



# the Extended Baryon Oscillation Spectroscopic Survey

### Kyle Dawson University of Utah

### on Behalf of the eBOSS Collaboration







### Outline

- Background and Survey Overview (completed March 1, 2019!)
- Measurements of BAO and RSD
- Cosmology Interpretation





## **Cosmological Background**



- Evolving distribution of matter in Universe
  - Cosmic expansion and growth of structure
- Derived Measurements: H(z),  $D_M(z)$ ,  $f\sigma_8(z)$ 
  - Physics of dark energy
  - Composition of the Universe
  - Neutrino mass, Inflation, Laws of gravity





- Friedmann Equation:  $H^2(a) = \frac{8\pi G}{3}\rho(a) \frac{kc^2}{a^2}$ 
  - Energy Components: dark (dm), baryonic (b), and total matter (m), neutrinos, photons, dark energy, and curvature

$$\begin{split} \Omega_x &= \frac{\rho_x}{\rho_{\rm crit}} = \frac{8\pi G}{3H^2} \rho_x \quad \Omega_k(a) = -\frac{kc^2}{a^2 H^2(a)} \\ \text{Dark Energy equation of state} \\ w(a) &= \begin{cases} -1 \\ w \\ w_0 + w_a(1-a) \end{cases} \\ \frac{\rho_{\rm DE}(a)}{\rho_{\rm DE,0}} &= \begin{cases} 1 \\ a^{-3(1+w)} \\ a^{-3(1+w_0+w_a)} \exp[-3w_a(1-a)] \end{cases} \end{split}$$



BAO measure angular diameter distance and H(z)

$$H(z) = c\Delta z/r_d$$
  

$$D_H(z) = \frac{c}{H(z)}$$
  

$$D_C(z) = \frac{c}{H_0} \int_0^z dz' \frac{H_0}{H(z')}$$
  

$$D_M(z) = \frac{c}{H_0} S_k \left(\frac{D_C(z)}{c/H_0}\right)$$

TT() A (





- Scale-independent growth factor:  $\delta(\mathbf{x}, t) = D(t)\delta(\mathbf{x}, t_0)$
- Linear growth equation:  $\ddot{D}+2H(z)\dot{D}-\frac{3}{2}\Omega_mH_0^2(1+z)^3D=0$
- Linear Growth Rate:







Direct tracers Galaxies and quasars (z<2.1) Absorption in quasar spectra by foreground Lyman-alpha forest (z>2.1)





Kyle Dawson

### Cosmology with Spectroscopy





## **Survey Overview**

**BOSS:** Dawson, Schlegel, et al., 2013, "The Baryon Oscillation Spectroscopic Survey of SDSS-III"

eBOSS: Dawson, Kneib, Percival, et al., 2016, "The SDSS-IV Extended Baryon Oscillation Spectroscopic Survey: Overview and Early Data"



- Target selection: well-understood selection functions near imaging limits
- Mountain Operations: <1% downtime, near-optimal efficiency
- Uniformity: tuned spectroscopic exposure times to real-time data quality
- Data reduction: extractions of spectra to S/N<1 with negligible spurious signal
- **Redshift classification:** >90% efficiency, even for faintest targets
- Catalog creation: imaging/spectroscopic systematics sub-dominant



**BOSS (2009-2014)** 



eBOSS (2014-2019)





Local MP4



### **BAO** and **RSD** Measurements

Kyle Dawson





### Each synthetic product serves a different science target

Approximate Mocks: covariances, observational systematics High-Fidelity Mocks: theoretical systematics, analysis pipeline validation, performance & accuracy, analysis biases



- Modeling, observational artifacts, and fiducial cosmology
- Larger affect on fsigma8 estimates than on BAO estimates
  - ~0.5 sigma on LRG and ELG measurements
  - ~0.3 sigma on quasar measurements
  - Added in quadrature to statistical errors
- No additional increase in Lyman-alpha BAO studies: systematics determined to be sub-dominant



