

the Extended Baryon Oscillation Spectroscopic Survey

Kyle Dawson University of Utah

on Behalf of the eBOSS Collaboration

Outline

- Background and Survey Overview (completed March 1, 2019!)
- Measurements of BAO and RSD
- **Cosmology Interpretation**

Cosmological Background

<Your name here> AAS - eBOSS Session - Jan 7 2020 Kyle Dawson LBL Research Progress Meeting – July 9, 2020 Pauline Zarrouk 3

- **● Evolving distribution of matter in Universe**
	- Cosmic expansion and growth of structure
- **•** Derived Measurements: $H(z)$, $D_M(z)$, $f\sigma₈(z)$
	- Physics of dark energy
	- Composition of the Universe
	- Neutrino mass, Inflation, Laws of gravity

- Friedmann Equation: $H^2(a) = \frac{8\pi G}{3} \rho(a) \frac{kc^2}{a^2}$
	- Energy Components: dark (dm), baryonic (b), and total matter (m), neutrinos, photons, dark energy, and curvature

$$
\Omega_x = \frac{\rho_x}{\rho_{\text{crit}}} = \frac{8\pi G}{3H^2} \rho_x \quad \Omega_k(a) = -\frac{kc^2}{a^2 H^2(a)}
$$
\nOrk Energy equation of state

\n
$$
w(a) = \begin{cases} -1\\ w\\ w_0 + w_a(1-a) \end{cases}
$$
\n
$$
\frac{\rho_{\text{DE}}(a)}{\rho_{\text{DE},0}} = \begin{cases} 1\\ a^{-3(1+w)}\\ a^{-3(1+w_0+w_a)} \exp[-3w_a(1-a)] \end{cases}
$$

 BAO measure angular diameter distance and $H(z)$

$$
H(z) = c\Delta z/r_d
$$

\n
$$
D_H(z) = \frac{c}{H(z)}
$$

\n
$$
D_C(z) = \frac{c}{H_0} \int_0^z dz' \frac{H_0}{H(z')}
$$

\n
$$
D_M(z) = \frac{c}{H_0} S_k \left(\frac{D_C(z)}{c/H_0}\right)
$$

 $\mathbf{r} \mathbf{r}$ λ λ

- Scale-independent growth factor: $\delta(\mathbf{x},t) = D(t)\delta(\mathbf{x},t_0)$
- Linear growth equation:
 $\ddot{D} + 2H(z)\dot{D} \frac{3}{2}\Omega_m H_0^2 (1+z)^3 D = 0$
- Linear Growth Rate:
- RSD measure f sigma8

Direct tracers **Absorption** in quasar spectra by Galaxies and quasars (z<2.1) foreground Lyman-alpha forest (z>2.1)

Cosmology with Spectroscopy

<Your name here> AAS - eBOSS Session - Jan 7 2020 Kyle Dawson LBL Research Progress Meeting – July 9, 2020 9

Survey Overview

BOSS: Dawson, Schlegel, et al., 2013, "The Baryon Oscillation Spectroscopic Survey of SDSS-III"

eBOSS: Dawson, Kneib, Percival, et al., 2016, "The SDSS-IV Extended Baryon Oscillation Spectroscopic Survey: Overview and Early Data"

- **Target selection:** well-understood selection functions near imaging limits
- **Mountain Operations:** <1% downtime, near-optimal efficiency
- **Uniformity:** tuned spectroscopic exposure times to real-time data quality
- **Data reduction:** extractions of spectra to S/N<1 with negligible spurious signal
- **Redshift classification:** >90% efficiency, even for faintest targets
- **Catalog creation:** imaging/spectroscopic systematics sub-dominant

BOSS (2009-2014) eBOSS (2014-2019)

Local MP4

BAO and RSD Measurements

<Your name here> AAS - eBOSS Session - Jan 7 2020 Kyle Dawson LBL Research Progress Meeting – July 9, 2020 Pauline Zarrouk 14

Each synthetic product serves a different science target

Approximate Mocks: covariances, observational systematics **High-Fidelity Mocks:** theoretical systematics, analysis pipeline validation, performance & accuracy, analysis biases

- Modeling, observational artifacts, and fiducial cosmology
- Larger affect on fsigma8 estimates than on BAO estimates
	- ~0.5 sigma on LRG and ELG measurements
	- \cdot \sim 0.3 sigma on quasar measurements
	- Added in quadrature to statistical errors
- No additional increase in Lyman-alpha BAO studies: systematics determined to be sub-dominant

- BAO measured w/reconstruction in LRG and ELG
- BAO/RSD measured in full shape with LRG/ELG/QSO
- Configuration Space and Fourier Space Measurements for each tracer
- Combine BAO/RSD results using mock-calibrated covariance matrices

