Galaxies in the Axiverse

Neal Dalal Perimeter Institute

With Andrey Kravtsov (U. Chicago)

Dark Matter

- Most of the mass that clusters is DM. Properties remain poorly known!
- For example, mass of DM particle is unknown to many orders of magnitude

• String "axiverse" allows possible masses spanning many orders of magnitude, including ultra-light ($m < eV/c^2$).

Ultra-light Dark Matter

• In ultra-light regime, particles overlap significantly

- Number density $n=\rho/m$, and de Broglie wavelength $\lambda=h/mv$
- In our Galaxy, $n(\lambda/2\pi)^3 > 1$ for $m < 1\,\mathrm{eV}/c^2$. In this regime, can think of overlapping particles as a coherent field, oscillating at frequency $\omega = mc^2/\hbar$, with coherence length $r = \lambda/2\pi$, and coherence time $\delta t \sim r/\sigma_v = \hbar/m\sigma_v^2$.

Ultra-light Dark Matter in galaxies

- In this regime, DM exhibits wave-like behaviour.
- For most of ultra-light mass range, wave-like DM is indistinguishable from regular CDM.
- But for $m \in 10^{-22} 10^{-20} \, \mathrm{eV}$, the de Broglie wavelength is relevant for galaxy astrophysics. This regime is called "fuzzy" dark matter (FDM).
 - e.g., in Milky Way with v=200 km/s, $m=10^{-22}$ eV gives $\lambda=\frac{h}{mv}\approx 0.6$ kpc.
- This can do interesting things for galaxies, like removing central DM cusps, or suppressing low-mass DM substructure. But one particular effect captured the interest of many DM researchers...

FDM wave interference

Schive et al., Nature Physics, 10, 496 (2014)

Gravitational heating from FDM

- Interference fringes have density contrast $\delta
 ho\sim
 ho$ everywhere all of the time
- These lead to fluctuating gravitational forces that can perturb stars
- Where to look for this signature of FDM? Crude estimate:
 - $\delta M \sim \delta \rho \, \lambda^3 \propto \rho / \sigma_v^3 \Rightarrow$ acceleration perturbation $\delta a \sim G \, \delta M / \lambda^2 \propto G \rho / \sigma_v$
 - At that location, enclosed mass $M \sim \rho \, R^3$, so $a \sim GM/R^2 \propto G\rho \, R$
 - So fractional effect $\delta a/a \propto (R \sigma_v)^{-1}$
- Biggest effect where R is small and σ_v is small, i.e. **centres of smallest halos**.

Ultra-faint dwarf galaxies

- Best place to look for FDM effects is the centre of smallest, DMdominated galaxies.
- Local group has lots of tiny galaxies,
 e.g. Boötes I, Grus II, Leo IV, etc...
- Completely DM dominated (e.g., M/L ~ 300 inside $r_{1/2}$)
- Stellar ages ≥10 Gyr, so plenty of time to experience FDM effects.
- Unlike soliton, heating effect is understood! Allows us to use even just 1-2 galaxies to constrain FDM.

Segue 1 and Segue 2

- Smallest & darkest known UFDs (but not huge outliers).
- Have half-light radii of 26 pc and 37 pc
- Velocity dispersions $\lesssim 2 3 \text{ km/s}$
- Extensive spectroscopic observations of member stars

THE ASTROPHYSICAL JOURNAL, 733:46 (20pp), 2011 May 20
© 2011. The American Astronomical Society. All rights reserved. Printed in the U.S.A.

doi:10.1088/0004-637X/733/1/46

A COMPLETE SPECTROSCOPIC SURVEY OF THE MILKY WAY SATELLITE SEGUE 1: THE DARKEST GALAXY*

JOSHUA D. SIMON¹, MARLA GEHA², QUINN E. MINOR³, GREGORY D. MARTINEZ³, EVAN N. KIRBY^{4,8}, JAMES S. BULLOCK³, MANOI KADI INGHAT³ I QUIS F. STDIGADI^{5,8} RETH WILLMAN⁶ PHILID I. CHOI⁷ FRIK I. TOLLEDID³ AND IOE WOLE³

