Starburst Activity in High Redshift Galaxy Clusters

Dale D Kocevski

University of California, Santa Cruz

with

Lori Lubin & Brian Lemaux (UC Davis) Roy Gal (Hawaii)

Gordon Squires, Chris Fassnacht, Neal Miller, Alice Shapley, Jason Surace, Mark Lacy

Cluster Evolution with Redshift

- At higher redshifts, significant evolution observed in cluster galaxies.
- Increased fraction of blue, star-forming, late-type galaxies.
- Increased fraction of post-starburst (k+a) galaxies.
- Suggests high-z cluster galaxies experience temporary increase in star formation. This is not seen at lower redshifts.
- Controversial as starbursting progenitors have yet to be found. Could be hidden by dust obscuration.

Cluster Evolution with Redshift

- * At higher redshifts, significant evolution observed in cluster galaxies.
- Increased fraction of blue, star-forming, late-type galaxies.
- Increased fraction of post-starburst (k+a) galaxies.
- Suggests high-z cluster galaxies experience temporary increase in star formation. This is not seen at lower redshifts.
- Controversial as starbursting progenitors have yet to be found. Could be hidden by dust obscuration.

Poggianti et al. 2009

Spitzer Observations of CI1604

- * Spitzer MIPS 24µm Observations:
 - Sensitive to stellar radiation reprocessed by dust
 - Able to detect starburst galaxies otherwise optically obscured
- * The CI1604 Supercluster:
 - * 3 Clusters + 5 Groups at z~0.9
 - 1789 redshifts obtained, 517 confirmed members

Spitzer Observations of CI1604

- Spitzer MIPS 24µm Observations:
 - Sensitive to stellar radiation reprocessed by dust
 - Able to detect starburst galaxies otherwise optically obscured
- * The CI1604 Supercluster:
 - * 3 Clusters + 5 Groups at z~0.9
 - 1789 redshifts obtained, 517 confirmed members
- Cross-correlating MIPS detections with redshift catalog: 126 24µm detected galaxies at 0.84 < z < 0.96.

Optical vs IR SFR

- L_{IR} derived from measured redshift and 24µm flux using templates of Chary & Elbaz (2001).
- Can compare IR to optical SFR using Kennicutt (1998) relations.
- Optical SFR indicators such as [OII] would severely underestimate the activity of these galaxies.
- Reason why identifying starburst galaxies in high-z clusters has been so difficult.

Optical vs IR SFR

- L_{IR} derived from measured redshift and 24µm flux using templates of Chary & Elbaz (2001).
- Can compare IR to optical SFR using Kennicutt (1998) relations.
- Optical SFR indicators such as [OII] would severely underestimate the activity of these galaxies.
- Reason why identifying starburst galaxies in high-z clusters has been so difficult.

Spatial Distribution

- Increased star formation activity associated with dynamically unrelaxed clusters.
- 24µm sources in Cluster D associated with infalling filament.

Spectral Properties

- Spectra show moderate [OII] line strengths and strong Balmer abs.
 - Mix of e(b) and e(c) spectral types.
 Few e(a) (i.e starburst) spectra.
 - Moderate [OII] likely due to selective dust extinction.
 - Cluster and group members show stronger Balmer abs than field.
- * Continuous or bursty activity?
 - * [OII] and Hδ line strengths correlated for normal continuous star formation.
 - Bursty activity leads to excess Balmer absorption.
- Star formation is burstier in cluster and group members than in field galaxies with similar IR luminosities.

Spectral Properties

- Spectra show moderate [OII] line strengths and strong Balmer abs.
 - Mix of e(b) and e(c) spectral types.
 Few e(a) (i.e starburst) spectra.
 - * Moderate [OII] likely due to selective dust extinction.
 - Cluster and group members show stronger Balmer abs than field.
- * Continuous or bursty activity?
 - [OII] and Hδ line strengths correlated for normal continuous star formation.
 - Bursty activity leads to excess Balmer absorption.
- Star formation is burstier in cluster and group members than in field galaxies with similar IR luminosities.

