

Cosmology from CMB & Lyman- α forest

Roger de Belsunce with: George Efstathiou, Steven Gratton, Vid Irsic, Will Coulton

28.01.2022, LBNL cosmology seminar

Outline

Introduction

• Early- and late-time probes of our Universe: CMB, Lyman- α

Inference from large-angular scale CMB data

- From likelihood approximations to likelihood-free inference
- Bayesian parametric foreground cleaning

Lyman- α forest

• P1D \rightarrow CMB lensing x Lyman- α forest \rightarrow P3D

Brief history of the Universe

Probing cosmology at different scales

Breaking degeneracies

Probe scales from CMB to Lyman- α

From large to small scales

- CMB:
 - Sensitive to large scales
 - Optical depth: $\tau \rightarrow A_s \& n_s \rightarrow M_v$,
 - Tensor-to-scalar ratio: r
- Lyman- α forest
 - Sensitive to small scales
 - suppression of matter clustering $\rightarrow M_v$
- CMB x Lyman-α
 Break degeneracies

¹ de Belsunce et al. (2021)

1.1 Inference from large-angular scale CMB data

Take away:

- 1. Construct complex likelihoods
- 2. Novel likelihood techniques

Motivation

¹ Pagano et al. (2020)
 ² Gratton (2017)
 ³ *Planck* Collaboration XLVI (2016)
 ⁴ Alsing et al. (2018)

Large-scale CMB data

¹ *Planck* Collaboration XLVI (2016) ² Delouis et al. (2019)

Roger de Belsunce | Cosmology from CMB & Lyman-α forest | LBNL seminar

Bayesian inference in a nutshell

- 1. Compress observed data to a summary statistic d_0 (e.g., power spectrum, NN-based compression)
- 2. Determine unknown parameters θ of a given model \mathcal{M}
- 3. Generate mock data in pairs $\{\mathbf{d}_i, \theta_i\}$ to train models

 $\mathcal{P}(\theta | \mathbf{d}_0, \mathcal{M}) \propto \mathcal{P}(\mathbf{d}_0 | \theta, \mathcal{M}) \mathcal{P}(\theta | \mathcal{M})$ Posterior density Likelihood Prior

¹ Planck Collaboration XLVI (2016)

Sounds nice in theory, does it work?

Test: 100 end-to-end simulations¹ with realistic noise & systematics

Joint TTTEEE likelihood results

Cross-correlations between TT, TE, EE pull posterior upwards

Exploring cosmological parameter space

Galactic polarised foregrounds in the CMB

Where can we refine this analysis?

¹ Dunkley et al. (2008)
 ² Eriksen et al. (2008)
 ³ Gratton et al. (2008)

- Currently:
 - frequency-dependent template subtraction
- Rethink parametric approach^{1,2,3}: $\mathbf{d}_p = \mathbf{A}_p \mathbf{s}_p + \mathbf{n}_p$
 - Spectral index variations across the sky
 - Introduce correlation length

1.2. Bayesian parametric foreground cleaning

Take away:

- 1. Improved foreground cleaning
- 2. Prior dependency of result

Galactic polarised foregrounds

Can we observe spectral index variations for synchrotron and thermal dust?

Preliminary

Evidence for spectral index variations in synchrotron

Preliminary

Uncorrelated noise + uncorrelated prior

Do we need better CMB foreground cleaning?

 τ constraints consistent with template cleaning (<1 σ) \rightarrow limit of Planck data reached

Conclusion

Reached limit of *Planck* data

- 1. Extract science with different statistical frameworks
 - likelihood-approximations & likelihood-free inference
- 2. Low multipole pipeline relevant for LiteBird¹, Simons Observatory²
 - LiteBird sensitive to spectral index variations at low frequencies
 - Optical depth to reionization
 - Primordial gravitational waves (tensor-to-scalar ratio r)

How else could we constrain cosmology, perhaps using late-time probes?