- BAO measured w/reconstruction in LRG and ELG
- BAO/RSD measured in full shape with LRG/ELG/QSO
- Configuration Space and Fourier Space Measurements for each tracer
- Combine BAO/RSD results using mock-calibrated covariance matrices



### All BAO and RSD Measurements



#### LBL Research Progress Meeting – July 9, 2020 18

#### Kyle Dawson



### Final Results (Primary Science Drivers)





- Aggregate precision of the expansion history measurements is 0.70% at redshifts z < 1</li>
- Aggregate precision of the expansion history measurements is 1.19% at redshifts z > 1
- Aggregate precision of the growth measurements (fsigma8) is
   4.78% over the redshift interval 0 < z < 1.5.</li>

https://test.sdss.org/final-bao-and-rsd-measurements/



## **Cosmology Interpretation**

eBOSS Collaboration, "The Completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey: Cosmological Implications from two Decades of Spectroscopic Surveys at the Apache Point observatory", to appear on arXiv July 20, 2020

Special thanks to Eva-Maria Mueller, Andreu Font-Ribera, Anze Slosar, and Zheng Zheng











- 2009-2019
  - Conclusion of Stage-III Dark Energy surveys with spectroscopy
  - Over 4M spectra obtained (more spectra than rest of the world combined)
  - Sample larger range of redshift than any other probe
  - Percent-level precision on BAO distance scale at each redshift
  - Growth measurements to z<1.5
- Key Cosmology Questions
  - Dark Energy and curvature: role of BAO?
  - H0 tension: robustness of BAO estimates
  - What do we learn from growth?
  - Bounds on the neutrino mass
  - Net advances in cosmology from Stage-III programs



### Extensions to LCDM

| -<br>-         | Parameter                 | Definition                                                                     |  |  |  |
|----------------|---------------------------|--------------------------------------------------------------------------------|--|--|--|
|                | $\Omega_m$                | density parameter of matter                                                    |  |  |  |
|                | $\Omega_c$                | density parameter of cold dark matter                                          |  |  |  |
|                | $\Omega_b$                | density parameter of baryons                                                   |  |  |  |
|                | $\Omega_{\Lambda}$        | density parameter of cosmological constant                                     |  |  |  |
|                | $\Omega_{\rm DE}$         | density parameter of dark energy                                               |  |  |  |
| 0              | $\Omega_k$                | curvature parameter                                                            |  |  |  |
|                | $\omega_c = \Omega_c h^2$ | physical density parameter of cold dark matter                                 |  |  |  |
|                | $\omega_b = \Omega_b h^2$ | physical density parameter of baryons                                          |  |  |  |
|                | $H_0$                     | current expansion rate (Hubble constant)                                       |  |  |  |
|                | h                         | $H_0/100 \rm km  s^{-1} Mpc^{-1}$                                              |  |  |  |
|                | $\theta_{\mathrm{MC}}$    | approximate angular scale of sound horizon (CosmoMC)                           |  |  |  |
|                | $A_s$                     | power of the primordial curvature perturbations at $k = 0.05 \text{Mpc}^{-1}$  |  |  |  |
|                | $\sigma_8$                | amplitude of matter fluctuation on $8h^{-1}$ Mpc comoving scale                |  |  |  |
|                | $n_s$                     | power-law index of the scalar spectrum                                         |  |  |  |
|                | $	au^{-}$                 | Thomson scattering optical depth due to reionization                           |  |  |  |
|                | $N_{\rm eff}$             | effective number of neutrino-like relativistic degrees of freedom              |  |  |  |
| w              | $w(w_0)$                  | dark energy equation of state, $w = p_{\rm DE}/\rho_{\rm DE}$ ( $c = 1$ units) |  |  |  |
| w <sub>a</sub> | wa                        | time derivative of dark energy equation of state parameter (eq.6)              |  |  |  |
| nu             | $\sum m_{\nu}$            | sum of neutrino masses                                                         |  |  |  |