Spectral Properties

- Spectra show moderate [OII] line strengths and strong Balmer abs.
 - Mix of e(b) and e(c) spectral types.
 Few e(a) (i.e starburst) spectra.
 - * Moderate [OII] likely due to selective dust extinction.
 - Cluster and group members show stronger Balmer abs than field.
- * Continuous or bursty activity?
 - [OII] and Hδ line strengths correlated for normal continuous star formation.
 - Bursty activity leads to excess Balmer absorption.
- Star formation is burstier in cluster and group members than in field galaxies with similar IR luminosities.

Interaction	Starburst / Passive	Starburst / Passive
Classification	$R < R_{vir}$	$R > R_{vir}$
Irr + MIT	65.8% / 20.2%	35.7% / 39.0%

- * Interaction Classification: Mergers, Interactions, Tidal Tails, Asymmetries.
- * Majority of 24µm sources in cluster/group centers show disturbances.
 - Disturbances three times as common in detected vs non-detected galaxies.
 - * Interactions more common in cluster centers than outskirts.

- * Galaxy interactions likely contribute to the increased activity of the starburst galaxies.
- Since many are found within R_{vir}, where mergers are not likely, this may point to harassment or group compression as mechanism that triggers these interactions.

- Field: Optical colors of 24µm detected galaxies peak in the blue cloud, small subset of red galaxies.
- Cluster/Group Centers:
 24µm Galaxies have colors that peak in the red.
- Color difference remains when we consider only late-type galaxies.
- Optical colors indicate starburst galaxies in cluster centers cannot simply be infalling field galaxies that have yet to be quenched.

Summary

- * We find that the density of 24um sources in clusters is nearly twice that of the surrounding field and that the overdensity scales with the cluster's dynamical state.
- Spatial distribution suggests 24um-bright galaxies are an infalling population, but they are not simply field galaxies that have yet to be quenched.
- 24um-bright cluster and group galaxies are experiencing burstier star formation compared to their counterparts in the field at the same redshift.
- They exhibit redder colors and presumably higher extinctions than field galaxies: centrally concentrated burst.
- Morphologies indicate interactions / mergers may be triggering this activity.

AGN Contamination

- 24µm sources contaminated by AGN emission selected using two methods.
 - SED fitting of starburst and AGN templates to optical & MIR photometry. Used Hyperz + SWIRE template library.
 - AGN detected in our Chandra X-ray imaging.
- In total 13 / 98 sources found to be AGN
 ~ 13% contamination.
- All but two X-ray detected AGN found via SED fitting method.
- Most have IRAC colors consistent with sources having negative power-law spectral slopes in the Mid-IR (i.e. Donely et al. 2008).

The CI1604 Supercluster

Calculating L_{IR} & SFR

Spatial Distribution

Optical vs IR SFR

 Can compare IR to optical SFR (Kennicutt 1998):

 $SFR_{opt} = 1.4 \times 10^{-41} L[OII]$

 $SFR_{IR} = 4.5 \times 10^{44} L_{IR}$

- Optical SFR indicators such as [OII] would severely underestimate the activity of these galaxies.
- Find heavy extinction in 24µm detected population that is well correlated with IR luminosity.
- Reason why identifying starburst galaxies in high-z clusters has been so difficult.

Cluster & Group Subsamples

- Cluster & group subsamples allow us to examine properties of starburst galaxies relative to their host systems.
- Cluster / Group membership determined via conditions:
 - Galaxy located within two projected virial radii (*R*_{viral}) of a cluster / group center, where:

 $R_{\rm viral} = \sqrt{(3\sigma_{\rm v}) / 8.8} H(z)$

* Comoving velocity is less than three times the systemic cluster / group velocity dispersion: $dz < 3\sigma_v$

Cluster & Group Subsamples

* 50 Galaxies in Clusters A, B, and D $(R < 2R_{vir})$.

