Multi-frequency power spectra From the 2008 South Pole Telescope data

Cosmology in Northern California Lawrence Berkeley National Laboratory Oct 22, 2010

200 square degrees 18 μK arcmin at 150 GHz 40 μK arcmin at 220 GHz

- •10 meter, dedicated telescope
- 1.1 arcmin beams at 150 GHZ
 960 horn coupled spider-web Transition Edge Sensor bolometers
 In 2008, we observed in two bands at 150 and 220 GHz

Thermal Sunaev-Zel'dovich effect

CMB photons inverse Compton scatter off hot electrons in galaxy clusters.

 $\Delta T \propto f(h\nu/kT_{CMB}) \cdot y$ $y = \sigma_{\rm T} \int dl \ n_e \frac{kT_e}{m_e c^2}$

Kinetic Sunaev-Zel'dovich effect

Doppler shift due to proper motion of ionized gas

$$\Delta T \propto \sigma_{\rm T} \int dl n_e \frac{v_{\parallel}}{c}$$

Psuedo –
$$C_{\ell}$$
 analysis:

Calculate FFT of maps, then include

- Beams
- TOD Filtering
- Map area
- Source masking

$$<\tilde{C}_{\ell}^{ii}>=\sum_{\ell'}M_{\ell\ell'}[W]F_{\ell'}B_{\ell'}^2< C_{\ell'}>+< N_{\ell}>$$

(using formalism from Hivon 2002)

Cross Spectrum analysis:

- Use a single two-hour observation as a map unit.
- Calculate cross spectra between all maps of a given field. Average contains no noise bias. Measure instrumental noise directly.
- Need to account for sample variance: Generate hundreds of signal-only simulated maps.

$150~\mathrm{GHz}$

 $D_{\ell} = C_{\ell} \ \ell \ (\ell+1)/2\pi$

(ACT results from Das 2010)

DSFG-Subtracted bandpower fitting (Lueker '10 method):

- Choose a linear combination of band-powers to minimize one component.
 MCMC fits to the resulting differenced spectrum
- •Constrain a linear combination of tSZ + kSZ, and residual foregrounds.

Multi-frequency fitting:

- •Modified CosmoMC code (see M. Millea's talk)
- •Simultaneous fit to all 3 cross spectra + WMAP7 + QUAD + ACBAR
- •Basic model includes tSZ, kSZ, and two DSFG components with a common spectral index
- •Provides tighter constraints -or- more freedom to vary parameters

Results: tSZ power

 $D_{3000}^{tSZ} = 3.60 \pm 1.00 \,\mu \text{K}^2$

With a fixed homogeneous kSZ model (Sehgal et al 2010)

Results: tSZ and kSZ power when kSZ is allowed to vary

The End

What about the angular power spectrum?

• tSZ probes late, dense structure

$$C_{\ell}^{tSZ} \propto \sigma_8^7 (\Omega_b h)^2$$

Sounds good...but

- ¹/₂ of tSZ power from z>1
- $\frac{1}{2}$ of tSZ power from clusters with $M < 10^{14} M_{\odot}$
- Models disagree at 50%
- Fit to a scaled template.

Shaw et al. astro-ph/1006.1945