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Introduction

Baryon Acoustic Oscillations (BAOs)

Clustering of galaxies in redshift-space

- standard ruler (~150Mpc) precisely determined by CMB

- imprinted in late-time matter distribution: galaxy surveys, Ly-alpha forest

- one of main targets to determine the cosmic expansion history 

- so far angle-averaged (1D) BAO scale is simply measured 

BUT

- shape information in galaxy P(k): Neutrino Mass, Inflation parameters

- 2D BAOs in redshift-space distortion



Neutrino Mass & Galaxy survey

A experimental proof that SM of particle physics is not sufficient

Cosmology: complementary & powerful to constrain total mass
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Linear theory

large scale
DM

small scale
suppression
Nonlinear 

regime

FS scale

- cosmology: Σmν< ~1eV

- terrestrial: 0.05eV<Σmν<2eV

- suppression effects due to 

  neutrino’s free-streaming

- comparable to BAO scale

- Neutrino effect cannot be negligible

δP/P ≈ −8fν ≥ −4%



Shape of galaxy P(k)
To use info of galaxy P(k) shape, we need to model nonlinear issues

- nonlinear gravitational evolution

- nonlinear galaxy biasing

(- nonlinear redshift-distortion)

Modeling based on perturbation theory
S.S, Takada, Taruya (2008,2009)

4

enhanced suppression
at nonlinear regime



Neutrino Mass constraint 
with SDSS DR7 ‘halo’ P(k)
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FIG. 3: Comparing the best-fit PT model with the SDSS LRG
spectrum, where the best-fit model is obtained from the fitting
to kmax = 0.1 hMpc−1. For illustrative clarity the power
spectra are divided by the linear matter power spectrum for
the best-fit cosmological model. For comparison, we also show
the PT model, where the neutrino mass is changed to

P
mν =

0.81 eV, corresponding to the 95% C.L. upper bound in Fig. 2,
but other parameters are kept fixed to the best-fit values.

to the best-fit values, the model spectrum significantly
underestimates the measured spectrum amplitudes at the
small scales. Also note that the best-fit model rather con-
tinues to match the measured spectrum beyond kmax =
0.1 hMpc−1. In fact, even if including the information
up to kmax = 0.2 hMpc−1, the neutrino mass limit is
only slightly changed to

∑
mν ≤ 0.8 eV, reflecting less

cosmological information at the higher wavenumbers due
to severe degeneracies of cosmological parameters with
nonlinear bias parameter and/or shot noise parameter.

The lower two panels of Fig. 2 show how the neutrino
mass constraint is degenerate with w and the nonlinear
bias parameter b2. The marginalized constraint on w is
−1.08 < w < −0.79 (68% C.L.). While a change of w
leads to a suppression in the power spectrum amplitudes,
Fig. 2 shows that degeneracy between w and the neutrino
mass is rather weaker than expected. This implies that
the constraint on w comes mainly from the BAO infor-

mation as studied in [20]. Fig. 2 also shows that a simple
linear bias model with b2 = 0 is disfavored at 68% C.L.
That is, the nonlinear scale-dependent bias is needed to
match the measured power spectrum, as can be found
from Fig. 3. Similarly to Fig.1, bimodal structure of the
constraint on b2 is found, implying that the term propor-
tional to b2

2 in Eq. (1) is dominant over other terms in
the nonlinear power spectrum.

Summary: We have shown that the PT based model
can be used to interpret the measured power spectrum.
The model successfully describes the effects of nonlinear
clustering and nonlinear, scale-dependent galaxy bias in
a self-consistent manner within the PT framework. Ap-
plying this PT model to the SDSS LRG samples, we
have derived the neutrino mass limit

