Cryogenic Dark Matter Search

Current Status & Future Plans

Todd Doughty Cosmology in Northern California Lawrence Berkeley National Laboratory October 22, 2010

Motivation for WIMP Search

 Significant Portion of Mass Density of Universe

 Convergence of Particle Physics & Cosmology

 – Relic DM Density → σ_{DM} ≈ σ_{WF}

Three Types of Searches

Production (LHC)

Indirect Detection (Fermi, Pamela)

Direct Detection (CDMS, XENON)

Direct Detection Methods

DAMA/Nal, ZEPLIN I, CLEAN, KIMS

Transition Edge Sensor

Background Discrimination

- Each Event
- Multiple Dimensions
 Ionization Yield

Background Discrimination

- Each Event
- Multiple Dimensions
 Ionization Yield

Background Discrimination

- Each Event
- Multiple Dimensions
 Ionization Yield
 Phonon Timing

CDMS II: Results

• Final Results – 2009

- 2 events in NR Band
- Estimate Leakage:
 0.9 ± .3 events
- 23% chance both events not Wimps
- Analysis can't be significant evidence for Wimps, but neither event can be rejected
- Z. Ahmed et al., *Science* Vol. 327, no. 5973 (2010)

Primary background
 – Surface Events

Primary background

Surface Events

New Detector - IZIP

Interdigitated Electrodes

Side 1 Charge Electrode +2V

Side 2 Charge Electrode -2V

Primary background

Surface Events

New Detector - IZIP

Interdigitated Electrodes

 Primary background

 Surface Events

 New Detector - IZIP

 Interdigitated Electrodes

- 1000:1 rejection

Future Plans

SuperCDMS Collaboration

California Institute of Technology

Z. Ahmed, J. Filippini, S.R. Golwala, D. Moore, R.W. Ogburn

Fermi National Accelerator Laboratory

D. A. Bauer, F. DeJongh, J. Hall, D. Holmgren, L. Hsu, E. Ramberg, R.L. Schmitt, J. Yoo

Massachusetts Institute of Technology

E. Figueroa-Feliciano, S. Hertel, S.W. Leman, K.A. McCarthy, P. Wikus

NIST * K. Irwin

Queen's University P. Di Stefano *, N. Fatemighomi *, J. Fox *, S. Liu *, P. Nadeau *, W. Rau

Santa Clara University B. A. Young

Southern Methodist University J. Cooley

SLAC/KIPAC * E. do Couto e Silva, G.G. Godrey, J. Hasi, C. J. Kenney, P. C. Kim, R. Resch, J.G. Weisend Stanford University P.L. Brink B. Cabrera M. Cherry *, L. Novak, M. Pyle, A. Tomada, S. Yellin

Syracuse University M. Kos, M. Kiveni R. W. Schnee

Texas A&M J. Erikson *, R. Mahapatra, M. Platt *

University of California, Berkeley M. Daal, N. Mirabolfathi, A. Phipps B. Sadoulet, D. Seitz, B. Serfass, K.M. Sundqvist, T. Doughty*, D, Speller*

University of California, Santa Barbara R. Bunker, D.O. Caldwell, H. Nelson J. Sander

University of Colorado Denver B.A. Hines, M.E. Huber

University of Florida T. Saab, D. Balakishiyeva, B. Welliver *

University of Minnesota J. Beaty P. Cushman, S. Fallows, M. Fritts, O. Kamaev, V. Mandic, X. Qiu, A. Reisetter, J. Zhang

University of Zurich S. Arrenberg, T. Bruch, L. Baudis, M. Tarka

* new collaborators or new institutions in SuperCDMS