Machine Learning for Astrophysical Data Analysis

Machine Learning (ML) - the solution ?

An ML model is not told how to solve the problem at hand,

it *learns* how to solve it.

Machine Learning (ML) - the solution ?

An ML model is not told how to solve the problem at hand,

it *learns* how to solve it.

Deep Neural Networks & Related Innovations

"Universal function approximators"

Cybenco 1989, Leshno et al 1993

Deep Neural Networks & Related Innovations

"Universal function approximators"

Cybenco 1989, Leshno et al 1993

- *Training:* Adapt **W,b** to minimize difference between current output and desired output
- *Gradients* through **backpropagation**
- Computational feasibility through
 Graphical Processing Units (GPUs)

Machine Learning for Astrophysical Data Analysis?

Source: xkcd.com/

Inverse Problems

From observations to signals: probabilistic inversion with Bayes theorem

prior

what we observe:

Inverse Problems in Astrophysics

Credit: Event Horizon Telescope Coll.

Image Reconstruction from Interferometry

Lens Reconstruction from strongly lensed Images

Data Denoising and Inpainting

3D Dark Matter Tomography from Weak Lensing

In posterior analysis we ask: what is the most likely signal? How well can we reconstruct the signal?

- Find Maximum
- **G** Sample from the Posterior

In posterior analysis we ask: what is the most likely signal? How well can we reconstruct the signal?

Extremely difficult in high dimensions!

Sampling a highly correlated Gaussian in 250 dimensions

Find Maximum

Gample from the Posterior

Samples obtained with standard sampling algorithm

A deep Auto-Encoder finds a lower dimensional representation of the data

networks are *trained to* minimize reconstruction error

A deep Auto-Encoder finds a lower dimensional representation of the data

networks are *trained to* minimize reconstruction error

A deep Auto-Encoder finds a lower dimensional representation of the data

Challenge #2: Encoding prior knowledge

only in rare cases do we have analytic expressions for prior probabilities

Neural Density Estimation

Normalizing Flows: A bijective transformation Gaussizanizes the data

transformation is parameterized by neural network

e.g. RealNVP (Dinh et al. 2019), Glow (Kingma et al 2018), NSF (Durcan 2019), SINF (Dai et al 2021)

Challenge #2: Encoding prior knowledge

only in rare cases do we have analytic expressions for prior probabilities

Neural Density Estimation

Normalizing Flows: A bijective transformation Gaussizanizes the data

transformation is parameterized by neural network

data model

$$d = A(g_{\theta}(b_{\kappa}(z')) + n$$

low dimensional posterior

Gaussian prior

 $p(z'|d) = \frac{p(d|z')p(z)}{p(z')}$

e.g. RealNVP (Dinh et al. 2019), Glow (Kingma et al 2018), NSF (Durcan 2019), SINF (Dai et al 2021)

VB et al. 2019, BDL@NeurIPS

dimensionality ~800 pixels

VB et al. 2019, BDL@NeurIPS

dimensionality ~800 pixels

most likely reconstruction max p(z'|d)

underlying truth

dimensionality ~800 pixels

underlying truth

VB et al. 2019, BDL@NeurIPS

most likely reconstruction max p(z'|d)

underlying truth

dimensionality ~800 pixels

Artificial Data Generation

Probabilistic Autoencoder

VB & Seljak 2020 (arXiv:2006.05479)

realistic artificial data

https://github.com/VMBoehm/PAE

Smooth Data Interpolation

Probabilistic Autoencoder

VB & Seljak 2020 (arXiv:2006.05479)

interpolation

Application in Astrophysics

Cosmology with Type 1a Supernovae

Standardizable Candles

SN Type 1A

first significant detection of accelerated expansion

Perlmutter et al. 1998, Riess et al. 1998

limiting factors:

