
Intrinsic alignment of galaxies and the 
linear alignment model

Jonathan Blazek
UC Berkeley

Collaborators: Matt McQuinn and Uros SeljakCINC 10/22/10



Gravitational lensing

• Important lensing systematic

• Understand galaxy formation

background galaxies

actual

Intrinsic alignment

lensed

Assumption of random 
orientation gives wrong 

result

lens



Intrinsic alignment

2

effect than shear autocorrelations computed using only
galaxies in a narrow redshift slice, because the radial sep-
aration is necessary in order for the tidal field around
the nearby galaxy to lens the more distant galaxy. This
intrinsic-lensing correlation will also affect attempts to
cross-correlate cosmic shear surveys of galaxies with lens-
ing of the CMB [13, 36, 37] because the CMB is also
lensed by the tidal field surrounding the source galaxies.
This paper is organized as follows. In Sec. II, we for-

mally express the E- and B-mode shear power spectra
in terms of the background cosmology, power spectra
of matter density and intrinsic shear, and matter-shear
cross-spectrum. In Sec. III we consider two crude mod-
els of intrinsic alignments and calculate their predicted
contribution to the shear power spectrum. We discuss
methods to assess and/or remove the contamination in
Sec. IV, and we conclude in Sec. V.

II. SHEAR POWER SPECTRA

Before developing the formalism let us describe a sim-
ple example of the effect, shown in Fig. 1. The tidal
field may lead to a stretching of the galaxy shape in the
direction of the tidal field. Gravitational shearing of a
background source leads to stretching of the galaxy a in
perpendicular direction. As a result, the lensing effect
will be partially cancelled by the intrinsic alignemnt ef-
fect and the two effects are coherent, as they depend on
the same underlying density field.
Weak gravitational lensing by large-scale structure is

detectable through its shearing of distant “source” galax-
ies. To lowest order, the shear of a galaxy i can be broken
down into a gravitational and an intrinsic shear contri-
bution: γi = γG

i + γI
i . The gravitational shear is well

known and is equal to:

(γG
i+, γ

G
i×) = ∂−2

∫ ∞

0
W (χ,χi)(∂

2
x− ∂2

y , 2∂x∂y)δ(χn̂i)dχ,

(1)
where the ∂ derivatives are takes with respect to angular
position (i.e. have units of radians−1), ∂−2 is the as-
sociated inverse Laplacian, n̂i is the angular position of
galaxy i, δ(χn̂) is the fractional density perturbation at
distance χ in direction n̂, and the lensing window func-
tion is:

W (χ,χi) =
3

2
ΩmH2

0 (1+z) sin2K χ (cotK χ−cotK χi) (2)

for χ < χi and 0 otherwise. Here sinK and cotK are the
modified trigonometric functions, i.e.

sinK χ =







K−1/2 sin(K1/2χ) K > 0
χ K = 0
|K|−1/2 sinh(|K|1/2χ) K < 0

, (3)

cotK χ = d
dχ ln sinK χ, and K is the spatial curvature of

the universe.

!>0 !>0

FIG. 1: The effect of the density-intrinsic shear correlation
on the shear power spectrum. Density fluctuations in the
nearby plane (gray masses) induce a tidal field (arrows). A
source galaxy in a more distant plane (dashed ellipse) is grav-
itationally sheared tangentially to these masses. If the intrin-
sic shears of galaxies in the nearby plane (solid ellipse) are
aligned with the stretching axis of the tidal field, then this
results in an anti-correlation between the shears of galaxies
at different redshifts, i.e. CEE,GI

! < 0. (The opposite case,

CEE,GI
! > 0, results if galaxies are preferentially aligned with

the compressing axis of the tidal field.)