∑
mν ≤ 0.81 eV

(95% C.L.). The parameter constraints including neu-
trino masses would be further improved by including the
redshift distortion measurement and/or the higher-order
clustering information, which helps to break the degen-
eracies with galaxy bias parameters. On a theory side,
the PT based model needs to be further refined by in-
cluding higher-order loop corrections and/or by calibrat-
ing the model with a suit of high-resolution simulations
(see [14] for such a study), although a careful treatment
of massive neutrinos, nonlinear galaxy bias and redshift
distortion is definitely needed. Once such refined mod-
els are available, a more stringent constraint on neu-
trino masses can be obtained from high-precision mea-
surements of galaxy clustering via on-going and future
galaxy redshift surveys. We hope that this paper gives
the first attempt to step toward this direction.
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down to k ! 0.1 hMpc−1.
Results: We now apply the PT model to the power

spectrum of SDSS LRG samples in order to derive the
neutrino mass constraint. We use the halo power spec-
trum measured by R09, where 104,337 halos were first
reconstructed from the observed 110,576 LRGs’ distribu-
tion, and the angle-averaged redshift-space power spec-
trum was estimated based on the method in [17]. The
halo power spectrum is unlikely affected by nonlinear red-
shift distortion, known as the Fingers-of-Gods effect, be-
cause the contribution from satellite galaxies was elimi-
nated in the measurement. Thus the halo power spec-
trum in R09 is appropriate to compare with the PT
model. Note that linear redshift distortion, known as
the Kaiser effect, merely changes the overall amplitude
of the angle-averaged power spectrum, which can be ab-
sorbed by the linear bias parameter b1 in the PT model.
We checked that the simulated halo power spectrum in
redshift space can be successfully explained by the Kaiser
factor for kmax = 0.1 h/Mpc.

In estimating parameters, we combine the LRG power
spectrum with the WMAP5 data. Note that our results
remain almost unchanged even with the latest WMAP7
result [18]. We assume that the likelihood function of the
LRG power spectrum is given as

−2 lnLSDSS ∝
∑

ki,j<kmax

∆i[C−1]ij∆j , (3)

where ∆i is the difference between the measured and
model power spectra at the i-th wavenumber bin ki,
∆i ≡ P̂halo(ki) − PNL

halo(αki|p), with p being a set of
model parameters (see below). Note that the effect of
survey window function is properly taken into account
in computing the model power spectrum following R09.
The matrix C is the covariance matrix for which we use
the matrix provided in R09, and C−1 is its inverse ma-
trix. Note that we employ kmax = 0.1 hMpc−1 and as-
sume the single redshift slice z = 0.35 for simplicity. The
stretch factor “α” in the argument of the model power
spectrum describes the cosmological distortion [19, 20].
This factor is given as α = Dref

V (z)/DV (z; p), where
DV (z) ≡ [(1 + z)2DA(z)2z/H(z)]1/3 and Dref

V is the dis-
tance for the reference cosmological model used in the
LRG spectrum measurement. The likelihood for the
joint analysis of WMAP5 plus SDSS is simply given as
lnL = lnLSDSS + lnLWMAP.

We include a fairly broad range of parameters that
can cover variants of CDM cosmology such as models
including massive neutrinos and dark energy equation of
state parameter. We vary 12 model parameters in total:

p = (fν , Ωb0h
2, ΩDM0h

2, θ∗, w, τ, ∆2
R, ns, ASZ, b1, b2, N),

(4)
where ΩDM0h2 is the sum of CDM and massive neutrinos:
θ∗ is the parameter to characterize the angular scale of
CMB acoustic oscillations: τ is the optical depth to the
last scattering surface: ns and ∆2

R are the parameters
to specify the primordial power spectrum following the
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This work: WMAP5+LRG
with PT model (kmax=0.1h/Mpc)

WMAP5 only

WMAP5+LRG
with R09 (kmax=0.1h/Mpc)

FIG. 2: The parameter constraints obtained by comparing
the PT model with the SDSS LRG power spectrum up to
kmax = 0.1 hMpc−1, in combination with the WMAP5 con-
straint, where we include 12 parameters given by Eq. (4).
The upper panel shows the posterior distribution of neutrino
masses, yielding the upper limit

P
mν ≤ 0.81 eV (95% C.L.),

a factor 1.85 improvement over the limit
P

mν ≤ 1.5 eV
from the WMAP5 alone. The lower two panels show how
the neutrino mass is degenerate with the dark energy equa-
tion of state parameter w and the nonlinear bias parame-
ter b2, respectively, with 68% C.L. (shaded) and 95% C.L.
(light shaded) regions. A non-zero b2 or equivalently a scale-
dependent bias is favored at 68% C.L. Our results are com-
pared with the results derived using the halo-model based
method in R09 for the same maximum wavenumber cutoff
kmax = 0.1 hMpc−1.

convention in [15]: ASZ is the parameter to control a con-
tamination of the Sunyaev-Zel’dovich effect to the CMB
spectrum: w is the dark energy equation of state param-
eter. Note that the parameters τ and ASZ affect only the
CMB information. We used the COSMOMC code [21] to
explore parameter estimations in the multi-dimensional
parameter space.