### Legacy of BOSS/eBOSS

- 2009-2019
  - Conclusion of Stage-III Dark Energy surveys with spectroscopy
  - Over 4M spectra obtained (more spectra than rest of the world combined)
  - Sample larger range of redshift than any other probe
  - Percent-level precision on BAO distance scale at each redshift
  - Growth measurements to z<1.5
- Key Cosmology Questions
  - Dark Energy and curvature: role of BAO?
    - H0 tension: robustness of BAO estimates
    - What do we learn from growth?
    - Bounds on the neutrino mass
    - Net advances in cosmology from Stage-III programs



- BAO-only from SDSS/BOSS/eBOSS
- Pantheon sample of SNe (Scolnic et al, 2018)
- Planck 2018 results (Planck Collaboration, 2018)





### oLCDM Cosmology

- BAO measurements alone  $\rightarrow$  constraint on the dark energy density with a ~8 sigma confidence detection.
- Combined with Planck temperature and polarization data  $\rightarrow$  order of magnitude improvement on curvature constraints
- Strong evidence for a nearly flat geometry  $\rightarrow$  roughly one order of magnitude within the fundamental limit set by cosmic variance.





- BAO-only offer tighter constraints than SNe-only
- Degeneracies well-aligned for SNe+CMB
  - SNe+CMB vs BAO+CMB: I.2X better in  $\Omega_{\Lambda}$ ; I.5X in w





### **One Parameter Extensions**

|                          |                    | $\Omega_{\mathrm{DE}}$       | $H_0[{\rm km/s/Mpc}]$                                                       | $\Omega_k$                    | w                          | $\Sigma m_{\nu} [\mathrm{eV}]$ |  |  |  |
|--------------------------|--------------------|------------------------------|-----------------------------------------------------------------------------|-------------------------------|----------------------------|--------------------------------|--|--|--|
|                          | CMB T&P            | $0.6836 \pm 0.0084$          | $67.29 \pm 0.61$                                                            | —                             |                            | —                              |  |  |  |
| ACDM                     | CMB T&P + BAO      | $0.6881 \pm 0.0059$          | $67.61 \pm 0.44$                                                            | -                             |                            |                                |  |  |  |
| ACDM                     | CMB T&P + SN       | $0.6856 \pm 0.0078$          | $67.43 \pm 0.57$                                                            | _                             | <u> </u>                   | _                              |  |  |  |
|                          | CMB T&P + BAO + SN | $0.6891 \pm 0.0057$          | $67.68 \pm 0.42$                                                            | -                             | -                          | -                              |  |  |  |
| 8                        | CMB T&P            | $0.561^{+0.050}_{-0.041}$    | $54.5^{+3.3}_{-3.9}$                                                        | $-0.044^{+0.019}_{-0.014}$    |                            |                                |  |  |  |
| oΛCDM                    | CMB T&P + BAO      | $0.6882 \pm 0.0060$          | $67.59 \pm 0.61$                                                            | $-0.0001 \pm 0.0018$          |                            | -                              |  |  |  |
| ONODW                    | CMB T&P + SN       | $0.670\pm0.017$              | $65.2\pm2.2$                                                                | $-0.0061^{+0.0062}_{-0.0054}$ |                            | -                              |  |  |  |
|                          | CMB T&P + BAO + SN | $0.6891 \pm 0.0057$          | $67.67 \pm 0.60$                                                            | $-0.0001 \pm 0.0018$          |                            |                                |  |  |  |
|                          | CMB T&P            | $0.801^{+0.057}_{-0.022}$    | > 82.3                                                                      | _                             | $-1.58^{+0.16}_{-0.35}$    | —                              |  |  |  |
| wCDM                     | CMB T&P + BAO      | $0.694 \pm 0.012$            | $68.4^{+1.4}_{-1.5}$                                                        | -                             | $-1.034_{-0.053}^{+0.061}$ | —                              |  |  |  |
| webm                     | CMB T&P + SN       | $0.692 \pm 0.010$            | $68.3 \pm 1.1$                                                              | —                             | $-1.035 \pm 0.037$         | -                              |  |  |  |
|                          | CMB T&P + BAO + SN | $0.6929 \pm 0.0075$          | $68.21 \pm 0.82$                                                            | —                             | $-1.026 \pm 0.033$         | _                              |  |  |  |
|                          | CMB T&P            | $0.680^{+0.016}_{-0.0087}$   | $\begin{array}{r} 67.0^{+1.2}_{-0.67} \\ 67.70^{+0.53}_{-0.48} \end{array}$ | _                             | <u> </u>                   | < 0.268                        |  |  |  |
| $\nu \Lambda \text{CDM}$ | CMB T&P + BAO      | $0.6890^{+0.0069}_{-0.0061}$ | $67.70_{-0.48}^{+0.53}$                                                     |                               |                            | < 0.134                        |  |  |  |
| PRODM                    | CMB T&P + SN       | $0.686^{+0.011}_{-0.0083}$   | $67.47_{-0.65}^{+0.83}$                                                     | -                             | —                          | < 0.174                        |  |  |  |
|                          | CMB T&P + BAO + SN | $0.6898 \pm 0.0061$          | $67.76\pm0.47$                                                              | —                             |                            | < 0.125                        |  |  |  |
| 24                       | ic 2               | 8. Y                         |                                                                             | S                             | 78                         |                                |  |  |  |