2. Lyman- α forest – road to full-shape measurement

Take away:

- 1. High $z \rightarrow high k$
- 2. Access full-shape information

The Lyman- α forest

High redshift dark matter tracer into the mildly non-linear regime

¹ Cambridge IGM group (Iršič)

Intergalactic medium

UNIVERSITY OF

P1D from Lyman- α forest

How do we propagate uncertainties through to the final P1D?

¹ McDonald et al. (2006)
 ² Palanque-Delabrouille et al. (2013)
 ³ Chabanier et al. (2018)

• P1D Lyman-a
$$P_{1D}(z,k_{\parallel}) = \int \frac{dk_{\perp}}{(2\pi)^2} P_{3D}(z,k_{\perp},k_{\parallel})$$

• Flux density field $\delta_F(\mathbf{x}) = \frac{F(\mathbf{x}) - \bar{F}}{\bar{F}}$

• Lyman-a P1D

$$P_{raw}(k) = [P_{Lya}(k) + P_{correlated}(k) + P_{uncorrelated}(k)] \cdot W^{2}(k) + P_{noise}(k)$$

Sources of uncertainty in analysis:

- 1. Continuum fit
- 2. Noise estimate

23

Continuum fitting - PCA

Tests on eBOSS DR16 data

- Train PCA method on high S/N eBOSS sample
 - ~9000 QSOs
 - -2 < z < 2.5
 - SNR > 7
- Measure continuum redwards of Ly- α peak
 - σ-clipped continuum¹
 - Less noisy and fewer absorption features
 - Project bluewards² to measure continuum in low SNR regime
- Propagate uncertainty from continuum fitting to $\delta_{\rm F}$

Unbiased & accurate continuum fitting

Noise estimation

Analysis of DESI Science Verification (Everest) data

- Compare DESI SV noise estimates:
 - 1. DESI pipeline
 - 2. Difference of exposure sets¹
 - e.g.: (a+c+e)-(b+d+f)
 - 3. Permutations of exposures
 - e.g.: a-b, a-c, a-d, b-c, c-d
- New noise estimate important for P1D

Preliminary

¹ Ravoux et al. (in prep)

Next steps for Lyman- α : CMB x Lyman- α

Postdoc project I: Why is lensing "low"?

¹ Doux et al. (2017)
 ² Chiang & Slosar (2017)
 ³ DESI presentation (Font-Ribera)

- Lyman- α forest probes:
 - small scale clustering
 - High redshift: 2 < z < 5
- Opportunity:
 - Cross-correlate $\delta_{\text{lensing}} \mathbf{x} \ \delta_{\text{Ly-}\alpha}$
 - 2pt correlation instead of 3pt^{1,2} at field level
 - > shape of primordial P(k)
 - $\succ \Omega_m$ at z=3
 - neutrino mass

Lyman- α : high z \rightarrow high k

Next steps for Lyman- α : P3D

¹ Font-Ribera et al. (2017)

Postdoc project II

- Access information stored in broadband shape ٠
 - $\Omega_{\rm m}$, n_s, σ_8 —
- Break amplitude-slope degeneracy •
- systematics have negligible effect on BAO but • important for P3D measurement

Matter power spectrum: Pk(massive neutrinos) / Pk(massless neutrinos)

Wavenumber k [h/Mpc]

Conclusion

Please get in touch if you want to chat more!

- 1. Low multipole inference pipeline \rightarrow LiteBird¹, Simons Observatory²
 - Complex likelihoods with systematics (τ , *r*)
 - CMB foregrounds (priors)
- 2. Lyman- $\alpha \rightarrow DESI$
 - Exciting data
 - Understand main systematics in analysis (continuum)
 - P1D as test case
 - Continuum fitting crucial to keep long modes \rightarrow CMB x Lyman- α
 - Propagate errors through to P(k)
 - From P1D to P3D

How can we exploit efficiently (all) the information from cosmological data sets?

¹ Sugai et al. (2020) ² Ade et al. (2019)