All BAO and RSD Measurements

<Your name here> AAS - eBOSS Session - Jan 7 2020 Kyle Dawson LBL Research Progress Meeting – July 9, 2020 Pauline Zarrouk 18

Final Results (Primary Science Drivers)

<Your name here> AAS - eBOSS Session - Jan 7 2020 Kyle Dawson LBL Research Progress Meeting – July 9, 2020 Pauline Zarrouk 19

- Aggregate precision of the expansion history measurements is 0.70% at redshifts $z < 1$
- Aggregate precision of the expansion history measurements is 1.19% at redshifts z > 1
- Aggregate precision of the growth measurements (fsigma8) is 4.78% over the redshift interval $0 < z < 1.5$.

<https://test.sdss.org/final-bao-and-rsd-measurements/>

Cosmology Interpretation

eBOSS Collaboration, "The Completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey: Cosmological Implications from two Decades of Spectroscopic Surveys at the Apache Point observatory", to appear on arXiv July 20, 2020

Special thanks to Eva-Maria Mueller, Andreu Font-Ribera, Anze Slosar, and Zheng Zheng

<Your name here> AAS - eBOSS Session - Jan 7 2020 Kyle Dawson LBL Research Progress Meeting – July 9, 2020 Pauline Zarrouk 21

Legacy of BOSS/eBOSS

- 2009-2019
	- Conclusion of Stage-III Dark Energy surveys with spectroscopy
	- Over 4M spectra obtained (more spectra than rest of the world combined)
	- Sample larger range of redshift than any other probe
	- Percent-level precision on BAO distance scale at each redshift
	- Growth measurements to z <1.5
- **Key Cosmology Questions**
	- Dark Energy and curvature: role of BAO?
	- H0 tension: robustness of BAO estimates
	- What do we learn from growth?
	- Bounds on the neutrino mass
	- Net advances in cosmology from Stage-III programs

Extensions to LCDM

Legacy of BOSS/eBOSS

- 2009-2019
	- Conclusion of Stage-III Dark Energy surveys with spectroscopy
	- Over 4M spectra obtained (more spectra than rest of the world combined)
	- Sample larger range of redshift than any other probe
	- Percent-level precision on BAO distance scale at each redshift
	- Growth measurements to z <1.5
- **Key Cosmology Questions**
- Dark Energy and curvature: role of BAO?
	- H0 tension: robustness of BAO estimates
	- What do we learn from growth?
	- Bounds on the neutrino mass
	- Net advances in cosmology from Stage-III programs

- BAO-only from SDSS/BOSS/eBOSS
- Pantheon sample of SNe (Scolnic et al, 2018)
- Planck 2018 results (Planck Collaboration, 2018)

oLCDM Cosmology

- BAO measurements alone \rightarrow constraint on the dark energy density with a ~8 sigma confidence detection.
- Combined with Planck temperature and polarization data \rightarrow order of magnitude improvement on curvature constraints
- Strong evidence for a nearly flat geometry \rightarrow roughly one order of magnitude within the fundamental limit set by cosmic variance.

- BAO-only offer tighter constraints than SNe-only
- Degeneracies well-aligned for SNe+CMB
	- SNe+CMB vs BAO+CMB: 1.2X better in Ω_{Λ} ; 1.5X in w

One Parameter Extensions

Legacy of BOSS/eBOSS

- 2009-2019
	- Conclusion of Stage-III Dark Energy surveys with spectroscopy
	- Over 4M spectra obtained (more spectra than rest of the world combined)
	- Sample larger range of redshift than any other probe
	- Percent-level precision on BAO distance scale at each redshift
	- Growth measurements to z <1.5
- **Key Cosmology Questions**
	- Dark Energy and curvature: role of BAO?
	- H0 tension: robustness of BAO estimates
		- What do we learn from growth?
		- Bounds on the neutrino mass
		- Net advances in cosmology from Stage-III programs

- BAO in isolation \rightarrow relative measures of expansion history
- BAO in combination with early Universe physics \rightarrow calibrated ruler
- Calibrated ruler \rightarrow absolute expansion rates, including current expansion rate, H₀
	- Standard physics (e.g. 3 neutrino species) \rightarrow baryon density, matter density, and CMB temperature offer calibration of standard ruler
	- CMB or Big Bang Nucleosynthesis can offer baryon density
	- Matter density from CMB or distance probes

$$
H(z) = c\Delta z/r_d
$$

$$
D_H(z) = \frac{c}{H(z)}
$$

$$
r_d = \int_{z_d}^{\infty} \frac{c_s(z)}{H(z)} dz
$$

New Physics in Expansion History?