The upper panel of Fig. 2 shows the marginalized error
on neutrino masses. We obtain the upper limit

∑
mν ≤

0.81 eV (95% C.L.) for the SDSS DR7 plus WMAP5.
This is a factor of 1.85 improvement compared to the
limit derived from the WMAP5 alone,

∑
mν ≤ 1.5 eV.

Our neutrino mass limit can be compared with the re-
sult derived using the method in R09, where the em-
pirical treatment based on halo model prescription was
used to account for nonlinear, scale-dependent galaxy
bias. Note that R09 derived the neutrino mass con-
straint with kmax = 0.2h−1Mpc, which gives a similar
result to the kmax = 0.1h−1Mpc case shown in Fig. 2.
Fig. 3 shows that the best-fit PT model well matches
the measured LRG power spectrum over a range of the
working wavenumbers, k ≤ 0.1 hMpc−1. If the neu-
trino mass is changed to the 95% C.L. upper bound,∑

mν = 0.81 eV, but other parameters are kept fixed

S.S, Takada, Taruya (2010)

WMAP5 + ‘reconstructed halo’ P(k) measured by B.Reid et al (2009)

obtain a conservative bound, Σmν<0.81eV (95% C.L.)

Going beyond kmax=0.1h/Mpc is still challenging...



2D BAOs in redshift-space

Redshift Space Distortion (RSD)
- peculiar velocity of galaxies along l.o.s should be contaminated in measured-z

- Linear Kaiser formula depends on growth parameter “f”: modified gravity

2D BAO ring: Alcock Paczynski test

Kaiser (1987)

Alcock & Paczynski (1979)

^ _ ^

observer real space redshift space
∝ 1/H(z)

BAO ring cosmological distortion

- Note: spherically averaged BAO scale 

∝ DA

∝ DV ∝ [(1 + z)2D2
A · z/H(z)]1/3

Percival et al (2009) etc

�s = �r +
�v · ẑ

aH(z)
ẑredshift space

real space
line of sight direction

PS(k, µ) = b2

�
1 +

f

b
µ2

�2

Pm(k)



Modeling of RSD

We found a perturbation-theory motivated formula in which nonlinear matter 
power spectrum can successfully recover the N-body results.

Taruya, Nishimichi, S.S. (2010)

PS(k, µ) = e−k2f2σ2
Vµ2

[Pδδ(k) + 2fµ2Pδθ(k) + f2µ4Pδθ(k) + A(k, µ) + B(k, µ)]
correction terms originating from higher-order correlation
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FIG. 5: Same as in Fig. 2, but we here adopt new model of redshift distortion (18). Solid and dashed lines represent the
predictions for which the spectra Pδδ, Pδθ and Pθθ are obtained from the improved PT including the correction up to the
second-order Born correction, and one-loop calculations of the standard PT, respectively. In both cases, the corrections A and
B given in Eqs. (19) and (20) are calculated from standard PT results (see Appendix A). The vertical arrows indicate the
maximum wavenumber k1% defined in Eq. (12), for standard PT and improved PT (from left to right).

can be formally recast as

P (S)
SPT(k, µ) =

{
1− (kµfσv,lin)

2
} {

Pδδ(k) + 2f µ2Pδθ(k)

+f2µ4Pθθ(k)
}
+A(k, µ) +B(k, µ) + C(k, µ). (23)

Note that each term in the above expression should be
consistently evaluated using the perturbative solutions
up to the third order in δ and θ, and as a result, only
the leading-order corrections just proportional to Plin∆2

(or equivalently the forth order in δ(1)) are included in
the one-loop power spectrum. Here, the function C is
defined by

C(k, µ) = (kµ f)2
∫

d3pd3q

(2π)3
δD(k − p− q)

µ2
p

p2
Pθθ(p)

×
{
Pδδ(q) + 2 f µ2

q Pδθ(q) + f2 µ4
q Pθθ(q)

}

# (kµ f)2
∫

d3pd3q

(2π)3
δD(k − p− q)