### Legacy of BOSS/eBOSS

- 2009-2019
  - Conclusion of Stage-III Dark Energy surveys with spectroscopy
  - Over 4M spectra obtained (more spectra than rest of the world combined)
  - Sample larger range of redshift than any other probe
  - Percent-level precision on BAO distance scale at each redshift
  - Growth measurements to z<1.5
- Key Cosmology Questions
  - Dark Energy and curvature: role of BAO?
  - H0 tension: robustness of BAO estimates
    - What do we learn from growth?
    - Bounds on the neutrino mass
    - Net advances in cosmology from Stage-III programs



- BAO in isolation  $\rightarrow$  relative measures of expansion history
- BAO in combination with early Universe physics  $\rightarrow$  calibrated ruler
- Calibrated ruler  $\rightarrow$  absolute expansion rates, including current expansion rate, H<sub>0</sub>
  - Standard physics (e.g. 3 neutrino species)  $\rightarrow$  baryon density, matter density, and CMB temperature offer calibration of standard ruler
  - CMB or Big Bang Nucleosynthesis can offer baryon density
  - Matter density from CMB or distance probes

$$H(z) = c\Delta z/r_d$$
  

$$D_H(z) = \frac{c}{H(z)}$$

$$r_d = \int_{z_d}^{\infty} \frac{c_s(z)}{H(z)} dz$$



### New Physics in Expansion History?

- BAO  $\rightarrow$  insensitive to the strict cosmological priors in CMB-only estimates.
- BAO  $\rightarrow$  insensitive to CMB anisotropies if using LCDM and BBN



#### Kyle Dawson



- H0 from BAO  $\rightarrow \sim 10\%$  smaller than those from the Cepheid distance ladder and strong-lensing time delays.
- `H0 tension' can not be restricted to systematic errors in Planck or to the strict assumptions of the LCDM model  $\rightarrow$  new physics?





- 2009-2019
  - Conclusion of Stage-III Dark Energy surveys with spectroscopy
  - Over 4M spectra obtained (more spectra than rest of the world combined)
  - Sample larger range of redshift than any other probe
  - Percent-level precision on BAO distance scale at each redshift
  - Growth measurements to z<1.5
- Key Cosmology Questions
  - Dark Energy and curvature: role of BAO?
  - H0 tension: robustness of BAO estimates
  - What do we learn from growth?
  - Bounds on the neutrino mass
  - Net advances in cosmology from Stage-III programs



- RSD-only from SDSS/BOSS/eBOSS
- Weak Lensing (WL) from DES (Troxel et al, 2018) and Planck
- Planck temperature and polarization (Planck Collaboration, 2018)





- Growth measurements  $\rightarrow$  factor two to three improvements in precision compared to CMB temperature and polarization data alone.
- Weak lensing data instill a preference for a flat geometry
- RSD instill a preference for a cosmological constant.





