Novel cosmological tests with precision CMB measurements

Done in collaboration with

Alba Kalaja

David **Baker**

Alex **Miranthis**

Billy

Lee

Atkins

Leander **Thiele**

Thomas Flöss

Ben Wandelt

2

Mat **Madhavacheril**

Licia Verde

Gabriel Jung

Anthony Francisco **Challinor Villaescusa-Navarro**

Daan Meerburg

Duivenvoorden

Colin Hill

The ACT and Simons **Observatory collaborations** and many more!

The CMB!

Age (years)

Sources: ESA, wikipedia

The CMB!

Bennett et al (1996)

The CMB anisotropies

Planck Satellite (ESA)

The leading approach

Observations

Constrain the properties of the Universe

CMB power spectrum

Planck XX 2015, Planck V 2018, Buades 2015

The small scale millimeter sky

ACT + Planck

Planck

Source: Sigurd Naess and the ACTPol Collaboration

The CMB millimeter sky

NRAO/AUI/NSF

The CMB millimeter sky

Component Separation

- The aim is to isolate signal of interest
- Utilize different spatial and frequency dependance of signals
- Combine different experiments with different noise/resolution etc
- Challenge: how to exploit different spatial properties of each component?

Map of the signal of interest

Dickinson (2016), ESA

Cerro Toco - The Chilean CMB landscape

CCAT*

CLASS

S

POLARBEAR

Simons Observatory

Atacama Cosmology Telescope (ACT)

CMB-S4

Atacama Cosmology Telescope (ACT)

2007 - 2022

Argonne

Simons Observatory

Three (of 6!) Small Aperture Telescopes (SATs) 0.5m with 6 frequencies (30-280 GHz)

Large Aperture Telescope (LAT) ~6m with 6 frequencies (30-280 GHz)

Image by: Anna Kofman

CMB-S4 will also have small aperture telescopes + a large aperture telescope in the South Pole focused on B-modes and transients

Component one: the thermal Sunyaev Zel'dovich effect

Thermal Sunyaev Zel'dovich effect

What does the tSZ effect tell us?

Extracts from the Magneticum Pathfinder simulations

Dolag et al (2016)

What does the tSZ effect tell us?

Extracts from the Magneticum Pathfinder simulations

Dolag et al (2016)

Our new Compton-y map

The benefits of high resolution

ACT & Planck NILC

Planck MILCA map

and the second sec				a des
A MARKEN AND A MARKEN A	15.5			
The second of th				
	10.00			
	1. 5.00			
and the second s	12 5 1			
A Contract of the second of th	1 march			
the set of	125.37			
	CO TO			
and the second				
	11 12 2			2.3
	1.42.5			
	1000			
And a share of the second of the second				
and the second of the	1.50			
	10 m			
and the second of the second o	the state			
	5120			

Cluster Count Cosmology!

Led by Matt Hilton

Hilton et al (2021)

The power of cluster cosmology

Simulated Universe with Dark Energy

Simulated Universe without Dark Energy

Borgani & Guzzo (2001)

Fundamental physics from cluster counts

Madhavacheril et al (2016)

Astrophysical Systematics

How to connect the observables to the theory predictions? Observed: Integrated Pressure Predicted: Counts per mass bin

Hincks et al (2021), Hincks et al inc. WRC (in prep)

Revealing the SZ-halo relation!

Led by Shivam Pandey

Gatti et al (2022), Pandey et al (2022), Pandey et al inc. WRC (in prep)

Connecting observations to physics? Led by Leander Thiele M_{200} $\{(\vec{q}_i^{(\alpha)}, \vec{v}_i^{(\alpha)})\}_{i \in \alpha}$ Origin GNFW logarithmic (analytic) (vector DeepSet) color scales (MLP)(scalar DeepSet) $\{(\vec{q}_i^{(\vec{r})}, \vec{v}_i^{(\vec{r})})\}_{|\vec{q}_i - \vec{r}| < R}$ $\hat{P}_e(\vec{r})$ Local Aggregator training: $\mu + \sigma \mathbf{a}$, sampling: \mathbf{a} , reconstruction: μ $P_e(r)$ μ, σ $\mathbf{a} \sim \mathcal{N}(\mathbf{0}, \mathbb{I})$ downsampled ΔP_e -Stochastic (MLP)r

Thiele et al inc. WRC (2022) Lee et al inc. WRC (2023)

Component two: the relativistic Sunyaev Zeldovich effect

What is the relativistic Sunyaev Zeldovich effect?

