Lawrence Berkeley National Laboratory

Quantifying substructure in Galaxy Clusters with X-ray and Gravitational Lensing Measurements.

Sanghamitra Deb

Collaborators: Prof. David M. Goldberg (Drexel University), Prof. Kristian Pedersen (DARK, Copenhagen), Dr. Andrea Morandi (DARK, Copenhagen & Univ. of Tel Aviv.), Dr. Marceau Limousin (LAM Marseille), Dr. Hakon Dahle (Univ. of Oslo), Dr. Signe Riemer-Sørensen (DARK, Copenhagen), Dr. Catherine Heymans (University of Edinburgh, IfA Royal Observatory), Dr. Reiko Nakajima (UC Berkeley), Dr. Rachel Mandelbaum (Princeton University), Prof. Gary Bernstein (University of Pennsylvania)

10/22/2010

Observing Clusters

galaxies: HST, optical observations

gas: Xray observations

gas: Sunyaev Zeldovich Effect

Galaxy Cluster RXJ1347-1145

http://chile1.physics.upenn.edu/gbtpublic/

Substructure: Elliptical Halos

Z= 0.00

How does the distribution and alignment vary with redshift & mass?

Gravitational Lensing

Dimension less surface mass density

 $\epsilon = \frac{\sum}{\sum_{cr}}$

Gravitational Lensing is co-ordinate transformation between the foreground (θ), and background positions(β)

Particle Based Lensing

Particles-> lensed image positions

Variable Resolution with the same complexity as finite differencing on a regular grid.
No empty grid cells.

Strong+Weak Lensing: Challenges

HST/ACS image of Abell 2218 (Sánchez et al. 2006)

Heterogeneous Datasets

HST: 50-60 galaxies per square arcminute ACS/ HST

Color composition by Ichi Tanaka

A1689: ACS+SUBARU

Mass Map

NOMINATION

X-ray vs S+W Lensing

Power Ratios

Moments of the mass distribution characterize the morphology and substructure in dark matter distribution.

$$a_m(r) = \int_{r' < r} \Sigma(\vec{r}') (r')^m \cos(m\phi') d^2 \vec{r}',$$

$$b_m(r) = \int_{r' < r} \Sigma(\vec{r}') (r')^m \sin(m\phi') d^2 \vec{r}'.$$

$$P_0 = [a_0 ln(R)]^2,$$

$$P_m = \frac{1}{2m^2 r^{2m}} \left(a_m^2 + b_m^2\right).$$

Power	X-ray	Lensing
P_2/P_0	$(6.68 \pm 0.27) \times 10^{-06}$	$(1.6 \pm 0.25) \times 10^{-5}$
P_3/P_0	$(3.71 \pm 1.12) \times 10^{-07}$	$(0.9 \pm 0.14) \times 10^{-5}$
P_4/P_0	$(6.42 \pm 2.65) \times 10^{-08}$	$(8.6 \pm 0.3) imes 10^{-5}$

Recovering the Shear

Catherine Heymans

Comparison of Space vs Ground: A1689

Current Research

A2219: Optical vs Lensing mass reconstruction

PRELIMINARY

Current Research

A2261: X-ray vs Lensing mass reconstruction

PRELIMINARY

Current Research

A1914: X-ray vs Lensing mass reconstruction

PRELIMINARY

Multiwavelength analysis

WL + SZ

WI + X-Ray

Dark Matter Substructure _____ probed by Strong Lensing Multiwavelength shape analysis of galaxy clusters for the current sample of 20 clusters.

X-ray data: Chandra & XMM archival data SZ data: Future plans of writing CARMA proposals with Dr. Morandi for some of these clusters.

Clusters are being discovered as we speak with SZ experiments like ACT/SPT. Lensing observations of these clusters will also increase this data set.