) vs (MVN with itself) (Hahn+ 2018)

Unbiased kNN estimator (Wang+ 2009)

Diaz Rivero & Dvorkin 

(2020)



Quantifying non-Gaussianity in a dataset
Going forward we will:

1. Apply these three tests to a mock dataset to look at the different ways in which 

NG can manifest themselves.

2. Generate samples from the three DDLs to assess whether each likelihood has 

successfully captured the NGs. 

Diaz Rivero & Dvorkin 

(2020)



Weak gravitational lensing

Statistical correlations in the shapes of millions of galaxies
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Non-Gaussianity in weak lensing data 

Shear correlation function non-Gaussianity (Sellentin+ 2018, 1 & 2)

Weak lensing amplitude 

∝



Simulated weak lensing data
Simulated 75,000 mock convergence maps using LensTools (Petri 2016) 

3D matter 

distribution 

(N-body sim)

2D matter 

plane

Petri (2016)

Diaz Rivero & Dvorkin 

(2020)



Simulated weak lensing data
Simulated 75,000 mock convergence maps using LensTools (Petri 2016) and calculated 

the weak lensing convergence power spectrum:

Diaz Rivero & Dvorkin 

(2020)



NG in the weak lensing convergence power spectrum

Test 1: t-stat of 

skewness and 

kurtosis

Test 2: 

transcovariance 

matrix

Test 3: KL 

divergence

Diaz Rivero & Dvorkin 

(2020)



NG in the weak lensing convergence power spectrum

Test 1: t-stat of 

skewness and 

kurtosis

Test 2: 

transcovariance 

matrix

Test 3: KL 

divergence

Diaz Rivero & Dvorkin 

(2020)



NG in the weak lensing convergence power spectrum

Test 1: t-stat of 

skewness and 

kurtosis

Test 2: 

transcovariance 

matrix

Test 3: KL 

divergence

Diaz Rivero & Dvorkin 

(2020)



NG in the weak lensing convergence power spectrum

Test 1: t-stat of 

skewness and 

kurtosis

Test 2: 

transcovariance 

matrix

Test 3: KL 

divergence

Diaz Rivero & Dvorkin 

(2020)



FBL for the convergence power spectrum
Training the model: whitened data, Adam opt., ELU activation function, 80/10/10 split 

Diaz Rivero & Dvorkin 

(2020)



FBL for the convergence power spectrum

Samples drawn 

from the DDL

Diaz Rivero & Dvorkin 

(2020)
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Implications
For our mock weak lensing data, GMM and ICA fail at capturing different NG, while the 

FBL does much better.

Data volume is not the only thing that determines the success/failure of a DDL: some 

understanding of the NG present in the data is crucial to select the right model.

◆ E.g. ICA inadequate for NGs across bins

FBL flexibility can preclude them from a trial-and-error procedure that other DDLs can 

require. 

KL divergence KL divergence

Blue = gaussian

orange = data

Galaxy power spectrum w/ 2,048 mocks (Hahn+ 2018)

Diaz Rivero & Dvorkin 

(2020)



Implications
But data volume obviously matters too! With 2,048 mocks...

Diaz Rivero & Dvorkin 

(2020)



Implications
WL in particular is interesting because:

- Seems to have some significant non-Gaussianities, even on scales where cosmic variance 

doesn’t dominate (see also Sellentin+ 2016, 2018 1 & 2).

- Some WL works (inadvertently) Gaussianize the data (e.g. combining bins) before inferring 

parameters, potentially destroying useful information, and conclude NG doesn’t shift 

parameters (Lin+ 2019, Taylor+ 2019, Alsing+ 2019).

- Shortcomings of ICA in addressing pairwise non-Gaussian correlations in WL data: works 

have used ICA dimensionality reduction before inferring parameters from weak lensing data 

and concluded NG don’t impact parameter constraints considerably (Gupta+, 2018).
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Questions? 