µ2
p

p2
(
1 + f µ2

q

)2

× Plin(p)Plin(q) (24)

with µp = pz/|p| and µq = qz/|q|. The second equality is
valid for the one-loop PT calculation. Hence, if we adopt
either of Lorentzian or Gaussian form in Eq. (11) and just
expand it in powers of its argument, the new formula (18)
reduces to the one-loop result (23) just dropping the term
C.
The C term is originated from the spatial correlation

of the velocity field, and is obtained through the low-k

expansion of the exponential prefactor exp{〈ej1A1〉c} in
Eq. (16). For the scales of BAOs, the C term monoton-
ically increases the amplitude of power spectrum, and
it does not alter the acoustic structure drastically. In-
deed, our several examinations reveal that the effect of
this can be effectively absorbed into the damping func-
tion D[kµfσv] with varying the velocity dispersion σv.
Rather, the main drawback of the standard PT expres-
sion (23) comes from a naive expansion of all the terms
in the exact formula (4), which fails to describe the del-
icate balance between the Finger-of-God damping and
the enhancement from Kaiser effect and non-linear grav-
itational growth. As we will see in next subsection, both
keeping the damping term DFoG and including the cor-
rections A and B seem essential, and with this treatment,
even the standard PT calculation of the power spectrum
can give a excellent result which reproduces the N-body
simulations fairly well.

B. Comparison with N-body simulations

We now compare the new prediction of redshift-space
power spectra with the result of N-body simulations.
Fig. 5 shows the monopole (left) and quadrupole (right)
power spectra divided by their smooth reference spectra.
The analytical predictions based on the model (18) are
plotted adopting the Gaussian form of the Finger-of-God
term DFoG[kfµσv], and the velocity dispersion σv is de-



Multipole vs full-2D?
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FIG. 2: Figure-of-merit on the parameters DA, H, and f as functions of kmax (top-left), ngal (top-right), b (bottom left), and
σv (bottom right).

Merit (FoM):

FoM ≡ 1√
detF̃

−1
, (19)

where the matrix F̃
−1

is the 3 × 3 sub-matrix, whose
elements are taken from the inverse Fisher matrix
F−1 associated with the parameters DA, H, and f .
The FoM quantifies the improvement of the parame-
ter constraints, and inversely proportional to the prod-
uct of one-dimensional marginalized errors, i.e., FoM ∝
1/{σ(DA)σ(H)σ(f)}.

Fig. 2 shows the dependence of FoM on the properties
of the galaxy samples characterized by the number den-
sity ng (top-right), bias parameter b (bottom-left), and

one-dimensional velocity dispersion σv (bottom-right).
Also, in top-left panel, we show the FoM as a function of
maximum wavenumber kmax used in the parameter esti-
mation study. Note that in plotting the results, the other
parameters are kept fixed to the canonical values. The
upper part of each panel plots the three different lines,
and shows how the FoM changes depending on the choice
or combination of power spectra used in the analysis:
combining monopole (P0) and quadrupole (P2) spectra
(magenta, dot-dashed); combining three multipole spec-
tra, P0, P2 and P4 (blue, long-dashed); using full 2D
spectrum P (k, µ) (black, solid). On the other hand, the
lower part of each panel plot the ratio of FoM normalized
by the one for the full 2D spectrum.

In principle, using the full 2D spectrum gives the tight-

Padbanabhan & White (2008)
Taruya, S.S., Nishimichi, in prep

Forecasting the Constraints on Anisotropic Baryon Acoustic Oscillations from
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Baryon acoustic oscillations (BAOs) imprinted in the galaxy power spectrum can be used as stan-
dard ruler to determine angular diameter distance and Hubble parameter at high redshift galaxies.
Combining redshift distortion effect which apparently distorts the galaxy clustering pattern, we can
also constrain the growth rate of large-scale structure formation. Usually, future forecast for con-
straining these parameters from galaxy redshift surveys has been made using a full shape of redshift
power spectrum. Here, we apply the multipole expansion to the anisotropic power spectrum, and
discuss how much cosmological information can be extracted from the lower-multipole spectra, i.e.,
monopole and quadrupole.