THE ASTROPHYSICAL JOURNAL, 770:16 (16pp), 2013 June 10 © 2013. The American Astronomical Society. All rights reserved. Printed in the U.S.A.

doi:10.1088/0004-637X/770/1/16

SEGUE 2: THE LEAST MASSIVE GALAXY*

EVAN N. KIRBY^{1,4}, MICHAEL BOYLAN-KOLCHIN^{1,4}, JUDITH G. COHEN², MARLA GEHA³,

JAMES S. BULLOCK¹, AND MANOJ KAPLINGHAT¹

Ballpark estimate

- Consider typical star in galaxy of size R, moving at velocity $v \sim \sigma_v$.
- Enclosed mass is $M \sim 3 \sigma_{v^2} R/G$
- FDM fluctuation of size r, with $\delta \rho \sim \rho$.
 - $\delta M \sim (r/R)^3 M$, $\delta \Phi \sim G \delta M/r \approx 3 \sigma_v^2 (r/R)^2$
 - $\delta v \sim \delta \Phi / v \approx 3 \sigma_v (r/R)^2$
- In time t, star encounters $N \sim vt/r$ blobs, so variance increases by $\Delta \sigma_{v^2} \approx N \delta v^2 \approx 9 \sigma_{v^3} t r^3/R^4 \approx 9 (\hbar/m)^3 t R^{-4}$.
- So we can solve for mass m that makes $\Delta \sigma_{v^2} \approx \sigma_{v^2}$ in time t. Plugging in t = 10 Gyr, R = 50 pc, $\sigma_v = 3$ km/s gives $m \sim 10^{-19}$ eV.

FDM constraints from UFDGs

- We use simulation-based inference to constrain FDM using UFDs, i.e. we compute how often simulations reproduce observed data.
 - Data are velocities of individual member stars.
 - We could also use positions of individual stars, but spectroscopic selection function is unknown to us, so we instead fit half-light radius of population.
- Simulations evolve stars in FDM potentials for 10 Gyr.
- Marginalize over unknown halo parameters ($M_{\rm vir}$, $c_{\rm vir}$), and initial stellar distribution, by running lots of different sims.
- Problem: Schrödinger-Poisson sims cannot be done yet for masses of interest, since computational expense scales like $m_{\rm FDM}{}^5$! Need different approach...

Alternative method

- If we have a known (smooth) potential for the halo, we can determine the eigenfunctions of the Hamiltonian. Each eigenfunction evolves trivially in time $\propto e^{-iEt/\hbar}$.
- So let's find the combination of eigenfunctions that adds up on average to the desired density profile $\langle \rho \rangle = m \langle |\psi|^2 \rangle$, with $\psi(\mathbf{x}, t) = \sum_i a_i e^{-i\omega_i t} F_i(\mathbf{x})$
- Widrow & Kaiser (1993): use $\langle |a_i|^2 \rangle \sim f(E_i)$, for distribution function f(E).
- In simple cases (e.g. spherical potential), we can solve for f(E) analytically.
- This gives a simple way to evolve realistic wavefunctions, and is faster by
 orders of magnitude! Instead of giant supercomputers, our simulations run on
 1 node. Caveat: only accurate to 1st order.

$$\rho = m |\psi|^2,$$

$$\psi(\mathbf{x}, t) = \sum_{i} a_i e^{-i\omega_i t} F_i(\mathbf{x})$$

(Widrow-Kaiser wavefunction)

Heating in sims

$$p_{\text{size}} = \frac{1}{\sqrt{2\pi\sigma_{1/2}}} \exp \left[-\frac{(R_{1/2,\text{sim}} - R_{1/2,\text{obs}})^2}{2\sigma_{1/2}^2} \right]$$

$$p_{\text{vel}} = \prod_{i} \int dv_i \, p_{\text{sim}}(v_i | r_i) \, p_{\text{obs},i}(v_i)$$

