New Developments in Analyzing Gravitational Wave Data For Compact Binary Mergers Liang Dai (IAS)

Astro Seminar @ UC Berkeley April 2019

Javier Roulet (Princeton) Tejaswi Venumadhav (IAS) Barak Zackay (IAS)

Matias Zaldarriaga (IAS)

IAS/Princeton "GW Task Force"

A New Window Into the Universe

Electromagnetic waves

Gravitational waves:

Transverse sinusoidal distortion in the **space-time metric**

Gravitational Wave Spectrum

coalescence of stellar mass compact objects

Laser Interferometry

$=\frac{L(t)}{L_0}-1$

GW observation differs from (most) light observation:

Full information about the **amplitude** and the phase of the wave

Compact Binary Mergers

cosmological distances ~ 1-3 Gpc

GW Signal Detection

strain signal expected from GR waveform "template"

h(t)

To find the needle in the haystack, use the technique of matched filter

$$(d(t)|h(t+\tau)) := \sum_{f} \frac{d(f)h^{*}(f)e^{i2\pi f}}{S_{N}(f)/4}$$

noise power spectral density (PSD)

Template Bank

 Necessary to try out a large number of waveform templates

- Should not try out templates that cannot be realized in any physical binary sources
- Should not repeat trying out templates that are indistinguishable from each other at given noise level.
- Should not repeat trying out templates that correspond to different source parameters but are actually (nearly) identical

Need an economic but effectual template bank !!

Need to track to within a small fraction of an radian

Otherwise, "match" is lost.

A Geometric Solution

Roulet+ 1904.01683

Construct a linear space of phases

$$\phi(f) = c_0 + c_1 f + \sum_{\alpha=2}^n c_\alpha \psi_\alpha(f)$$

Orthonormalize the basis phase profiles

$$\langle \psi_{\alpha}, \psi_{\beta} \rangle = \sum_{f} \frac{\bar{A}^{2}(f)}{S_{N}(f)/4} \psi_{\alpha}(f) \psi_{\beta}(f) = \delta_{\alpha\beta}$$

Such that the "Euclidean" distance in terms of the c-coefficients measure "mismatch"

Only a few extra bases are needed

The bank is defined as a lattice

Template Banks According to Amplitude

Construct this metric space of phases for a group of waveforms that share similar amplitude profiles.

If used in search, only lose a few percent in SNR² (i.e. match)

A template waveform only needs to be defined up to:

An amplitude normalization; A phase constant; The time of arrival.

For normalized template

Define trigger score

If perfect stationary gaussian noise, Z has chi-square statistics with 2 DOF Astrophysical signals would stand out of the tail (decay exponentially with $|Z|^2$)

Matched Filter: Trigger Statistics

Babak+ 2013 Abbott+ 2017

$$h(f) \longrightarrow A e^{i \phi_c + i 2\pi f t_c} h(f)$$

$$(h|h) = \sum_{f} \frac{|h(f)|^2}{S_N(f)/4} = 1$$

$$Z(d|h) := (d|h) = \sum_{f} \frac{d(f) h^*(f)}{S_N(f)/4}$$

Noise Transients ("Glitches")

Abbott+ 2017

We identify and mask out bad seconds

Test type	Frequency	Excess	Hole duration	
	band	duration (s)	(s)	
Whitened outlier	[20, 512]	10^{-3}	0.6	
	[20, 512]	0.2	0.2	
	[20, 512]	1	1	
	[55, 65]	1	1	
	[70, 80]	1	1	
	[40, 60]	1	1	
Excess power	[40, 60]	0.5	0.5	
	[20, 50]	1	1	
	[100, 180]	1	1	
	[25, 70]	0.1	0.1	
	[20, 180]	0.05	0.05	
	[60, 180]	0.025	0.025	
	[25, 70]	0.2	1	
	[55, 65]	-	0.1	
	[20, 60]	-	0.1	
Sine-Gaussian ^a	[100, 140]	-	0.1	
	[50, 150]	-	0.1	
	[70, 110]	-	0.1	
	[50, 90]	-	0.1	
	[125, 175]	-	0.1	
	[75, 125]	-	0.1	

Careful Treatment of Masked Data

Matched filter is **not local in time**

Zeroing the bad samples in time causes leakage of ringing artifacts

Conventional to apply smooth windows.