* 16 Galaxies in Groups C, F, and G ($R < 2R_{vir}$).

Cluster & Group Subsamples

* Number of $24\mu m$ sources within $2R_{vir}$:

- * 50 Galaxies in Clusters A, B, and D.
- * 16 Galaxies in Groups C, F, and G.
- * Defined three subsamples:
 - * Cluster/Group Center: $R < R_{vir}$
 - * Cluster/Group Outskirts: $R_{vir} < R < 2R_{vir}$
 - Supercluster Field: $R > 2R_{vir}$ (0.84 < z < 0.96)
- Number in each subsample
 - * Center: 38 Galaxies
 - * Outskirts: 28 Galaxies
 - Field: 47 Galaxies

Spatial Distribution

- Increased fraction of members detected in dynamically active clusters:
 - * 22.5% detected in Clusters A
 - * 36.4% in Cluster B
 - * 34.5% in Cluster D
- Increased surface density of 24µm sources in Clusters B and D relative to Cluster A and the field:

Cluster A	1.235 gal/arcmin ²	
Cluster B	1.568	
Cluster D	2.338	
Cluster Avg	1.625	
Field Avg	0.881	

Spatial Distribution

 High density of 24µm sources in filament associated with Cluster D.

- 24µm bright members are less centrally concentrated than non-detected members.
 - KS Test finds only 14% probability that active and passive populations are drawn from same distribution.
- Spatial distribution indicates 24µm detected galaxies are an infalling population.

- * Do galaxy interactions cause this increased activity?
- Gini-M20: Majority have latetype morphologies. Opposite true for non-detected members
- Visual Classification: Irregular morphs more common in 24µm bright cluster and group members.

Morph	Starburst / Passive	
E / SO	34.2% / 76.6%	
Late-Type (Sa-Sd)	52.6% / 21.3%	
Irregular	13.2% / 2.2%	

Interaction Classification	Starburst / Passive <i>R < R_{vir}</i>	Starburst / Passive $R > R_{vir}$
Irr + M	42.1% / 13.8%	25.0% / 29.3%
Irr + MIT	65.8% / 20.2%	35.7% / 39.0%
Irr + MITA	78.9% / 26.6%	53.6% / 46.3%

- * Interaction Classification: Mergers, Interactions, Tidal Tails, Asymmetries.
- * Majority of 24µm sources in cluster/group centers show disturbances.
 - * Disturbances three times as common in detected vs non-detected galaxies.
 - Interactions more common in cluster centers than outskirts.

- Optical colors (U-B) redder than Blue Cloud - peak in Green Valley.
- Optical vs IR derived SFRs indicate this is largely the result of dust extinction.
- Pronounced differences in color appears when 24µm sample split by cluster-centric distance.

- Field: Optical colors of 24µm detected galaxies peak in the blue cloud, small subset of red galaxies.
- Cluster/Group Outskirts: Colors evenly distributed between blue and red.
- Cluster/Group Centers:
 24µm Galaxies have colors that peak in the red.
- Largely due to cluster galaxies, as group galaxy colors are evenly distributed.

- Field / Cluster color dichotomy not due to increase in earlytype fraction within clusters.
- Color difference remains when we consider only late-type galaxies.
- Optical colors indicate starburst galaxies in cluster centers cannot simply be infalling field galaxies that have yet to be quenched.

- In addition, 24µm detected cluster/group spirals tend to be brighter and redder than their non-detected counterparts.
- Colors could be explained if 24µm detected cluster / group galaxies are experiencing centrally concentrated burst of star formation.

Central Concentration

- Circumnuclear starbursts buried beneath higher column densities of obscuring dust.
- Gas funneled toward galaxy centers may trigger such activity.
- 24µm detected members have higher central concentrations compared to non-detected members.
- Not due to greater fraction of early-type galaxies in cluster centers.

