A SHARPER IMAGE OF THE CMB WITH THE ATACAMA COSMOLOGY TELESCOPE

Sudeep Das BERKELEY CENTER FOR COSMOLOGICAL PHYSICS

THE TELESCOPE

NEW VIEW OF THE CMB

COSMOLOGICAL PHYSICS

NEW VIEW OF THE CMB

Higher order peaks give leverage on cosmology.

Secondary anisotropies (SZ, lensing) lets us probe geometry, growth, reionization, etc ...

Dusty galaxies give a window into highz galaxy clustering and evolution.

(see, e.g. Galli et al. 2010)

OBSERVATIONS

ACT has taken 18 months of data at 3 frequencies already, over

BERKELEY CENTER for COSMOLOGICAL PHYSICS

MAPS

Hajian et al. (2010)

WMAP AND ACT

ACT sees the same hot and cold spots as WMAP, but at a much higher angular resolution.

- We cross-correlate ACT maps with WMAP maps to estimate the absolute calibration for the ACT maps.
- For our148 GHz maps, we achieve a 2% calibration uncertainty.

Hajian et al. (2010)

SMALLEST SCALES: POINT SOURCES & CLUSTERS

Flat Sprectrum Radio Sources

Cen A, LABOCA

THE SUNYAEV-ZELDOVICH EFFECT

see, e.g., Carlstrom et al. (2002) Reese (2003)

GALAXY CLUSTERS @ 148 GHZ

Marriage et al. (2010b) See, also, Vanderlinde et al. (2010)

CLUSTER FOLLOW-UP

Optical Observations with Blanco, NTT and SOAR

Menanteau et al. (2010) See, also, High et al. (2010)

MULTIFREQUENCY POWER SPECTRA

Das et al. (2010)

THE "LOW-MULTIPOLE" PARAMETERS

- ▶ The low-multipole spectra (I<3000 @148 GHz and I<2000 @218 GHz) are in excellent agreement with the 6-parameter ACDM model.</p>
- ▶ The higher order peaks provide new constraints on beyond-∧CDM parameters.

Dunkley et al. (2010)

INTERPRETING THE SPECTRA

Dunkley et al. (2010)

SUNYAEV-ZEL'DOVICH POWER

An SZ component is required at 95% confidence.

Observed SZ power is consistent with SPT.

Various SZ models were considered ---the power at I=3000 is independent of the template.

▶ Kinetic SZ upper limit < 8 µK² at I=3000.

Template ^a	$A_{\rm tSZ}^{\rm b}$	$\mathcal{B}^{SZ}_{3000}{}^{c}_{(\mu K^2)}$	$\sigma_8^{SZ,7}$ $0.8 \times (A_{1SZ}^{1/7})$	$\sigma_8^{SZ,9}$ $0.8 \times (A_{1,CZ}^{1/9})$
TBO-1	0.62 ± 0.26	6.8 ± 2.9	0.74 ± 0.05	0.75 ± 0.04
TBO-2	0.96 ± 0.43	6.7 ± 3.0	0.78 ± 0.05	0.79 ± 0.04
Battaglia	0.85 ± 0.36	6.8 ± 2.9	0.77 ± 0.05	0.78 ± 0.04
Shaw	0.87 ± 0.39	6.8 ± 3.0	0.77 ± 0.05	0.78 ± 0.04

Dunkley et al. (2010); see also Hall et al. (2010)

Intervening large-scale potentials deflect CMB photons and distort the CMB.

> The RMS deflection is about 2.7 arcmins, but the deflections are coherent on degree scales.

CMB LENSING: IN THE POWER SPECTRUM

Lensing smoothes acoustic peaks

• Test for lensing in spectrum by marginalizing over (unphysical) parameter A_L, scaling lensing potential. [Calabrese et al 2008]

• Expect $A_L = I$, and unlensed has $A_L = 0$. See lensing at almost 3σ level.

• Find $A_L = 1.3 \pm 0.5^{+1.2}_{-1.0}$ (68, 95% CL)

Das et al. (2010)

WHY STUDY CMB LENSING?

For high lensed (clusters, galaxies) CMB is the only source !

BREAKING DEGENERACIES

The primary CMB can be kept nearly unchanged under variations of neutrino mass, dark energy equation of state or curvature. But the

 $\ell^2 \partial C_\ell^{dd}/\partial N$

deflection field cares about these:

Lensing breaks the angular diameter distance degeneracy!

Smith, Cooray, Das, Dore et al., CMBPOL Lensing White Paper (2009)

LENSING RECONSTRUCTION

Given only the lensed CMB sky, can we estimate the deflection field?

ONGOING SEARCH FOR LENSING

Work done with Blake Sherwin, Princeton

Note that such a measurement will be an independent measurement of σ_8 at an effective z ~ 3

ACTPol: Adding Polarization to ACT

ACTPOL is funded !

See Niemack et al (2010)

ACTPol will make precise measurements of the high-l polarization spectrum.

For BB, the high-l spectrum comes primarily from lensing of E-modes.