- $BAO \rightarrow$ insensitive to the strict cosmological priors in CMB-only estimates.
- $BAO \rightarrow$ insensitive to CMB anisotropies if using LCDM and BBN

<Your name here> AAS - eBOSS Session - Jan 7 2020 Kyle Dawson LBL Research Progress Meeting – July 9, 2020 Pauline Zarrouk 31

- $H0$ from BAO \rightarrow ~10% smaller than those from the Cepheid distance ladder and strong-lensing time delays.
- `H0 tension' can not be restricted to systematic errors in Planck or to the strict assumptions of the LCDM model \rightarrow new physics?

Legacy of BOSS/eBOSS

- 2009-2019
	- Conclusion of Stage-III Dark Energy surveys with spectroscopy
	- Over 4M spectra obtained (more spectra than rest of the world combined)
	- Sample larger range of redshift than any other probe
	- Percent-level precision on BAO distance scale at each redshift
	- Growth measurements to z <1.5
- **Key Cosmology Questions**
	- Dark Energy and curvature: role of BAO?
	- H0 tension: robustness of BAO estimates
	- What do we learn from growth?
	- Bounds on the neutrino mass
	- Net advances in cosmology from Stage-III programs

- RSD-only from SDSS/BOSS/eBOSS
- Weak Lensing (WL) from DES (Troxel et al, 2018) and Planck
- Planck temperature and polarization (Planck Collaboration, 2018)

- Growth measurements \rightarrow factor two to three improvements in precision compared to CMB temperature and polarization data alone.
- Weak lensing data instill a preference for a flat geometry
- RSD instill a preference for a cosmological constant.

- Analogy to H0 test: local fluctuation amplitude vs CMB fluctuation amplitude
- $RSD + WL \rightarrow$ current amplitude of matter fluctuations.
- LCDM predictions and GR \rightarrow consistent picture of structure growth

- Differential measurements of growth to test modified gravity
- Allow linear perturbations to Poisson equation
	- RSD measurements probe the gravitational response of matter
	- WL measurements probe that of photons

$$
k^2\Psi = -4\pi Ga^2(1+\mu(a))\rho\delta
$$

\n
$$
k^2(\Psi + \Phi) = -8\pi Ga^2(1+\Sigma(a))\rho\delta
$$

\n
$$
\mu(z) = \mu_0 \frac{\Omega_{\Lambda}(z)}{\Omega_{\Lambda}}, \quad \Sigma(z) = \Sigma_0 \frac{\Omega_{\Lambda}(z)}{\Omega_{\Lambda}}
$$

