Simulating Gravitational Lensing

Stefan Hilbert^{1,2},

Jan Hartlap¹, Emilio Pastor Mira¹, Robert Smith¹, Laura Marian¹, Ewald Puchwein², Ben Metcalf², ...

Peter Schneider¹, Simon White²

¹Argelander-Institut für Astronomie, Universität Bonn, Germany ²Max-Planck-Institut für Astrophysik, Garching, Germany

Outline

- Introduction
- Results:
 - Strong lensing by clusters
 - Weak lensing by LSS: cosmic shear
 - Weak galaxy-galaxy lensing
 - Weak group and cluster lensing
 - Weak lensing of galaxies in clusters
 - Weak lensing mass reconstruction
 - Weak lensing: shear peak statistics
- Summary

Outline

- Introduction
- Results:

- Weak lensing: shear peak statistics

Introduction

- cosmic structure formation:
 - highly non-linear
 - numerical simulations required

Simulating Gravitational Lensing

• algorithm:

- use lensing simulations to:
 - obtain predictions for GL observations
 - study capability of GL to measure mass distribution, and constrain galaxy physics, cosmology and fundamental physics

Primordial Non-Gaussianity

- origin and properties of primordial perturbations?
- some models of inflation:
 - perturbations (almost) Gaussian random field
 - local non-Gaussianity:

Simulations of Gravitational Lensing

Halo Mass Function

Weak Lensing: Shear Peaks

к map (20'×20')

z = 0.09 $M_{200} = 7 \times 10^{14} M_{\odot}/h$

0.46 1.×10¹⁴M_o/h

> 0.83 1.2×10¹⁴M_o/h

filtered shear map

0.46 1.×10¹⁴M_o/h

Thanks for Your Attention!