

Cosmology at high-redshift with the Lyman-α forest

Andrei Cuceu

Center for Cosmology and AstroParticle Physics

Ohio State University

Outline

Introduction and background

- The Lyman-α forest
- Baryon Acoustic Oscillations (BAO)
- The Alcock-Paczynski (AP) effect
- Redshift Space Distortions (RSD)

Measuring the expansion and growth

Figure from Alam et al. 2021 (2007.08991)

Measuring the expansion and growth

Figure from DESI Collaboration et al. 2016 (1611.00036)

Why so many measurements?

 Measurements at different redshifts lead to different degeneracies

 Low-z→ Dark energy dominated Universe

 High-z → Matter dominated Universe

Outline

- Introduction and background
- The Lyman- α forest
- Baryon Acoustic Oscillations (BAO)
- The Alcock-Paczynski (AP) effect
- Redshift Space Distortions (RSD)

The Lyman- α forest

The Lyman- α forest

Figure from du Mas des Bourboux et al. 2020 (2007.08995)

The flux overdensity field

• For cosmology we use the statistics of the flux delta field, defined as:

 $\delta_q(\lambda_i) = \frac{f_q(\lambda_i)}{C_q(\lambda_i)\overline{F}(z_i)} - 1$

- In general, we do not know the quasar continuum, $C_q(\lambda_i)$, and the global mean transmission, $\overline{F}(z_i)$.
- Therefore, we usually have to fit the product $C_q(\lambda_i)\overline{F}(z_i)$ directly from the data.

Figure from du Mas des Bourboux et al. 2020 (2007.08995)

Lyman- α forest correlations

1 10 0

Figure from de Sainte Agathe et al. 2019 (1904.03400)

Lyman-α forest correlations: data vs model

Compressing into wedges

Lyα-quasar cross-correlation

- Also compute the crosscorrelation between the Lyα forest and the quasar distribution
- Distinguish between forest pixels in front or behind the quasar

Outline

- Introduction and background
- The Lyman- α forest
- Baryon Acoustic Oscillations (BAO)
- The Alcock-Paczynski (AP) effect
- Redshift Space Distortions (RSD)

Baryon acoustic oscillations (BAO)

- We can detect BAO in the two point correlation function of galaxies, as a peak at around $\sim 100 h^{-1}Mpc$
- We can also detect them in the power spectrum as an oscillation

BAO with the Lyman- α forest

- We use a template power spectrum decomposed into a peak and a smooth component
- We fit two scale parameters that shift the BAO peak along and across the line of sight:

$$\alpha_{\parallel} = \frac{[H(z) r_d]_{fid}}{H(z) r_d}, \qquad \alpha_{\perp} = \frac{D_A/r_d}{[D_A/r_d]_{fid}}$$

- In a flat Λ CDM cosmology, these two parameters measure the matter fraction (Ω_m) and a combination of the Hubble constant and the size of the sound horizon (H_0r_d)
- However, because of the compression, you can use these parameters to constrain other cosmological models as well

SDSS Lyα BAO from BOSS and eBOSS

eBOSS DR16 measurements

Comparison of SDSS measurements

Figures from du Mas des Bourboux et al. 2020 (2007.08995)

DESI Ly α BAO forecast

• In flat Λ CDM, BAO measurements correspond to constraints in the $\Omega_m - H_0 r_d$ plane

 Currently, the best BAO measurement from the Lyα forest is given by eBOSS DR16

• DESI will provide the first sub-percent BAO measurements from LSS at z > 2

Beyond BAO with $Ly\alpha$ correlations

Outline

- Introduction and background
- The Lyman-α forest
- Baryon Acoustic Oscillations (BAO)
- The Alcock-Paczynski (AP) effect
- Redshift Space Distortions (RSD)

The story so far (BOSS/eBOSS)