I. INTRODUCTION

Baryon acoustic oscillations (BAOs) imprinted on the
clustering of galaxies are now recognized as the powerful
cosmological probe to trace the expansion history of the
Universe. In particular, the spectroscopic measurement
of BAOs can provide a way to simultaneously determine
the angular diameter distance DA and Hubble parame-
ter H at given redshift of galaxies through the cosmolog-
ical distortion, known as Alcock-Paczynski effect. Fur-
ther, measuring the clustering anisotropies caused by the
redshift distortion due to the peculiar velocity of galax-
ies, we can also probe the growth history of structure
formation, characterized by the growth rate parameter
f ≡ d lnD/d ln a, with quantities D and a being linear
growth factor and the scale factor of the Universe, re-
spectively.

With the increased number of galaxies and large sur-
vey volumes, on-going and future spectroscopic galaxy
surveys such as Baryon Oscillation Spectroscopic Sur-
vey (BOSS), Hobby-Eberly Dark Energy Experiment
(HETDEX), Subaru Measurement of Imaging and Red-
shift equipped with Prime Focus Spectrograph (SuMIRe-
PFS), and EUCLID/JDEM aim at precisely measuring
the acoustic scale of BAOs as standard ruler. These sur-
veys will cover the wide redshift ranges, 0.3 ! z ! 3.5,
and provide a precision data of the redshift-space power
spectrum with an accuracy of a percent level over the
scales of BAOs.

In promoting these gigantic surveys, a crucial task is
a quantitative forecast for the size of the statistical er-
rors on the parameters DA, H and f in order to clarify
the scientific benefits as well as to explore the optimal
survey design. The Fisher matrix formalism is a pow-
erful tool to investigate these issues, and it enables us
to quantify the degeneracy and the correlation between
multiple parameters (e.g., Refs. [1–3] especially for mea-
suring DA, H and f). So far, most of the works on

the parameter forecast study has focused on the poten-
tial power of the BAO measurements, and attempt to
clarify the achievable level of the precision for the pa-
rameter estimation. For this purpose, they sometimes
assumed a rather optimistic situation that a full shape of
the redshift-space power spectrum, including the cluster-
ing anisotropies due to the redshift distortion, is available
in both observation and theory.

In this paper, we are particularly concerned with the
parameter estimation using a partial information of the
anisotropic BAOs from a practical point-of-view. In red-
shift space, the power spectrum obtained from the spec-
troscopic measurement is generally described in the two
dimension, and is characterized as functions of k and µ,
where k is the wavenumber and µ is the directional cosine
between the line-of-sight direction and k [20]. Usually in
the literature, the multipole expansion is applied to the
redshift-space power spectrum in order to quantify the
clustering anisotropies. Denoting the power spectrum by
P (k, µ), we have

P (k, µ) =
even∑

!=0

P!(k)P!(µ) (1)

with the function P! being the Legendre polynomials.
In linear theory, the redshift-space power spectrum is

simply written as P (k, µ) = (1 + β µ2)2Pgal(k), where
β = f/b with b being the linear bias parameter, and Pgal

is the galaxy power spectrum in real space. Then, the
non-vanishing components arises only from the monopole
(" = 0), quadrupole (" = 2) and hexadecapole spectra
(" = 4). That is, cosmological information contained in
the " = 0, 2 and 4 moments is equivalent to the whole
information in the full 2D power spectrum. In practice,
however, linear theory description cannot be adequate
over the scale of the BAOs, and the non-linear effects of
the redshift distortion as well as the gravitational clus-
tering must be accounted for a proper comparison with

Multipole expansion

- Even if including nonlinear effects, 
nearly full 2D information can be 
obtained with multipoles up to l=4.

- With monopole & quadrupole, 
roughly 50% information can be gained 5

power spectra. That is, we use the improved PT de-
veloped by Ref. [15, 17] to account for a dominant con-
tribution of the non-linear gravity to the power spectra
Pδδ, Pδθ and Pθθ, and to adopt standard PT for mi-
nor but non-negligible corrections of A and B terms.
Detailed comparison with N-body simulations [13, 15]
showed that this treatment can work well, and in our fidu-
cial set of cosmological parameters, the model can give
a percent-level precision at least up to the wavenumber
k ≤ 0.2hMpc−1 at z = 1.