• The usual tSZ formula:

 $\delta I(\mathbf{n},\nu) = g(\nu)y(\mathbf{n})$

assumes non-relativistic electron ($T_e < < m_e c^2/k_B$)

- X-ray measurements show that $T_e\gtrsim$ few keV !
- For relativistic electrons: $\delta I(\mathbf{n}, \nu, T_e) = g(\nu, T_e)y(\mathbf{n})!$

Relativistic SZ signature for electrons at different temperatures

What can we use it for?

Measure mean cluster temperature (on simulations)!

Coupling of different systematics

Into the weeds

Component three: Gravitational lensing of the CMB

Gravitational Lensing

Image by: Lucy Reading-Ikkanda/Simons Foundation

ACT lensing map

Correlation by Eye!

Zoom-in of 900 sq. deg. of 9400. sq. deg. mass map

Correlation by Eye!

Zoom-in of 900 sq. deg. of 9400. sq. deg. mass map with cosmic infrared background overlaid

Weighing in on σ_8

Convergence Power spectrum

Cosmological Constraints

See Farren et al (2023) for new lensing cross unWISE!

Madhavacheril et al inc. WRC (2023)

Weighing clusters

Madhavacheril et al (2020) Lee et al including WRC (in prep.)

Component four: the patchy-screening effect

What is the patchy-screening effect?

Image by Alex Van Engelen

Schutt et al including WRC (2024)

When is the patchy-screening effect generated?

O(1) fluctuations in free electron fraction at reionization

collapsed objects

Credit: ESO

The success of cosmological simulations

Credit: IllustrisTNG collaboration

The challenges...

Video by: Paco Villaescusa-Navarro

Why does this matter?

Fates of galaxies

What do we measure?

Integrated electron profile around unWISE galaxies

Coulton et al (2024)

What information does the late-time patchy-screening contain?

Comparison of measured 1D profile to a set of theoretical models

Component five: the kinetic Sunyaev Zeldovich effect

The kinetic Sunyaev Zeldovich Effect

Source: Mroczkowski et al (2019)

kSZ velocity reconstruction

Madhavacheril (2019) Smith (2019) ++

kSZ velocity reconstruction

Observed Мар **Tracer of Electron density** field Cosmic **Velocity Mode** $\hat{v}(\mathbf{n}) \propto \Delta T(\mathbf{n}) \,\delta_{e}(\mathbf{n},z)$ Madhavacheril (2019) Smith (2019) ++

Parity Violation in the Universe

- Parity violation is a feature of the standard model of particles
- In cosmology we typical only consider parity conserving Universes
- Recently there are two hints of parity violation in cosmology:
 - 'Cosmic birefringence' in Planck data

Minami and Komatsu (2021)

A hint of parity odd trispectrum in LSS

Hou et al (2022), Philcox (2022)

What is parity symmetry?

$$\mathbf{P}:egin{pmatrix}x\\y\\z\end{pmatrix}\mapstoegin{pmatrix}-x\\-y\\-z\end{pmatrix}.$$

New observables for parity

A cosmic analogy...

Wu experiment

Images: Wikipedia

New observables for parity

A cosmic analogy... Wu experiment Cosmological "Wu experiment"

Images: Wikipedia

Parity Violating PNG in Quijote-Odd

Coulton, Philcox and Villaescusa-Navarro (2023)

The "Cosmological Wu Experiment"

Coulton, Philcox and Villaescusa-Navarro (2023)

The "Cosmological Wu Experiment"

Coulton, Philcox and Villaescusa-Navarro (2023)

Conclusions

Thanks