The Alcock-Paczynski (AP) effect

- Assume a fiducial cosmology to transform angles and redshifts ($\Delta \theta, \Delta z$) to comoving distances (r_{\parallel}, r_{\perp}).
- Fiducial cosmology ≠ true cosmology → anisotropy in the measured 3D correlation.
- Generally use $(\alpha_{\parallel}, \alpha_{\perp})$ to measure this by rescaling the coordinates of the template: $r'_{\parallel} = \alpha_{\parallel} r_{\parallel}$ and $r'_{\perp} = \alpha_{\perp} r_{\perp}$
- For our analysis, we redefined these parameters to isolate the AP effect:

$$\phi = \frac{\alpha_{\perp}}{\alpha_{\parallel}}$$
 and $\alpha = \sqrt{\alpha_{\perp} \alpha_{\parallel}}$

• Measurements of ϕ and α correspond to:

$$\phi = \frac{D_M(z)H(z)}{[D_M(z)H(z)]_{fid}} \text{ and } \alpha = \sqrt{\frac{D_M(z)D_H(z)/r_d^2}{[D_M(z)D_H(z)/r_d^2]_{fid}}}$$

Rescaling the peak component

From Cuceu et al. 2021 (2103.14075)

Rescaling the smooth component

From Cuceu et al. 2021 (2103.14075)

Rescaling the full shape

From Cuceu et al. 2021 (2103.14075)

Analysis validation using mocks

- To validate our measurement, we used synthetic data (mocks)
- Set of 100 eBOSS mocks created for the DR16 Ly α BAO analysis
- Mocks use a Gaussian field with quasars drawn from its log-normal transformation
- Include all the major contaminants affecting Ly α forest correlations

Analysis validation using mocks

From Cuceu et al. 2022a (2209.12931)

Results from analysis of 100 eBOSS mocks

- We used 100 eBOSS DR16 lognormal mocks to validate our analysis
- These mocks include all the major contaminants affecting Lyα forest correlations
- Recovering the cosmology in the mocks corresponds to $\phi=1$

eBOSS data and best-fit model

From Cuceu et al. 2022b (2209.13942)

Robustness tests

From Cuceu et al. 2022b (2209.13942)

Lya BAO from eBOSS

From Cuceu et al. 2022b (2209.13942)

Lya BAO from eBOSS

Results from eBOSS DR16 data

BAO peak only (eBOSS result)
Full shape (this work)
Smooth component only (this work)

 First ever cosmology measurement from the full-shape of Lyα correlations

• The AP constraint from the full-shape gives a factor of 2 improvement over the BAO constraint

Results in flat ACDM

36

Results in flat ACDM

37

Measuring the Hubble constant

> In flat ∧CDM, Alcock-Paczynski → Ω_m
> Adding isotropic BAO → H₀r_d

> Adding a prior on $\Omega_b h^2$ from Big Bang Nucleosynthesis (BBN) $\longrightarrow H_0$

> Ly α constraint: $H_0 = 63.2 \pm 2.5$ km/s/Mpc

> Full eBOSS: $H_0 = 67.2 \pm 0.9$ km/s/Mpc

Dark energy

From Cuceu et al. 2022b (2209.13942)

DESI forecasts

Outline

- Introduction and background
- The Lyman- α forest
- Baryon Acoustic Oscillations (BAO)
- The Alcock-Paczynski (AP) effect
- Redshift Space Distortions (RSD)

Why no Ly α RSD measurement?

• Linear theory terms:

Lya x Lya : $P(k, \mu, z) = (b_F + b_{\eta,F} f \mu^2)^2 P(k, z)$ Lya x QSO : $P(k, \mu, z) = (b_F + b_{\eta,F} f \mu^2) (b_Q + f \mu^2) P(k, z)$ QSO x QSO: $P(k, \mu, z) = (b_Q + f \mu^2)^2 P(k, z)$

- For the forest, the growth rate (f) is degenerate with an unknown velocity divergence bias $(b_{\eta,F})$.
- However, a joint analysis of Ly α x Ly α and Ly α x QSO would be able to measure f.

Measuring growth with the Ly α forest

Cuceu et al. 2021 (2103.14075)

Summary

- We performed the first full-shape analysis of Ly α forest 3D correlations.
- Most precise expansion rate constraint from large-scale structure at z > 1, and a factor of two tighter than the BAO-only constraint.
- Key areas of improvement for DESI include modelling of QSO redshift errors and non-linearities.
- Opens the way for growth rate measurements from the 3D distribution of the Lyα forest.

Alcock-Paczynski vs redshift space distortions

49

Lyman- α forest correlations