Now we imagine that a set of source galaxies in red-
shift slice α with comoving distance distribution fα(χ)
are observed. The gravitational contribution to a shear
Fourier mode is:

γG
l (α) = (cos 2φl, sin 2φl)

∫ ∞

0
Wα(χ)δl(χ)dχ, (4)

where the integrated window function is:

Wα(χ) =

∫ ∞

0
fα(χ

′)W (χ,χ′)dχ′. (5)

The intrinsic alignment contribution at a point is given
by

γI(n̂,α) =

∫ ∞

0
fα(χ)γ̃

I(χn̂)dχ, (6)

where the density-weighted intrinsic shear γ̃I = (1+δg)γI

is computed from the fractional overdensity of galaxies
δg and average intrinsic shear of galaxies γI . A density
weighting is technically necessary in Eq. (5), which makes
Wα(χ) slightly dependent on angular position. On sub-
arcminute scales where the fluctuations in δg are large
this results in production of B-modes in the lensing shear
[38]; on larger scales the effect is unimportant. In con-
trast, intrinsically aligned pairs of galaxies tend to be
close to each other where δg ≥ 1, and hence the factor
of 1 + δg in Eq. (6) cannot be safely neglected except on
very large scales.
The E-mode shear cross-spectrum between two red-

shift slices can be broken down into gravitational lens-
ing (GG), intrinsic alignment (II), and interference (GI)
terms:

CEE
# (αβ) = CEE,GG

# (αβ) + CEE,II
# (αβ) + CEE,GI

# (αβ).
(7)

(The B-mode shear cross-spectrum is similar, but con-
tains only an II term since there is no gravitational
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Weak lensing statistics involve averaging across pairs of observed galaxy ellipticities γobs,
which consist of both the intrinsic ellipticity (I) of the galaxy and the gravitational lensing
shear distortion (G): γobs = γI +γG. Summing over pairs of galaxies, denoted i and j, yields
an ellipticity correlation function:

�γobs
i γobs

j � = �γG
i γ

G
j �+ �γI

i γ
G
j �+ �γG

i γ
I
j �+ �γI

i γ
I
j �. (1)

The lensing signal is contained in the first term (GG). If intrinsic alignments are random,
the GI and II terms average to zero. However, since the weak lensing signal is small (γG is
roughly 1% of γI for a typical galaxy) [cite], even small correlations can lead to appreciable
intrinsic alignment terms. Early in the history of lensing measurements, it was known that
II effects, caused by galaxies in close proximity to each other and thus oriented by the same
background density field, were an important contaminant [Refs]. Fortunately, the II term
can be easily reduced through tomography - dividing the sample by redshift and excluding
or down-weighting nearby pairs removes the problem of proximity [refs]. It was later realized
(10) that the GI term can also be significant, introducing a correlation in the ellipticities of
objects that are along the same line-of-sight but separated by a large spatial distance. A
foreground lensing potential would both affect the intrinsic shape and orientation of nearby
objects as well as the lensed shapes and orientations of background objects along the same
line-of-sight. [Include figure like in (10)] Observation has confirmed the presence of both of
these intrinsic effects ((16), (9), (7), (19), (18)).

It is thus critical to understand IA for high-precision weak lensing experiments. The
potential degradation of cosmological parameter measurements by IA bias is significant. For
instance, without proper treatment of IA, cosmic shear measurements of σ8, the amplitude
of density fluctuations on an 8 Mpc scale, can be biased at the current level of experimental
uncertainty (20). Similarly, a recent study demonstrated that uncertainty in the amplitude
of intrinsic alignments can impart a significant bias in cosmological parameter measurements,
even when a particular model is assumed in order to subtract the alignment signal ((12)).
However, these alignment effects are not just a contaminant - they also provide a poten-
tially powerful probe of large-scale structure and the process of galaxy formation. Accurate
modeling of intrinsic alignment is important for both of these reasons, and several models
of varying degrees of complexity have been proposed (e.g. (5), (10), (15),(20), refs in (11)).
The astrophysical processes involved in galaxy formation and evolution are complex, making
it challenging to construct realistic models. Moreover, any analytic predictions of the orien-
tation and ellipticity of a galaxy residing in a background tidal field will rely on assumptions
relating the orientation of dark matter halos and the resident galaxies, and non-linear scales
are particularly difficult to effectively model. Similar limitations exist for simulation-based

lensing signal

(Hirata & Seljak 2004)
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function of the tidal field:

γI
(+,×) = − C1

4πG
(∇2

x −∇2
y, 2∇x∇y)S[ΨP ] (2)

where C1 parameterizes the strength of the alignment, with sign convention such that

positive (negative) C1 corresponds to preferential galaxy alignment along the stretching

