Multi-Epoch Galaxy Modeling

Jim Bosch

UC Davis
Cosmology in Northern California 2010

Gravitational lensing: the dirty truth.

- Mass deflects light - we can infer mass!

Gravitational lensing: the dirty truth.

- Mass deflects light - we can infer mass!
- Atmosphere and telescope also deflect light, but we can infer the properties of the atmosphere and telescope from stars.

Defining the shear measurement problem

- We have many exposures of each patch of sky, with different orientations and observing conditions. We might even want to combine observations from multiple telescopes.
- For each exposure, we have a model of the PSF and the geometric distortion.
- We want to measure an ellipticity for each galaxy, in a way that is

1. unbiased,
2. fast,
3. and accurate
(in that order of importance).

Handling multi-epoch data: other options

analysis on coadd	\checkmark	\checkmark	?*	x	x
analysis on exposures	\checkmark	x	\checkmark	\checkmark	\checkmark
simultaneous multifit	x	\checkmark	\checkmark	\checkmark	\checkmark
serial likelihood sampling	x	$\checkmark * *$	\checkmark	\checkmark	\checkmark

* requires special coadd algorithm (Kaiser), which assumes stationary noise, non-spatially varying PSF, no missing pixels
** only optimal if there's no galaxy parameter marginalization before combining likelihoods (e.g. LENSFIT, Miller et al 2007)

Multifit

- Fit a transformed galaxy to each image, convolving with the PSF for that image.
- It's crucial to fit simultaneously, or the fit isn't robust.

Introduction to shapelets

$$
\begin{gathered}
\Phi_{n_{x} n_{y}}(x, y)=\frac{H_{n_{x}}(\mu) H_{n_{y}}(\nu) e^{-\frac{\mu^{2}+\nu^{2}}{2}}}{2^{n_{x}+n_{y}} \beta \sqrt{\pi n_{x}!n_{y}!}} \\
\mu=\frac{x-x_{0}}{\beta} \\
\nu=\frac{y-y_{0}}{\beta}
\end{gathered}
$$

- Eigenfunctions of the 2-d quantum harmonic oscillator (orthonormal, complete).
- Zeroth order is a circular Gaussian.
- Analytic convolution!

Figures from Massey \& Refregier (2005)

Shapelets are broken at high ellipticity

elliptical gaussian $\left(q=\frac{1}{4}\right) \Uparrow$

Shapelets are broken at high Sérsic index

de Vaucouleur profile ($n=4$)

elliptical galaxy

Elliptical Shapelets

We can make a shapelet expansion around an elliptical gaussian by transforming the coordinate grid (this actually works for any 2-d function):

$$
\begin{gathered}
\Phi_{\mathbf{n}}(\mathbf{x} \mid \mathbf{e})=\Phi_{\mathbf{n}}\left(\mathbf{S}_{e}^{-1} \mathbf{x}\right) \\
\mathbf{S}_{e}=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right]
\end{gathered}
$$

- The most common shapelet convolution relation (Refregier and Bacon 2003) requires galaxy and PSF to have the same ellipticity
- Standard procedure is to use an approximate shear operator on the galaxy or PSF to allow its use.
- It's important to use an exact elliptical convolution relation (Hirata and Seljak (2003) for Gauss-Laguerre, or Bosch (2010) for Gauss-Hermite).

Compound Shapelets

Simple idea: combine multiple low-order shapelet expansions with different radii into a single basis.

- Shapelet functions with small radii model the core.
- Shapelet functions with large radii model the wings.
- Result is better than a single high-order expansion with the same number of basis functions.

Results

Results

Results

Results

Training an "eigenmorphology" basis

Given a high S / N, well-resolved sample of galaxies, and an initial compound basis:

1. Fit a compound elliptical shapelet model to each galaxy, obtaining a vector of coefficients \mathbf{a}_{i} and Fisher information matrix \mathbf{F}_{i} for each galaxy i.
2. Optimize

$$
\begin{aligned}
\min _{\mathbf{M}} & \sum_{i}\left[\left(\mathbf{a}_{i}-\mathbf{M} \mathbf{b}_{i}\right)^{T} \mathbf{F}_{i}\left(\mathbf{a}_{i}-\mathbf{M} \mathbf{b}_{i}\right)+\ln \left|\mathbf{M}^{\top} \mathbf{F}_{i} \mathbf{M}\right|\right], \\
\mathbf{b}_{i} \equiv & \left(\mathbf{M}^{\top} \mathbf{F}_{i} \mathbf{M}\right)^{-1} \mathbf{M}^{\top} \mathbf{F}_{i} \mathbf{a}_{i}
\end{aligned}
$$

subject to the constraint $\mathbf{M}^{\top} \mathbf{M}=\mathbf{I}$, one column at a time.
3. \mathbf{M} maps the original basis to a new basis, ordered such that the first n basis functions are the n most important linear combinations of original basis functions.

Working with a compound basis

It's easy to...

- reorthogonalize it
- convolve it with a PSF expressed in shapelets
- evaluate it on a pixelized grid
- apply a linear coordinate transform
- project out basis functions that are degenerate with the ellipse parameters.
It's hard to...
- ensure the model has positive flux where there's no data
- determine an optimal set of shapelet radii and orders
- interpret best-fit basis coefficients

Summary and Future Work

What you've heard

- Given a good model, simultaneous fitting is the safest way to analyze data from multiple exposures; be careful with coadds!
- Compound elliptical shapelet models are perfect for simultaneous fitting.
On the horizon
- testing the eigenmorphology metric
- morphological classification
- multi-band photometry
- deblending dense fields

