The rarest galaxies in the first two billion years

Caitlin M. Casey, The University of Texas at Austin UC Berkeley Colloquium — 6 October 2022

Members of my group, past & present:

Postdocs: Chao-Ling Hung, Justin Spilker, Jorge Zavala, Jed McKinney, Max Franco, Arianna Long, Seiji Fujimoto

Grad Students: Sinclaire Manning, Patrick Drew, Jaclyn Champagne, Olivia Cooper, Hollis Akins

Undergrads: Aimee Schechter, Laney Wicker, Anne Burnham, Jake Magee, Mia Fong, Alfonso Melendez, Rachel Nere

+ members of the COSMOS Team

What can pathologically massive galaxies — formed incredibly quickly after the Big Bang — teach us about fundamental processes of halo growth, the ISM and galaxy formation?

The original class of pathological galaxies: Quasars

Forming a supermassive black hole with $M_{BH} = 10^9 M_{\odot}$ at z~7 requires a ~1000 M_{\odot} seed at $z \sim 30$ and a factor 10^6 growth at the Eddington limit!

The most extreme star-forming galaxies and dust reservoirs.

Forming a massive, obscured starburst with $M_{dust} = 10^9 M_{\odot}$ at z~7 requires a SN-dominated dust formation mechanism that produces $\sim 2 M_{\odot}$ of dust ejecta per supernova.

Schneider et al. 2004, Dwek & Cherchneff 2011

UV-bright massive galaxies at z>8 (z>10?)

Even assuming that all available baryons in all halos with enough baryons to form $10^{10} - 10^{10.5} \,\mathrm{M_{\odot}}$ of stars at z = 10 have indeed been converted into stars by that point — an unrealistic limit — it is still not possible to produce the stellar mass density measured by Labbé et al. (2022) in Λ CDM with a Planck 2020 cosmology.

-Boylan-Kolchin (2022)

Forming UV-bright galaxies with $M_{\star} = 10^{10} M_{\odot}$ at z~10 with volume density $10^{-5} Mpc^{-3}$ is not allowable in Λ CDM.

Forming a supermassive black hole with $M_{BH} = 10^9 M_{\odot}$ at z~7 requires a ~1000 M_{\odot} seed at $z \sim 30$ and a factor 10^6 growth at the Eddington limit!

Forming a massive, obscured starburst with $M_{dust} = 10^9 M_{\odot}$ at z~7 requires a SN-dominated dust formation mechanism that produces ~ $2 M_{\odot}$ of dust ejecta per supernova.

Forming UV-bright galaxies with $M_{\star} = 10^{10} M_{\odot}$ at z~10 with volume density $10^{-5} Mpc^{-3}$ is not allowable in Λ CDM.

Models fail to capture extreme, early sources; many of those models are calibrated against observations of a narrow subset of observations.

Simulations check consistency with galaxy luminosity functions in the rest-frame UV measured from pencil beam Hubble surveys.

Semi-analytic models pegged to stellar-tohalo-mass relations at epochs when stars do not dominate baryonic content.

Fully capture obscured star-forming galaxies and constrain their luminosity function at z > 3.

HUDF

35 galaxies

ALMA map of HUDF from ASPECS González-López et al. (2020)

Dust preferentially lives in high-mass galaxies.

The volume density of massive galaxies is ~1/100th of "normal" galaxies.

"Pencil-beam" surveys will not see such intrinsically rare galaxies.

Pencil beam surveys doesn't work for finding the highest redshift dusty starbursts.

Zavala et al. (2021) Casey et al. (2021) Manning et al. (2022)

Mapping Obscuration to Reionization with ALMA: A 2mm blank field

ASPECS & GOODS-ALMA 1mm Surveys

ALMA Cycle 6 Program (15 hours) + ALMA Cycle 8 Program (37 hours) 2mm, 0.08mJy RMS,155arcmin² \rightarrow 2mm, 0.08mJy RMS, 0.2deg² 2mm filters out z < 3 emission — leaves massive obscured systems at the highest redshifts.

At higher redshifts, 2mm emission is brighter for fixed ~1mm flux density.

2mm detected sources are "OIR dark"

...peak at $z \sim 3.6$ (span redshifts 3 < z < 6)

...are massive: all detected by Spitzer / IRAC in the near-IR.