(compressing) axis of the tidal field. Positive C1 thus yields an anti-correlation between

the intrinsic alignment of a foreground galaxy and the gravitational shear of a background

galaxy. ΨP is typically taken to be the primordial gravitational potential, evaluated at the

time of galaxy formation, which is assumed to occur during matter domination. However, it

is also plausible that recent accretion is dominant in the alignment mechanism, in which case

the gravitational potential should be evaluated near the observed redshift. For consistency

with previous work, we consider ΨP at the time of galaxy formation and note that, in linear

theory, the only difference between the potential at different times is the overall amplitude

which can be included in C1. Due to non-linear corrections, the choice of redshift will affect
the shape as well as the amplitude of the potential. However, as discussed below, the effect
on shape is small at relevant scales. S is a filter that smooths fluctuations at galactic scales.

In practice, we take this filter to be a smoothed top-hat [is there a better way to say this?]

in Fourier space, and it is omitted in subsequent expressions.
1
Up to derivatives, Eqn. (2)

is the unique function of ΨP that is local, linear, and quadrupole symmetric. Since such

higher-derivative terms should be negligible on large scales, the linear alignment model is

effectively unique up to the normalization C1. The x- and y-axes are on the plane of the sky,

and the ellipticity is decomposed with respect to this coordinate system:

�
γ+
γ×

�
=

�
1

2R

��
1− (b/a)2

1 + (b/a)2

��
cos(2φ)
sin(2φ)

�
(3)

≡ γ0

�
cos(2φ)
sin(2φ)

�
,

where φ is the position angle measured from the x-axis, and b/a is the axis ratio.

R ≈ 0.87 is the shear responsivity (see (2)), which captures the average response of measured

ellipticity to a small shear.

1In (10), a sharp cut-off in Fourier space is employed. Since we are studying the correlation functions
in real space, it is preferable to use a damped cut-off to prevent the “ringing” that occurs from taking the
Fourier transform of a sharp feature.

(Catelan, Kamionkowski, and Blandford 2001)
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Gravitational potential

relate to overdensity 
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The density weighted intrinsic ellipticity is defined as γ̃I ≡ (1 + δg)γI
, for fractional

galaxy overdensity δg = bgδ, where δ is the fractional matter overdensity, and bg is the galaxy

linear bias factor. In the linear regime, the primordial gravitational potential is related to

the density field through the Poisson equation in Fourier space (valid on sub-horizon scales,

k � cH0):

ΨP (k) = −4πG
ρm,0

D(z)
k
−2δ(k, z) (4)

where ρm,0 ≡ Ωmρcrit ≡ Ωm
3H2

0
8πG is the present mean matter density, and D(z) is the

growth factor, normalized such that (1+z)D(z) = 1 during matter domination. Noting that

a product of density fields in configuration space becomes a convolution in Fourier space,

the linear model predicts [minus sign disagrees with H&S, is this worth mentioning?]:

γ̃I

(+,×)(k, z) =
−C1ρm,0

D(z)

�
d
3k1

(k
2
2x − k

2
2y, 2k2xk2y)

k
2
2

δ(k2, z) (5)

×
�
δ(3)(k1) +

bg

(2π)3
δ(k1, z)

�
,

where k2 ≡ k − k1 and δ(3) denotes the 3-dimensional Dirac delta function. This

result strictly holds only for linear density perturbations, where the primordial gravitational

potential can be easily calculated from the potential at a later redshift:

ΨP (k) = D̄(z)Ψ(k, z). (6)

In recent work ((12), others...), non-linear corrections have been applied to the linear align-

ment model through a non-linear matter power spectrum. However, in this case Eqns. (4)-(5)

are no longer valid as the growth function D(z) does not fully capture the evolution of the

density field, which can bias the predicted alignment amplitude. Instead, one should use the

more general expressions

ΨP (k) = −4πGρm,0(1 + zP )k
−2δ(k, zP ) (7)

γ̃I

(+,×)(k, z) = −C1ρm,0(1 + zP )

�
d
3k1

(k
2
2x − k

2
2y, 2k2xk2y)

k
2
2

δ(k2, zP ) (8)

×
�
δ(3)(k1) +

bg

(2π)3
δ(k1, z)

�
.