We solve a linear algebra problem to guarantee no leakage (analogous to inpainting the masked CMB sky within the Galactic plane)

$$(d|h) = \sum_{f} \frac{d(f)}{S_N(f)/4} h^*(f)$$

Should just zero the blued strain

In order to well resolve the lines in the PSD, need to measure over O(1000) seconds of data

Empirically, we found that the PSD is changing over O(10) seconds, by ~ 10%

PSD Drift

Tail of the Z distribution is badly overproduced !

$$Z(d|h) := (d|h) = \sum_{f} \frac{d(f) h^*(f)}{S_N(f)/4}$$

Solution:

We track the std of Z to $\sim 1\%$ precision on time scales of O(10) seconds!

This correction only depends on the amplitude profile of h(f), but not the phase!

We therefore track PSD drift bank by bank.

Trigger Distribution After PSD Drift Correction BBH 0 BBH 3 10^{-1} Before 10⁻² After Normalized counts $ho^k e^{ho^2/2}$ fit 10-3 10^{-4} 10⁻⁵ 10^{-6} 40 60 80

Vetoing Triggers

Check if different frequency ranges contribute to the "match" according to theoretical expectations

Promise:

- False positive rate < 1% for perfect Gaussian noise
- Robust to PSD drift and to template bank inefficiency

Search For Coincidence

Hanford

Livingston

Zero time lag

Record if the same template matches in two detectors at (nearly) the same time.

Genuine GW signal is subject to a maximal time delay between any two detectors

Unphysical time lags provide an empirical way to generate coincidences of **uncorrelated** noise transients.

(Incoherent) Ranking Score

In this way we calculate the false alarm rate (FAR)

Coherent Score

Amplitude, phase and time correlations between detectors

detector angular response

We adjust the score by the log of the PDF ratio

$$\frac{P\left(\rho_{1}^{2},\rho_{2}^{2},\Delta t,\Delta\phi|H1\right)}{P\left(\rho_{1}^{2},\rho_{2}^{2},\Delta t,\Delta t,\Delta\phi|H0\right)}$$

Probability of Astrophysical Origin

Need to compare the **GW hypothesis** H_1 to the **noise hypothesis** H_0

 $\mathcal{R}(\text{event} \mid H)$ Noise hypothesis measure empirically

 $\mathcal{R}(\text{event}|H)$ GW hypothesis GW rate normalization is a free parameter subbank by subbing

Bayesian inference for rate normalization

Marginalized probability

 p_{astro}

 $p_{\text{astro}}(\text{event}|\mathcal{R}_{\text{GW}}) = \frac{\mathcal{R}(\text{event}|H_1)}{\mathcal{R}(\text{event}|H_0) + \mathcal{R}(\text{event}|H_1)}$

$$I_{0} = \mathcal{R}_{\mathrm{bg}} P(\Delta t, \Delta \phi, \rho_{\mathrm{H}}^{2}, \rho_{\mathrm{L}}^{2} \mid H_{0})$$
$$= \mathcal{R}_{\mathrm{bg}} \frac{P(\rho_{\mathrm{H}}^{2} \mid H_{0}) P(\rho_{\mathrm{L}}^{2} \mid H_{0})}{2\pi T}$$
$$I_{1} = \mathcal{R}_{\mathrm{GW}} P(\Delta t, \Delta \phi, \rho_{\mathrm{H}}^{2}, \rho_{\mathrm{L}}^{2} \mid H_{1})$$

$$\mathcal{L}(\mathcal{R}_{\rm GW}) \sim e^{-\mathcal{R}_{\rm GW}} \prod_{\rm events} \left[\mathcal{R}(\text{event}|H_0) + \mathcal{R}(\text{event}) \right]$$
$$(\text{event}) = \int d\mathcal{R}_{\rm GW} P(\mathcal{R}_{\rm GW}) p_{\rm astro}(\text{event}|\mathcal{R}_{\rm GW})$$