Number of free parameters in the subsequent Fisher
analysis is five in total, i.e., DA, H, and f , in addition
to the nuisance parameters b and σv. Other cosmolog-
ical parameters such as Ωm or Ωb are kept fixed. We
assume that the cosmological model dependence of the
power spectrum shape is perfectly known a priori from
the precision CMB measurement by PLANCK. The in-
fluence of the uncertainty in the power spectrum shape
is discussed in Sec. IV D in details.

A. Two-dimensional errors

As a pedagogical example, let us first examine how
the lower-multipole spectra can constrain the parameters
DA, H, and f . Fig. 1 shows the two-dimensional contour
of the 1-σ (68% C.L.) errors on (DA,H) (bottom-left),
(DA, f) (top-left), and (f, H)-planes (bottom right).
Here, the Fisher matrix is computed adopting the model
of redshift-space power spectrum (15) up to kmax =
0.2hMpc−1.

The solid (magenta) and dashed (cyan) lines re-
spectively represent the constraints coming from the
monopole (P0) and quadrupole (P2) power spectrum
alone. As anticipated, only the single multipole spec-
trum cannot provide useful information to simultane-
ously constrain DA, H, and f . In particular, for the con-
straints on DA and H, there appear strong degeneracies,
and the error ellipses are much elongated and inclined.
These behaviors are basically deduced from the Alcock
& Paczynski effect, and are consistent with the facts that
the monopole spectrum is rather sensitive to the combi-
nation (D2

A/H), while the quadrupole spectrum is sen-
sitive to (DA H) (e.g., [4]). On the other hand, com-
bining monopole and quadrupole greatly improves the
constraints (indicated by blue, outer shaded region) not
only on DA and H, but also on growth-rate parameter f .
This is because the degeneracies between the parameters
DA and H constrained by the monopole differ from that
by the quadrupole, and thus the combination of these
two spectra leads to a substantial reduction of the size of
error ellipses. Further, the growth-rate parameter is pro-
portional to the strength of redshift distortion, and can
be determined by the quadrupole-to-monopole ratio. Al-
though the measurement of the galaxy power spectrum
alone merely gives a constraint on β = f/b, provided
the accurate CMB measurement for power spectrum nor-
malization, we can separately determine the growth-rate

FIG. 1: Two dimensional 1-σ errors on f , DA and H based on
linear theory (left) and non-linear models (middle and right).

parameter.
For comparison, Fig. 1 shows the forecast constraints

obtained from the full 2D power spectrum (green, inner
shaded region). Further, we plot the results combining
the monopole and quadrupole spectra, but neglecting the
covariance between # = 0 and # = 2 (blue, dotted lines).
Clearly, using a full 2D shape of the redshift-space power
spectrum leads to a tighter constraint, and the size of
the error ellipse is reduced by a factor of ∼ 2, compared
with the constraints from the monopole and quadrupole
spectra. The results indicate that the contribution of the
higher multipoles is very important in improving the con-
straints. On the other hand, for joint constraints from the
monopole and quadrupole, a role of the covariance C̃ov

02

or C̃ov
20

seems less important, and one may naively treat
monopole and quadrupole power spectra as statistically
independent quantities. However, these results are par-
tially due to the properties of the galaxy samples char-
acterized by several parameters, and may be altered in
different assumptions or survey setup. This point will be
investigated in some details in next subsection.

B. Figure-of-Merit

We here study the dependence of galaxy samples or
survey setup on the forecast results for parameter con-
straints. To do this, it is useful to define the Figure-of-



Two distances measurement
with SDSS DR7 multipole P(k)

with SDSS DR7 monopole & quadrupole 
measured by Yamamoto et al (2010)

Taruya et al (2010) + nonlinear bias Taruya et al (2010) + linear bias
Scoccimarro (2004) + nonlinear bias Scoccimarro (2004) + linear bias

Preli
minary

S.S et al, in prep

- need precise modeling especially at k > 0.1h/Mpc

- constraint on DA seems to depend on modeling of galaxy biasing



Conclusion

Full shape of galaxy power spectrum in redshift space 
potentially contains fruitful information on fundamental physics 
Key: modeling of nonlinear issues

Neutrino Mass

obtained a “conservative” bound,  Σmν<0.81eV (95% C.L.) 
with SDSS DR7 combined with WMAP5

2D BAOs

preliminary results: we should carefully constrain DA & H

first step to use 2D BAO information