- sparse observations
- spectral diversity

Application in Astrophysics

Probabilistic Autoencoder for Supernova Type 1a

- 3 latent parameters capture spectral diversity
- 3 latent parameters encode interpretable physics
 - Time after peak brightness
 - Magnitude
 - Extrinsic extinction
- → Known physics is coded into the data model
- → Improvement over current models

Stein et al. (VB, The Nearby Supernova Factory) 2022, submitted

Filling in Missing Observations

Stein et al. (VB, The Nearby Supernova Factory) 2022, submitted

Forward models are often non-linear and computationally complex

Cosmic Structure Formation

random initial fluctuations

cosmic structure formation

Data: tracers of DM e.g. Galaxies & Lensing

Forward models are often non-linear and computationally complex

Cosmic Structure Formation

Signal random initial fluctuations

Forward Model: cosmic structure formation

Data: tracers of DM e.g. Galaxies & Lensing

Forward models are often non-linear and computationally complex

Cosmic Structure Formation

a case that requires high-dimensional posterior analysis

a case that requires high-dimensional posterior analysis

>10⁶ additional parameters!

Derivative-aided Optimization and Sampling

Gradient Descent

Derivative-aided Optimization and Sampling

Gradient Descent

Derivative-aided Sampling

derivative-aided

From Hoffmann & Gelman 2011 https://arxiv.org/abs/1111.4246

drawn from original

Can this be made differentiable?

source: http://cosmicweb.uchicago.edu/filaments.html

Can this be made differentiable?

source: http://cosmicweb.uchicago.edu/filaments.htm

Yes, with backpropagation!

Backpropagation

Memory efficient derivatives of scalar functions with *reverse mode differentiation*

y = F(x)scalar
(posterior probability)
high-dimensional vector
(initial conditions)

 $F = A \circ B \circ C$

consecutive operations in forward model

Forward-mode differentiation:

$$\frac{\partial F}{\partial x}|_{x_0} = \frac{\partial A}{\partial a}|_{a_0} \left(\frac{\partial B}{\partial b}|_{b_0}\frac{\partial C}{\partial x}|_{x_0}\right) = J_A \cdot \left(J_B \cdot J_C\right)$$
huge matrix

Backpropagation

Memory efficient derivatives of scalar functions with *reverse mode differentiation*

y = F(x)scalar
(posterior probability)
high-dimensional vector
(initial conditions)

 $F = A \circ B \circ C$

consecutive operations in forward model

requires saving results of forward pass on a tape

Back to Astrophysics

gravitational lensing is a direct probe of (dark) matter

DES 3-year results, Amon et al. 2021

- Sensitivity to a variety of cosmological parameters
- Tightest constraint on combined mass of neutrinos to date
- Emerging tension with high-redshift probe?
- Full-field analysis could significantly tighten constraints!

The MADLens Code

A fully differentiable lensing code

VB, Y. Feng, M. Lee, B. Dai 2021

https://github.com/VMBoehm/MADLens

The MADLens Code

A fully differentiable lensing code

• Runs an entire N-body simulation in tens of seconds

• Reaches extremely high-accuracy, even on small scales

Particle Gradient Descent² (PGD) displaces particles to recover positions of high-resolution simulation.

VB, Y. Feng, M. Lee, B. Dai 2021

Lensing Reconstruction with MADLens

truth

initial fluctuations

data

reconstruction

Lee et al. (VB) in prep.

VB et al. 2017 (arxiv:1701.01886)

Lensing Reconstruction with MADLens

data

Lee et al. (**VB**) in prep. *"MADMuse*"

"Differentiable Universe Initiative"

VB et al. 2017 (arxiv:1701.01886)

Millea & Seljak 2021 (arxiv:2112.09354)

Conclusions

Things I have talked about:

- Machine Learning is more than just classification.
- It can be part of a sound statistical data analysis.
- Differentiability is great and we should make all our codes differentiable!

Things I didn't have time to talk about:

• Using Machine Learning for Anomaly Detection and Discovery