- Analogy to H0 test: local fluctuation amplitude vs CMB fluctuation amplitude
- RSD + WL  $\rightarrow$  current amplitude of matter fluctuations.
- LCDM predictions and GR  $\rightarrow$  consistent picture of structure growth





- Differential measurements of growth to test modified gravity
- Allow linear perturbations to Poisson equation
  - RSD measurements probe the gravitational response of matter
  - WL measurements probe that of photons

$$\begin{split} k^{2}\Psi &= -4\pi Ga^{2}(1+\mu(a))\rho\delta \\ k^{2}(\Psi+\Phi) &= -8\pi Ga^{2}(1+\Sigma(a))\rho\delta \\ \mu(z) &= \mu_{0}\frac{\Omega_{\Lambda}(z)}{\Omega_{\Lambda}}, \quad \Sigma(z) &= \Sigma_{0}\frac{\Omega_{\Lambda}(z)}{\Omega_{\Lambda}} \\ & \begin{array}{c} 0.5 \\ 0.0 \\ g \end{array} \\ & \begin{array}{c} 0.5 \\ 0.0 \\ g \end{array} \\ & \begin{array}{c} 0.5 \\ 0.0 \\ g \end{array} \\ & \begin{array}{c} 0.5 \\ 0.0 \\ g \end{array} \\ & \begin{array}{c} 0.5 \\ 0.0 \\ g \end{array} \\ & \begin{array}{c} 0.5 \\ 0.0 \\ g \end{array} \\ & \begin{array}{c} 0.5 \\ 0.0 \\ g \end{array} \\ & \begin{array}{c} 0.5 \\ 0.0 \\ g \end{array} \\ & \begin{array}{c} 0.5 \\ 0.0 \\ g \end{array} \\ & \begin{array}{c} 0.5 \\ 0.0 \\ g \end{array} \\ & \begin{array}{c} 0.5 \\ 0.0 \\ g \end{array} \\ & \begin{array}{c} 0.5 \\ 0.0 \\ g \end{array} \\ & \begin{array}{c} 0.5 \\ 0.0 \\ g \end{array} \\ & \begin{array}{c} 0.5 \\ 0.0 \\ g \end{array} \\ & \begin{array}{c} 0.5 \\ 0.0 \\ g \end{array} \\ & \begin{array}{c} 0.5 \\ g \end{array} \\ & \begin{array}{c} 0.0 \\ g \end{array} \\ \\ & \begin{array}{c} 0.0 \\ g \end{array} \\ \\ \\ \end{array}$$



## Legacy of BOSS/eBOSS

- 2009-2019
  - Conclusion of Stage-III Dark Energy surveys with spectroscopy
  - Over 4M spectra obtained (more spectra than rest of the world combined)
  - Sample larger range of redshift than any other probe
  - Percent-level precision on BAO distance scale at each redshift
  - Growth measurements to z<1.5
- Key Cosmology Questions
  - Dark Energy and curvature: role of BAO?
  - H0 tension: robustness of BAO estimates
  - What do we learn from growth?
- Bounds on the neutrino mass
  - Net advances in cosmology from Stage-III programs



- BAO + RSD from SDSS/BOSS/eBOSS
- Pantheon sample of SNe (Scolnic et al, 2018)
- Weak Lensing (WL), galaxy-galaxy lensing, clustering from DES (Abbott et al, 2018)
- Planck temperature, polarization, and lensing (Planck Collaboration, 2018)



- Planck + Pantheon SNe Ia + DES + BAO + RSD data  $\rightarrow$  tightest constraints to date
  - Uncertainty  $\rightarrow \sim$  lower bound of 60 meV allowed by neutrino oscillations
  - Relative to Planck-only  $\rightarrow$  the largest improvement in precision comes from the addition of the SDSS BAO measurements
  - RSD improve the precision by another 30%.

