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seeds of 
structure we 
see today

Cosmic Microwave 
Background (CMB)

Dark Energy Spectroscopic Instrument (DESI)

35 million galaxies
10 million stars

Vera Rubin Observatory (LSST) 

20 billion galaxies
17 billion  stars
20 terabyte data/day
15 petabyte total database

1 Gbs
50 PB total database

CMB-S4

35 Gigabits/day

reionization        

JWST

Large-Scale Stage-4 
Experiments



An ML model is not told how to solve the problem at hand, 

it learns how to solve it.

Machine Learning (ML) - the solution ?
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Supervised learning

classification              regression

An ML model is not told how to solve the problem at hand, 

it learns how to solve it.

spiral elliptical Ω=0.3 Ω=0.2

unsupervised learning

       compression              density estimation

Machine Learning (ML) - the solution ?

original 50%
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Cybenco 1989, Leshno et al 1993
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“Universal function approximators”

● Training: Adapt W,b to minimize 
difference between current output and 
desired output

● Gradients through backpropagation

● Computational feasibility through 
Graphical Processing Units (GPUs)

Cybenco 1989, Leshno et al 1993

Deep Neural Networks & Related Innovations



Azari et al. https://arxiv.org/pdf/2007.15129.pdf

Source: xkcd.com/

Machine Learning for Astrophysical Data Analysis?



From observations to signals: probabilistic inversion with Bayes theorem

posterior
likelihood prior

normalization

data

signalforward model

what we observe:

what we are interested in

Inverse Problems



Inverse Problems in Astrophysics

Data Denoising and 
Inpainting

Lens Reconstruction
from strongly lensed Images

3D Dark Matter Tomography from Weak Lensing

Image Reconstruction from Interferometry

Credit: Event Horizon Telescope Coll.



Challenge #1: High Dimensionality

In posterior analysis we ask: what is the most likely signal? 
How well can we reconstruct the signal?

❏ Find Maximum

❏ Sample from the Posterior



Challenge #1: High Dimensionality

From Hoffmann & Gelman 2011 
https://arxiv.org/abs/1111.4246

Sampling a highly correlated Gaussian in 250 dimensions

Samples obtained with 
standard sampling algorithm

accurate samples from 
true distribution

❏ Find Maximum

❏ Sample from the Posterior

Extremely difficult in high dimensions! 

In posterior analysis we ask: what is the most likely signal? 
How well can we reconstruct the signal?



Challenge #1: High Dimensionality

A deep Auto-Encoder finds a lower dimensional 
representation of the data 

Encoder
Network

Decoder
Network

data reconstructionlow dimensional 
latent space

networks are trained to minimize reconstruction error
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Challenge #1: High Dimensionality

A deep Auto-Encoder finds a lower dimensional 
representation of the data 

Encoder
Network

Decoder
Network

data reconstructionlow dimensional 
latent space

networks are trained to minimize reconstruction error

data model

low dimensional posterior



transformation is
parameterized by neural network

Challenge #2: Encoding prior knowledge

only in rare cases do we have analytic expressions for prior probabilities

Normalizing Flows: A bijective 
transformation Gaussizanizes the data

Neural Density Estimation

e.g. RealNVP (Dinh et al. 2019), Glow (Kingma et al 2018), NSF (Durcan 2019),SINF (Dai et al 2021)



transformation is
parameterized by neural network

Challenge #2: Encoding prior knowledge

only in rare cases do we have analytic expressions for prior probabilities

Normalizing Flows: A bijective 
transformation Gaussizanizes the data

Neural Density Estimation data model

low dimensional posterior Gaussian prior

e.g. RealNVP (Dinh et al. 2019), Glow (Kingma et al 2018), NSF (Durcan 2019),SINF (Dai et al 2021)



An Illustrative Toy Example

dimensionality ~800 pixels

VB et al. 2019, BDL@NeurIPS
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most likely reconstruction
max p(z’|d)

An Illustrative Toy Example

dimensionality ~800 pixels

underlying truth

uncertainty quantification
sampling p(z’|d)

VB et al. 2019, BDL@NeurIPS



z

sample from Gaussian 

Artificial Data Generation

Probabilistic Autoencoder

decoderzʼnormalizing flow

forward model

VB & Seljak 2020 (arXiv:2006.05479)

realistic artificial data

https://github.com/VMBoehm/PAE



Smooth Data Interpolation

real photo real photo

interpolation

decodernormalizing 
flow

encoded data points

https://github.com/VMBoehm/PAE

Probabilistic Autoencoder
VB & Seljak 2020 (arXiv:2006.05479)



Application in Astrophysics

Cosmology with Type 1a Supernovae

SN Type 1A

Standardizable Candles

Source: S. Perlmutter, 
Physics today, 2003

first significant detection 
of accelerated expansion

limiting factors:

