Measuring the B-mode CMB polarization at degree—arcminute scales with the POLAR Array

Or ... "What to build if you want it all."

Ki Won Yoon Stanford University

CMB B-mode polarization measurements as of last year...

Degree scales:

- generated by primordial gravitational waves
- direct measurement of inflation energy scale

Arcminute scales:

- theory verification; breaks parameter degeneracy
- dark energy, expansion history, LSS between recombination and moderate z
- constrain neutrino masses

CMB B-mode polarization measurements as of last year...

QUaD & BICEP (60-100 detectors) still > 2 orders of magnitude away from lensed B.

Current proposed experiments can attempt statistical detection, but not much more.

Need mapping speed increase by $\sim \text{few } \times 10^2$ to fully explore wealth of information.

Constraints on neutrino mass (Smith et al. 2008)

Above predictions for 75% sky survey.

35%-sky, 6 uk-arcmin survey with 5'FWHM can detect neutrino mass > 0.06 eV. No significant benefit going from 5' to 1'FWHM beams.

Degree-scale B-mode experiments (BICEP2/Keck) will run into lensing foreground limit. "Delensing" allows for probing below r=0.01 (1 uK-arcmin 5' beam \rightarrow 4x delensing). Modest improvement in delensing efficiency with beams smaller than 5'.

So, what's the bottom line?

Need to go well beyond current proposed instruments, with few $x \mid 0^4$ detectors across multiple, easily scalable telescopes.

Maximize per-telescope throughput.

Optimize throughput/dollar with medium-size aperture (diminishing ROI for going below 5-arcminute beams).

POLAR-I and the POLAR Array

POLAR-1:

- 1.5 m (6'), up to 4608 detectors @ 150 GHz
- ~300 deg² survey
- Funded; target deployment in late 2012

POLAR Array:

- 10 x 2-m telescopes (4'); ~4608 detectors each
- 90, 150, 220 GHz
- 400/15000 deg² dual deep/wide coverages
- TBD

4x throughput of existing BICEP2/Keck focal plane arrays...

6

What can POLARI and the POLAR Array do?

POLAR-1:

- map lensing B-mode with high S/N; reach r=0.02
- 2x delensing efficiency

POLAR Array:

- full information extraction on neutrino mass, early dark energy
- 4x delensing efficiency; enable probing below r=0.01

Conclusion

Fully exploring the wealth of information in primordial and lensed B-mode CMB polarization requires a huge jump in mapping speed, beyond currently proposed experiments.

Scalable and affordable design needed for ~ 10 high-throughput telescopes.

~2-m primary (4' beams) combined with both deep and wide surveys can address above challenges, and allow for probing r < 0.01 by delensing along with exciting precision cosmology from lensed B-mode polarization.

Currently refining optical design and instrument/observing strategies. POLAR-1 deployment in 2 years as a demonstration for eventual POLAR Array.