 $\begin{array}{l} 10^{10} < M_{\star}/M_{\odot} < 10^{11.5} \\ 10^{10.5} < M_{ISM}/M_{\odot} < 10^{11.5} \end{array}$

Casey et al. (2021)

ALMA Cycle 6 DDT for redshift confirmation

8 hours (!!) needed

MAMBO-9: the most distant unlensed* DSFG at z=5.85

MAMBO-9: the most distant unlensed* DSFG at z=5.85

Hollis Akins, UT grad student

Manning et al. (2022)

Implies a significant population of massive systems ($M_{halo} \sim 10^{12.5} M_{\odot}$) with volume density $10^{-5} Mpc^{-3}$ whose baryons are dominated (>95%) by molecular gas.

ALMA Cycle 6 Program (15 hours) + ALMA Cycle 8 Program (37 hours)

2mm, 0.08mJy RMS,155arcmin^2 \rightarrow 2mm, 0.08mJy RMS, 0.2deg²

Muran Mapping Obscuration to Reionization with ALMA: A 2mm blank field

ALMA Cycle 6 Program (15 hours) + ALMA Cycle 8 Program (37 hours)

2mm, 0.08mJy RMS,155arcmin² \rightarrow 2mm, 0.08mJy RMS, 0.2deg²

JWST NIRCam Coverage in COSMOS

Arianna Long, Hubble Fellow

Olivia Cooper, UT grad student, NSF Fellow

MORA is being extended by a factor of 4x as we speak!

Mapping Obscuration to Reionization with ALMA: A 2mm blank field

ALMA Cycle 6 Program (15 hours) + ALMA Cycle 8 Program (37 hours)

2mm, 0.08mJy RMS,155arcmin² \rightarrow 2mm, 0.08mJy RMS, 0.2deg²

Webb Epoch of Reionization Ly Survey

29night Keck KSMS Program

Pls: Caitlin Casey & Jeyhan Kartaltepe

+50 co-l's as part of the COSMOS collaboration.

The largest JWST deep field (0.54deg²) in four NIRCam filters + 1 MIRI filter (covering 0.2deg²).

Casey et al. in prep

COSMOS

Pls: Caitlin Casey & Jeyhan Kartaltepe

+50 co-I's as part of the COSMOS collaboration.

The largest JWST deep field (0.54deg²) in four NIRCam filters + 1 MIRI filter (covering 0.2deg²).

Casey et al. in prep

A simulation of COSMOS-Web RGB in F115W/F150W/F277W at depths of our program

prepared using **Deep Realistic Extragalactic Model (DREaM)** with realistic JWST PSF. Credit to Nicole Drakos, Bruno Villasenor, Brant Robertson and Ryan Hausen.

www.nicoledrakos.com/dream

COSMOS-Web will image 10^6 galaxies down to [AB] ~ 27.5 - 28.3 with NIRCam over 0.54 deg^2

~ 32,000 galaxies will be detected in $0.2 \deg^2$ with MIRI at 7.7 μm

Why so big?

- **Reionization:** detect ~ 5000 galaxies from 6 < z < 11 at the bright end of the luminosity function and measure patchiness.
- 2. Quiescent Galaxies: find hundreds of massive quiescent galaxies at 4 < z < 6 to place constraints on formation of first massive systems.

3. Stellar-Mass-to-Halo-Mass: use weak lensing to constrain the SMHR observationally to $z \sim 2.5$, anchoring cosmological simulations.

Ionized IGM Neutral IGM

Highly clustered massive galaxies

COSMOS

VEB

Data that currently exist!

Enough data to spur a flurry of papers!

Lessons from JWST data: z<10 is possibly considered 'low' redshift.

Donnan et al. (2022)

Lessons from JWST data: z<10 is possibly considered 'low' redshift.

Donnan et al. (2022)

Lessons from JWST data: an unexpected, high volume density of z>10 galaxies.

Boylan-Kolchin (2022)

Lessons from JWST data: a cautionary note about ultra-high-redshift galaxies.

Jorge Zavala

Nominally fit to z~17-18!

However, the source has STRONG dust emission...

emission would probe the rest-frame ${\sim}50\mu{\rm m}$ regime; in this scenario, the IR luminosity would, at minimum, be ${\sim}4\times10^{12}\,{\rm L}_{\odot}$ with a dust mass of ${\sim}10^8\,{\rm M}_{\odot}$. A system with such high dust mass found ${\sim}230\,{\rm Myr}$ after the Big Bang would surely be extraordinary, likely implausibly so (e.g., Dwek et al. 2014).