● sparse observations

● spectral diversity

Stein et al. (VB) 2022, submitted

Perlmutter et al. 1998, Riess et al. 1998



Application in Astrophysics

Probabilistic Autoencoder for Supernova Type 1a

● 3 latent parameters capture spectral diversity 

● 3 latent parameters encode interpretable physics

○ Time after peak brightness

○ Magnitude

○ Extrinsic extinction

➔ Known physics is coded into the data model

➔ Improvement over current models

posterior 
analysis finds 
best parameters 
for each 
supernova

Stein et al. (VB, The Nearby Supernova Factory) 2022, submitted

Stein et al. (VB) 2022, submitted



Filling in Missing Observations

time

Stein et al. (VB, The Nearby Supernova Factory) 2022, submitted



Cosmic Structure Formation

source: http://cosmicweb.uchicago.edu/filaments.html

random initial fluctuations cosmic structure formation Data:
tracers of DM

e.g.
Galaxies & Lensing

Computationally Complex Forward Models
Forward models are often non-linear and computationally complex
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Cosmic Structure Formation

source: http://cosmicweb.uchicago.edu/filaments.html

Signal
random initial fluctuations

Forward Model: 
cosmic structure formation

Cosmological Parameters:
amount of dark matter, dark energy, mass of neutrinos etc.

Data:
tracers of DM

e.g.
Galaxies & Lensing

Computationally Complex Forward Models
Forward models are often non-linear and computationally complex



a case that requires high-dimensional posterior analysis

cosmological 
parameters

Computationally Complex Forward Models

extremely high-dimensional posterior

initial 
conditions

Gaussian prior



a case that requires high-dimensional posterior analysis

cosmological 
parameters

Computationally Complex Forward Models

>106 additional parameters!extremely high-dimensional posterior

initial 
conditions

Gaussian prior



Derivative-aided Optimization and Sampling

Gradient Descent

posterior



Derivative-aided Optimization and Sampling

From Hoffmann & Gelman 2011 
https://arxiv.org/abs/1111.4246

drawn from originalderivative-aidedcommon sampler

Gradient Descent Derivative-aided Sampling

posterior



source: http://cosmicweb.uchicago.edu/filaments.html

Computationally Complex Forward Models

Can this be made differentiable?



source: http://cosmicweb.uchicago.edu/filaments.html

Computationally Complex Forward Models

Can this be made differentiable?

Yes, with backpropagation!



Backpropagation

scalar
(posterior probability)

high-dimensional vector
(initial conditions)

Memory efficient derivatives of scalar functions with reverse mode differentiation

Forward-mode differentiation:
huge matrix

consecutive operations 
in forward model 



Backpropagation

scalar
(posterior probability)

high-dimensional vector
(initial conditions)

Memory efficient derivatives of scalar functions with reverse mode differentiation

consecutive operations 
in forward model 

Reverse-mode differentiation:

requires saving results of forward pass on a tape 

vector!



DES 3-year results, Amon et al. 2021

● Sensitivity to a variety of cosmological parameters

● Tightest constraint on combined mass of neutrinos to date

● Emerging tension with high-redshift probe?

● Full-field analysis could significantly tighten constraints!

Back to Astrophysics

gravitational lensing is a direct probe of (dark) matter

matter distribution

distant light sources

contours from 
summary statistic



The MADLens Code
VB, Y. Feng, M. Lee, B. Dai 2021 

https://github.com/VMBoehm/MADLens

A fully differentiable lensing code

source: http://cosmicweb.uchicago.edu/filaments.html



state of the art

MADLens

The MADLens Code
VB, Y. Feng, M. Lee, B. Dai 2021 

https://github.com/VMBoehm/MADLens

A fully differentiable lensing code

arcmin scales

● Runs an entire N-body simulation in tens of seconds

● Reaches extremely high-accuracy, even on small scales

Particle Gradient Descent2 (PGD) 
displaces particles to recover positions 
of high-resolution simulation.

2Dai et al. 2016 (arxiv:1603.00476)



Lensing Reconstruction with MADLens

VB et al. 2017 (arxiv:1701.01886)

truth reconstruction

data

initial 
fluctuations

Lee et al. (VB ) in prep.



Lensing Reconstruction with MADLens

VB et al. 2017 (arxiv:1701.01886)

truth reconstruction

data

initial 
fluctuations

Lee et al. (VB ) in prep.
“MADMuse”

Millea & Seljak 2021 (arxiv:2112.09354)

“Differentiable Universe Initiative”



Conclusions

Things I have talked about:

● Machine Learning is more than just classification. 

● It can be part of a sound statistical data analysis.

● Differentiability is great and we should make all our codes differentiable!

Things I didn’t have time to talk about:

● Using Machine Learning for Anomaly Detection and Discovery