Parameters For Binary Mergers

Intrinsic parameters

effective spin parameter

 $\chi_{\rm eff} = \frac{m_1 \, \chi_{1z} + m_2 \, \chi_{2z}}{m_1 \, \chi_{1z} + m_2 \, \chi_{2z}}$ $m_1 + m_2$

Extrinsic parameters

(Geocentric) arrival time Luminosity distance Orbital phase Inclination Sky position: RA, Dec Roll angle of the orbit on the sky

Parameter Estimation

Parameter estimation is important to address many astrophysics questions

Intrinsic parameters

Component mass distribution? Mass cutoff (e.g. due to pair-instability SNe)? Mass ratio?

Fast spinning or slowly/non-spinning? (Binary stellar evolution? Dynamic formation?) Spins aligned, anti-aligned, or random?

Identify NS-BH mergers ?!

Extrinsic parameters

(RA, Dec) for EM follow-ups

Luminosity distance for understanding redshift evolution of the mergers; And for the **standard siren** test.

Inclination has important implications for the luminosity distance, mass ratio measurement, and spin-precession effect.

Likelihood Evaluation

Need to calculate the "overlap"

flops, where **N** = **T*Fs**

O(10⁶–10⁸) parameter combinations.

for a very long period of time.

$$(d(t)|h(t+\tau)) := \sum_{f} \frac{d(f) h^*(f) e^{i 2\pi f \tau}}{S_N(f)/4}$$

- To analyze a chunk of **T** seconds at a sampling rate **Fs** Hz, perform ing FFT on a regular frequency grid requires O(N log N)
- Parameter estimation may require us to evaluate the above FFT for
- Become increasingly challenging when events are visible in band

Fast Likelihood Evaluation: Relative Binning

Binary neutron star merger GW170817

 $\mathcal{M}^{\rm det} = 1.1975 \pm 0.0001 \, M_{\odot}$

Compute (frequency-domain) waveform ratio only on a sparse frequency grid

$$r(f) = \frac{h(f)}{h_0(f)} = r_0(h, b) + r_1(h, b) (f - f_m(b)) + \cdots$$

Match can be approximated as

$$Z(d,h) = 4 \sum_{f} \frac{d(f)h^{*}(f)}{S_{n}(f)/T}$$

$$\approx \sum_{b} \left[A_{0}(b) r_{0}^{*}(h,b) + A_{1}(b) r_{1}^{*}(h,b) \right]$$

Pre-compute moments (on FFT grid, but for once)

$$A_{0}(b) = 4 \sum_{f \in b} \frac{d(f) h_{0}^{*}(f)}{S_{n}(f)/T}$$
$$A_{1}(b) = 4 \sum_{f \in b} \frac{d(f) h_{0}^{*}(f)}{S_{n}(f)/T} (f - f_{m}(b))$$

Relative Binning: GW170817

Zackay, Dai & Venumadhav 1806.08792 Also see earlier exploration: Tanaka & Tagoshi (2000) N. Cornish 1007.4820

Non-uniform frequency bins

Absolute error on the log likelihood under control Use O(100) frequency bins

Relative Binning: Comments

- Reference waveform $h_0(f)$ found by iteration
- For h₀(f), necessary to pinpoint only **intrinsic parameters**
- using FFT.
- Routinely used in our analysis.
- computation.
- Further directions: Spin-precession; Eccentricity; etc.