 $z \sim 18$ is unlikely! Adding the dust emission drops the redshift solution to $z \sim 5$.

Lessons from JWST data: a cautionary note about ultra-high-redshift galaxies.

Jorge Zavala

The most confident $z \sim 17$ candidate in the literature, from Donnan et al. (2022)

Strong rest-frame optical emission lines + moderate attenuation at $z \sim 5$ can conspire to create a perceived strong break at $z \sim 17!$

Lessons from JWST data: a cautionary note about ultra-high-redshift galaxies.

Can ALMA efficiently follow-up the highest-z JWST candidates?

GLz11, GLz13; Naidu et al. (2022), also Castellano et al. (2022)

Both galaxies approved for generous ALMA DDT Projects to try to confirm them spectroscopically via [OIII] 88µm.

The highest-z spec confirmation at z=9.1 from [OIII]: Hashimoto et al. (2018)

Can ALMA efficiently follow-up the highest-z JWST candidates?

Can ALMA efficiently follow-up the highest-z JWST candidates?

Stay tuned for the ALMA results on GLz11 from Yoon et al., in prep.

Moral of the story: z > 10 is much harder than $z \sim 9!$

But! So far these detections bode well for JWST surveys with thousands of galaxies out to $z \sim 9$, hundreds out to $z \sim 11$, and a few dozen at z > 12...

51 hour Cycle 6+8 Program

Webb Epoch of Reionization Ly Survey

29night Keck KSMS Program

Measuring where reionization happened requires follow-up $Ly\alpha$ spectroscopy of a breadth of galaxies across the UVLF in different environments.

The Webb Epoch of Reionization Lyman-lpha Survey (WERLS)

29 night Keck Key Strategic Mission Support Program (2022-2024) with MOSFIRE and LRIS

Targeting hundreds of EoR candidates in JWST Deep Fields. $Ly\alpha \rightarrow maps$ ionized bubbles JWST imaging $\rightarrow maps$ galaxy density field

Arianna Long (UCI \rightarrow UT), Stephanie Stawinski (UCI), Olivia Cooper (UT)

Pls: Caitlin Casey & Jeyhan Kartaltepe

Preliminary findings from 2022A data

Measuring where reionization happened requires follow-up $Ly\alpha$ spectroscopy of a breadth of galaxies across the UVLF in different environments.

of known, spectroscopically confirmed sources (pre-JWST).

Olivia Cooper

Piecing together the history of reionization cannot be done with one tracer alone: HI 21cm signal detection experiments like HERA, PAPER, & SKA complimentary.

DeBoer et al. (2016)

It's not just about high-redshift galaxies (!)

It's not just about high-redshift galaxies (!)

Low Metallicity Brown Dwarfs

We'll find ~1000 MLTY-dwarfs to distances of ~2kpc, allowing precise measurements of the scale height of the Milky Way for low-mass objects.

Casey et al, in prep

It's not just about high-redshift galaxies (!)

Searching for z>10 Pair-Instability Supernovae

Full-circle: PISNe could be the origins of the first dust reservoirs producing $\,\sim 2\,M_\odot$ of dust ejecta per supernova!

— Schneider et al. (2004)

150arcmin² overlap

COSMOS-Web + PRIMER Exposure Map

What can pathologically massive galaxies — formed incredibly quickly after the Big Bang — teach us about fundamental processes of halo growth, the ISM and galaxy formation?

Thank you! Feel free to reach out via email: cmcasey@utexas.edu

Already found examples of obscured galaxies whose baryonic masses at $z \sim 6$ test the limits of dust formation mechanisms & Λ CDM.

MORA 2mm ALMA Survey will continue to push bounds in finding extreme, dusty galaxies in the EoR. JWST has already changed our mindset and redshift horizon (now $z \sim 18$?)...

A legacy program poised for unique discoveries at the highest redshifts. WEBD Epoch of Reionization Ly lphaSurvey

29night Keck KSMS Program

The ultimate EoR observational experiment: mapping reionization bubbles.

Mapping back to galaxy density maps will constrain sources of reionization on large scales.