 $\sum m_{\nu} > 0.0588 \,\mathrm{eV}$  $\sum m_{\nu} > 0.0995 \,\mathrm{eV}$  inverted hierarchy.

normal hierarchy,





#### Neutrino Mass

Constraints on neutrino masses and relative probabilities of neutrino models.

| Model                                 | 95% upper limit [eV] | $P_{\rm inv}/P_{\rm norm}$ | $P_{\rm unphy}$ | RMS of Gaussian fit [eV] |
|---------------------------------------|----------------------|----------------------------|-----------------|--------------------------|
| Planck                                | 0.264                | 0.64                       | 0.45            | $-0.144 \pm 0.148$       |
| Planck + BAO                          | 0.131                | 0.37                       | 0.65            | $-0.048 \pm 0.081$       |
| Planck + BAO + RSD                    | 0.100                | 0.22                       | 0.77            | $-0.037 \pm 0.062$       |
| Planck + BAO + RSD (wACDM)            | 0.127                | 0.36                       | 0.70            | $-0.150 \pm 0.104$       |
| Planck + SN                           | 0.175                | 0.50                       | 0.57            | $-0.110 \pm 0.114$       |
| Planck + BAO + SN                     | 0.126                | 0.34                       | 0.67            | $-0.041 \pm 0.076$       |
| Planck + BAO + RSD + SN               | 0.099                | 0.22                       | 0.78            | $-0.036 \pm 0.060$       |
| Planck + BAO + RSD + SN (wACDM)       | 0.120                | 0.32                       | 0.71            | $-0.084 \pm 0.083$       |
| Planck + BAO + RSD + DES              | 0.132                | 0.37                       | 0.64            | $-0.039 \pm 0.079$       |
| Planck + BAO + RSD + DES (wACDM)      | 0.172                | 0.50                       | 0.58            | $-0.181 \pm 0.134$       |
| Planck + BAO + RSD + SN + DES         | 0.114                | 0.29                       | 0.72            | $-0.036 \pm 0.068$       |
| Planck + BAO + RSD + SN + DES (wACDM) | 0.140                | 0.40                       | 0.66            | $-0.100 \pm 0.096$       |



## Legacy of BOSS/eBOSS

- 2009-2019
  - Conclusion of Stage-III Dark Energy surveys with spectroscopy
  - Over 4M spectra obtained (more spectra than rest of the world combined)
  - Sample larger range of redshift than any other probe
  - Percent-level precision on BAO distance scale at each redshift
  - Growth measurements to z<1.5
- Key Cosmology Questions
  - Dark Energy and curvature: role of BAO?
  - H0 tension: robustness of BAO estimates
  - What do we learn from growth?
  - Bounds on the neutrino mass
  - Net advances in cosmology from Stage-III programs



• Pull statistics  $\rightarrow$  the full suite of BAO+RSD measurements are fully consistent with the preferred LCDM model





- BAO+RSD consistent with Planck and DES under LCDM
  - CMB and DES: sigma8 tension, Omega\_m tension, or no tension?





### Constraints from ow0waCDM

- Complementarity of BAO and SNe la → tight constraints of curvature and the dark energy equation of state
- Dark Energy Task Force
   Figure of Merit of 103
- FoM=150 predicted by DETF at conclusion of Stage-III