Results

- Find $m_{\rm FDM} > 3 \cdot 10^{-19} \, \rm eV$ at >99% confidence, using Segue 1 & Segue 2. Previous bounds from Ly α F are $m \gtrsim 10^{-21} \, \rm eV$
- Our constraints are highly conservative due to neglect of soliton, and assumed prior $P \sim m_{\rm FDM}^{-2}$.
- Essentially, rules out "fuzzy" regime:
 - linear power spectrum identical to Λ CDM out to $k \sim 200 \ \mathrm{Mpc^{-1}}$.
 - halo mass function identical to $\Lambda {\rm CDM}$ down to $M \sim 2 \cdot 10^5 M_{\odot}$

FAQ

- Wait, so FDM is ruled out?
 - Yes. DM can be ultra-light, but not in the range $(m < 10^{-20}\,{\rm eV})$ that helps for CDM problems.

FAQ

- Can we really do cosmology with 1 object? What about sample variance?
 - The constraint is based on $\lambda = h/mv$, and velocity v is directly measured. There is no sample variance in \hbar . So yes, we can do cosmology with just 1 (or 2) object(s).

FAQ

- Can we trust this perturbative eigenfunction expansion?
 - Many independent authors have shown that properties of FDM fluctuations in full Schrodinger-Poisson simulations are described accurately by interference of eigenfunctions (Li et al. 2021, Yavetz et al. 2021, Zagorac et al. 2021, ...). Specifically, the **amplitude**, coherence **length**, coherence **time** of fluctuations.
 - That is all we need to compute the heating effect, i.e. why the ballpark estimate agrees with our simulations.
 - Since heating rate scales like m^{-3} , then to change our lower limit by a factor of 30, our calculation must be wrong by factor of 30,000!

What next?

We believe this resolves all remaining questions on this topic. No further research is needed.

References

- 1. we were, we make, we make (m.) m. n
- 2, mm, a, mm, m, m, m (m) mm
- JUST ONCE, I WANT TO SEE A RESEARCH

PAPER WITH THE GUTS TO END THIS WAY.

TBD:

- Higher spin (e.g., dark photons)
- Fractional component of DM
- Add solitons (strengthens bounds)...

https://xkcd.com/2268

Higher spin

- Besides ultra-light scalars, ultra-light bosons can also have higher spin
- Simulations by Amin et al. (2022) indicate that spin s ULDM behaves like (2s+1) incoherent FDM fields, except in central soliton.
- So at fixed mass, the heating rate for spin s is reduced by factor $(2s + 1)^{-1}$
- Since heating rate scales with FDM mass like m^{-3} , then lower limit on mass is weakened by factor $(2s+1)^{-1/3}$, e.g. $m>3\times 10^{-19}$ eV for s=0 becomes $m>2\times 10^{-19}$ eV for s=1 (dark photon).

Upshot

 Using galaxies — either individually, or in large-scale structure — we can probe ultra-light particles over a huge range of masses!

• Galaxies probably can't probe even higher masses (e.g., $m > 10^{-18} \, \mathrm{eV}$). But we can extend the constraints using another probe: black hole superradiance! Has the potential to go another ~8 orders of magnitude in m!

Soliton

- FDM halos appear to form dense concentration at their centres, called a soliton.
- Early work found a tight scaling relation between soliton mass & halo mass, $M_{\rm sol} \propto M_{\rm vir}^{1/3}/m_{\rm FDM}$
- Led to flurry of papers trying to constrain FDM mass by either detecting or excluding soliton in nearby galaxies, e.g. Safarzadeh & Spergel (2020), Hayashi et al. (2021), Pozo et al. (2022)...

Soliton

- Recent sims find large scatter between soliton mass & halo mass (May et al. 2021)
- Sims of individual halos find that solitons far off the initial scaling relation (either direction!) can stably persist for Hubble time (Chan et al. 2021, Yavetz et al. 2021).
- This large scatter means we can't predict soliton behaviour in specific galaxies. So we neglect soliton heating in our sims, to be conservative.