• Except for the **arrival time**, which we treat in the same way as the intrinsic parameters. We give up on computing for all times at once

• A similar formalism applicable to **time domain waveform** h(t). However some requirement on how the waveform model works in order to save

Analyzing O1 and O2

Astrophysical probability estimation done **sub-bank by sub-bank** Why?

 Signal processing/vetoing differs from bank to bank

- Different banks/sub-banks have wildly different number of templates.
- Glitch property differs substantially between (sub)banks.

Heavy BBHs in O1 and O2

(Note: so far only Hanford-Living joint analysis) First of all we confirm LIGO/Virgo detections

(preliminary) Venumadhav+ in prep

Name	Bank	$GPS time^{a}$	$\rho_{\rm H}^2$	$ ho_{ m L}^2$	$ \mathrm{FAR}^{-1}(\mathrm{O2})^{\mathrm{b}} $	$\left \frac{W(\text{event})}{\mathcal{R}(\text{event} H_0)} \right (O2)$	$\left \mathcal{R}(\mathrm{O2}^{-1}) \right $	$p_{\rm astro}$
GW170104	BBH (3,0)	1167559936.582	85.1	104.3	$> 2 \times 10^4$	> 100	8.9	> 0.99
GW170809	BBH (3,0)	1186302519.74	40.5	113	$> 2 \times 10^4$	> 100	8.9	> 0.99
GW170814	BBH (3,0)	1186741861.519	90.2	170	$> 2 \times 10^4$	> 100	8.9	> 0.99
GW170818	BBH (3,0)	1187058327.075	19.4	95.1	c		8.9	c
GW170823	BBH (3,1)	1187529256.5	46	90.7	$> 2 \times 10^4$	> 100	8.9	> 0.99
GW170729	BBH (3,1)	1185389807.311	62.1	53.6	$> 2 \times 10^4$	> 100	8.9	> 0.99

New BBH Events in O1/O2

(preliminary) Venumadhav+ in prep

B	ank	$\left \mathcal{M}^{\det}(M_{\odot}) \right $	$ ho_{ m H}^2$	$\rho_{\rm L}^2$	$ \mathrm{FAR}^{-1}(\mathrm{O2})^{\mathrm{b}} $	$\left \frac{W(\text{event})}{\mathcal{R}(\text{event} H_0)} \right (\text{O2})$	$\mathcal{R}(\mathrm{O2}^{-1})$	$p_{\rm astro}$
BBH	(3,0)	$29.4^{+3.8}_{-3.2}$	29.4	89.7	1.2×10^{3}	> 10	8.9	> 0.99
BBH	(3,0)	$21.9^{+4.8}_{-1.4}$	26.5	41.7	5.3	0.17	8.9	0.61
BBH	(4,0)	$47.6^{+6.9}_{-6.6}$	24.9	55.9	740	15.8	3.4	0.98
BBH	(4,1)	$48.4^{+8.2}_{-6.8}$	31.3	31	5	0.27	3.4	0.52
BBH	(4,0)	51^{+27}_{-11}	28.6	37.54	29	0.83	3.4	0.75
BBH	(4,0)	$42.4^{+6.6}_{-6.5}$	25.4	53.5	645	13.5	3.4	0.98

In this Table, we list all candidates with $p_{astro} > 0.5$

BBH population properties

Zackay+ 1902.10331

Venumadhav+ in prep

Confident BBH events:

- Heavier than X-ray Binaries
- Consistent with a mass cutoff
- Consistent with non-/slowlyspinning

Conclusion

- LIGO/Virgo public release of bulk data is benefiting and will continue to tremendously benefit the community.
 We are very grateful.
 e.g. Nitz, Nielsen & Capano 1902.09496
 Nitz+ 1811.01921
- We have developed a new search pipeline, for which we independently developed methods for template construction, signal precessing, score ranking, estimation of FAR and astro probability, as well as efficient parameter inference.
- We have applied our pipeline to the bulk O1 and O2 data. We found a few new BBH events that are reliable.