- ~ 1% precision estimates on the dark energy density, H0, and amplitude of matter fluctuation regardless of cosmological model
- Little degradation in curvature precision with increasing parameters
- Little degradation in neutrino mass with increasing parameters
- $w_p(z=0.36) = -1.013 + 0.029$  in w0waCDM, little degradation with  $w_a$

|                              | $\Omega_{\Lambda}$  | $H_0$            | $\sigma_8$                   | $\Omega_K$           | $w_0$                      | $w_a$                          | $\Sigma m_{ u}  [\mathrm{eV}]$                                                                                  |
|------------------------------|---------------------|------------------|------------------------------|----------------------|----------------------------|--------------------------------|-----------------------------------------------------------------------------------------------------------------|
| ACDM                         | $0.6959 \pm 0.0047$ | $68.19 \pm 0.36$ | $0.8073 \pm 0.0056$          | -                    | —                          | -                              | -                                                                                                               |
| $o\Lambda CDM$               | $0.6958 \pm 0.0048$ | $68.21 \pm 0.55$ | $0.8076 \pm 0.0065$          | $0.0001 \pm 0.0017$  |                            | 1000                           | in the second |
| wCDM                         | $0.6992 \pm 0.0066$ | $68.64 \pm 0.73$ | $0.8128 \pm 0.0092$          | () —+)               | $-1.020 \pm 0.027$         |                                |                                                                                                                 |
| owCDM                        | $0.6997 \pm 0.0069$ | $68.59 \pm 0.73$ | $0.8127 \pm 0.0091$          | $-0.0004 \pm 0.0019$ | $-1.023 \pm 0.030$         |                                | 100                                                                                                             |
| $w_0 w_a \operatorname{CDM}$ | $0.6971 \pm 0.0069$ | $68.47 \pm 0.74$ | $0.8139 \pm 0.0093$          |                      | $-0.939 \pm 0.073$         | $-0.31^{+0.28}_{-0.24}$        | <u> </u>                                                                                                        |
| $ow_0 w_a CDM$               | $0.6988 \pm 0.0072$ | $68.20 \pm 0.81$ | $0.8140 \pm 0.0093$          | $-0.0023 \pm 0.0022$ | $-0.912 \pm 0.081$         | $-0.48\substack{+0.36\\-0.30}$ |                                                                                                                 |
| $m_{\nu}\Lambda \text{CDM}$  | $0.6975 \pm 0.0053$ | $68.34 \pm 0.43$ | $0.8115^{+0.0092}_{-0.0068}$ |                      | -                          | 1.200                          | < 0.111(95%)                                                                                                    |
| $m_{\nu}$ wCDM               | $0.6993 \pm 0.0067$ | $68.65 \pm 0.73$ | $0.813^{+0.011}_{-0.0098}$   | —                    | $-1.019^{+0.034}_{-0.029}$ | —                              | < 0.161(95%)                                                                                                    |



# A Decade of Progress (nuow0CDM)

- Stage-II (2010): WMAP + JLA SNe + SDSS/2dFGRS BAO
- SDSS: 50X decrease in curvature/H0/sigma8/w0/neutrino mass posterior volume relative to Stage-II
  - largest improvements in curvature, H0, and neutrino mass precision
  - Stage-II + SDSS: H0 = 67.60 +/- 0.92 km/s/Mpc
- Planck+Pantheon+DES: additional 20X improvent  $\rightarrow$  average 4X per parameter





## Summary

- **BOSS**/eBOSS
  - Conclusion of Stage-III Dark Energy surveys with spectroscopy
  - BAO measurements over 11 Gyr & RSD measurements to z<1.5

#### Cosmology

- BAO complement SNe, but higher precision in isolation
- BAO allow robust estimates of H0 not possible otherwise
- RSD complement WL  $\rightarrow$  favor LCDM model with Planck and support General Relativity
- SDSS largest role in advancing neutrino mass constraints: I-sigma uncertainty now comparable to minimum allowed mass
- LCDM model is preferred by all data: SDSS leads the way in improving precision of late-time cosmological model since 2010

Special thanks to our partners: DOE Office of Science, SDSS partnering institutions, Alfred P. Sloan Foundation, Utah Center for High Performance Computing (CHPC), and the National Energy Research Scientific Computing Center (NERSC).