\n
$$
k^2(\Psi + \Phi) = -8\pi Ga^2(1+\Sigma(a))\rho\delta
$$

\n
$$
k^2(\Psi + \Phi) = -8\pi Ga^2(1+\Sigma(a))\rho\delta
$$

\n
$$
k^2(\Psi + \Phi) = -8\pi Ga^2(1+\Sigma(a))\rho\delta
$$

\n
$$
k^2(\Psi + \Phi) = -8\pi Ga^2(1+\Sigma(a))\rho\delta
$$

\n
$$
k^2(\Psi + \Phi) = -8\pi Ga^2(1+\Sigma(a))\rho\delta
$$

\n
$$
k^2(\Psi + \Phi) = -8\pi Ga^2(1+\Sigma(a))\rho\delta
$$

\n
$$
k^2(\Psi + \Phi) = -8\pi Ga^2(1+\Sigma(a))\rho\delta
$$

\n
$$
k^2(\Psi + \Phi) = -8\pi Ga^2(1+\Sigma(a))\rho\delta
$$

\n
$$
k^2(\Psi + \Phi) = -8\pi Ga^2(1+\Sigma(a))\rho\delta
$$

\n
$$
k^2(\Psi + \Phi) = -8\pi Ga^2(1+\Sigma(a))\rho\delta
$$

\n
$$
k^2(\Psi + \Phi) = -8\pi Ga^2(1+\Sigma(a))\rho\delta
$$

\n
$$
k^2(\Psi + \Phi) = -8\pi Ga^2(1+\Sigma(a))\rho\delta
$$

\n
$$
k^2(\Psi + \Phi) = -8\pi Ga^2(1+\Sigma(a))\rho\delta
$$

\n
$$
k^2(\Psi + \Phi) = -8\pi Ga^2(1+\Sigma(a))\rho\delta
$$

\n
$$
k^2(\Psi + \Phi) = -8\pi Ga^2(1+\Sigma(a))\rho\delta
$$

\n
$$
k^2(\Psi + \Phi) = -8\pi Ga^2(1+\Sigma(a))\rho\delta
$$

\n<math display="block</math>

Legacy of BOSS/eBOSS

- 2009-2019
	- Conclusion of Stage-III Dark Energy surveys with spectroscopy
	- Over 4M spectra obtained (more spectra than rest of the world combined)
	- Sample larger range of redshift than any other probe
	- Percent-level precision on BAO distance scale at each redshift
	- Growth measurements to z <1.5
- **Key Cosmology Questions**
	- Dark Energy and curvature: role of BAO?
	- H0 tension: robustness of BAO estimates
	- What do we learn from growth?
- Bounds on the neutrino mass
	- Net advances in cosmology from Stage-III programs

- BAO + RSD from SDSS/BOSS/eBOSS
- Pantheon sample of SNe (Scolnic et al, 2018)
- Weak Lensing (WL), galaxy-galaxy lensing, clustering from DES (Abbott et al, 2018)
- Planck temperature, polarization, and lensing (Planck Collaboration, 2018)

- Planck + Pantheon SNe $Ia + DES + BAO + RSD$ data \rightarrow tightest constraints to date
	- Uncertainty $\rightarrow \sim$ lower bound of 60 meV allowed by neutrino oscillations
	- Relative to Planck-only \rightarrow the largest improvement in precision comes from the addition of the SDSS BAO measurements
	- RSD improve the precision by another 30%.

 $\begin{aligned} \sum m_{\nu} > 0.0588 \, \mathrm{eV} \qquad \text{normal hierarchy,} \\ \sum m_{\nu} > 0.0995 \, \mathrm{eV} \qquad \text{inverted hierarchy.} \end{aligned}$

Neutrino Mass

Constraints on neutrino masses and relative probabilities of neutrino models.

Legacy of BOSS/eBOSS

- 2009-2019
	- Conclusion of Stage-III Dark Energy surveys with spectroscopy
	- Over 4M spectra obtained (more spectra than rest of the world combined)
	- Sample larger range of redshift than any other probe
	- Percent-level precision on BAO distance scale at each redshift
	- Growth measurements to z <1.5
- **Key Cosmology Questions**
	- Dark Energy and curvature: role of BAO?
	- H0 tension: robustness of BAO estimates
	- What do we learn from growth?
	- Bounds on the neutrino mass
	- Net advances in cosmology from Stage-III programs

Pull statistics \rightarrow the full suite of BAO+RSD measurements are fully consistent with the preferred LCDM model

- BAO+RSD consistent with Planck and DES under LCDM
	- CMB and DES: sigma8 tension, Omega_m tension, or no tension?

Constraints from ow0waCDM

- Complementarity of BAO and SNe $Ia \rightarrow t$ ight constraints of curvature and the dark energy equation of state
- Dark Energy Task Force Figure of Merit of 103
- FoM=150 predicted by DETF at conclusion of Stage-III

- [∼]1% precision estimates on the dark energy density, H0, and amplitude of matter fluctuation regardless of cosmological model
- Little degradation in curvature precision with increasing parameters
- Little degradation in neutrino mass with increasing parameters
- $w_p(z=0.36) = -1.013 + (-0.029)$ in w0waCDM, little degradation with w_a

A Decade of Progress (nuow0CDM)

- Stage-II (2010): WMAP + JLA SNe + SDSS/2dFGRS BAO
- SDSS: 50X decrease in curvature/H0/sigma8/w0/neutrino mass posterior volume relative to Stage-II
	- largest improvements in curvature, H0, and neutrino mass precision
	- Stage-II + SDSS: $H0 = 67.60 +1$ 0.92 km/s/Mpc
- Planck+Pantheon+DES: additional 20X improvent \rightarrow average 4X per parameter

Summary

- **BOSS/eBOSS**
	- Conclusion of Stage-III Dark Energy surveys with spectroscopy
	- BAO measurements over 11 Gyr & RSD measurements to z<1.5

• **Cosmology**

- BAO complement SNe, but higher precision in isolation
- BAO allow robust estimates of H0 not possible otherwise
- RSD complement $WL \rightarrow$ favor LCDM model with Planck and support General Relativity
- SDSS largest role in advancing neutrino mass constraints: 1-sigma uncertainty now comparable to minimum allowed mass
- LCDM model is preferred by all data: SDSS leads the way in improving precision of late-time cosmological model since 2010

Special thanks to our partners: DOE Office of Science, SDSS partnering institutions, Alfred P. Sloan Foundation, Utah Center for High Performance Computing (CHPC), and the National Energy Research Scientific Computing Center (NERSC).