x

+
x-axis



Comparison to measurements

(Okumura et al 2009; Okumura & Jing 2009)

79K LRG’s from SDSS
0.16<z<0.47 (zmean=0.32)
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(consistent with GI measurement of Joachimi et al 2010)
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w(++,××)(rp) =
1

2π2

�
AC1ρm,0

D(z)

�2 �
dκdkz

κ5

k4kz
Pδ(k, z) (13)

× sin(kzΠmax) [J0(κrp)± J4(κrp)]

In Figures 1-3, we compare the linear model predictions for the auto- and cross-correlation

statistics with the statistics calculated from LRG observations. The model predictions are

made using matching survey redshift distributions and projection lengths. We are able to

independently measure the galaxy bias bg of each sample by fitting to the measured galaxy

power spectrum, wgg(rp) and find bLRG
g = 2.12 ± .04. Note that the measurements of w++

and w×× underestimate the cosmic variance error due to the size of the jackknife sampling

patch (Okumura, private communication). Discrepencies with theory predictions above this

scale can thus be disregarded, and measurements at the largest separations are not used in

determining the best-fit value of C1.

By fitting to the data at large separations, where the linear model should hold with

minimal contamination from other alignment effects, we are able to calculate the magni-

tude of linear alignment. We fit separately to the II and GI statistics, both weighted and

non-weighted by ellipticity, and compare with (12) and (13). Table 1 shows the fit results.

Calculating these statistics without weighting by ellipticity is equivalent to setting the ellip-

ticity γ0of each galaxy equal to 1. For these non-weighted statistics, we define C̃1, the analog

of C1. The ratio of weighted to non-weighted statistics is ≈ 0.3, although as discussed above,

some care must be taken to distinguish between this value and the mean ellipticity of the

LRG sample. Note that the II correlations presented in (19) are functions of 3-dimensional

separation rather than projected separation, as we calculate from the linear theory. We have

performed a projection along the line-of-sight consistent with (10).

from GI from II

AC1ρcrit 0.125 ± 0.007 0.114 ± 0.011

AC̃1ρcrit 0.59 ± 0.02 0.68 ± 0.06

Table 1: Best-fit values for C1 from LRG measurements of wg+ (GI) and w++ (II) ((19),(18))

Our measured value of AC1 is consistent with (12), who examine the wg+ for a variety

of data sets. Moreover, we demonstrate the the II statistics are well-described by the LA

model with an amplitude consistent with that required by wg+.
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• Measures alignment of ellipticity and 
density 

• Dependence on angle could provide 
additional information

• Strength increases with luminosity

• Due to symmetries, must have 
general form:
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3.4. The alignment correlation function

We now turn to another statistic intended to probe the intrinsic alignment of galaxies

with large-scale structure. Faltenbacher et al (7) introduce the alignment correlation func-

tion, wg(rp, θ), an extension to the projected two-point galaxy correlation function, wg(rp).
We use the “g” subscript to distinguish between the galaxy and matter correlation functions.

The alignment correlation function generalizes the standard correlation function by consid-

ering clustering as a function of both projected separation rp and position angle θ, measured

from the orientation axis of the galaxy. By definition, averaging wg(rp, θ) over all possible θ
yields wg(rp):

wg(rp) =
2

π

� π/2

0

dθwg(rp, θ) (17)

From (3), there is also a straightforward relationship between wg(rp, θ) and wg+(rp):

w̃g+ =
2

π

� π/2

0

dθ cos(2θ)wg(rp, θ) (18)

where w̃g+ ≡ �cos(2φ)δg� denotes the non-ellipticity weighted analog to the wg+ statistic.

Equivalently, we could define an ellipticity weighted alignment correlation function, wγ
p (rp, θ)

and express an analogous relationship with the standard wg+.

The wg(rp, θ) statistic has a straightforward physical interpretation and, because of its

angular dependence, can in principle provide more information than wg+. Indeed, Eq. (18)

shows that wg+ is the dipole term of wg(rp, θ) and thus lacks any information from higher

multipoles. However, for Gaussian density fields in the linear alignment model, wg(rp, θ) is
completely determined by wg(rp) and wg+(rp).

An arbitrary periodic function of θ can be written as a sum of cos(nθ) and sin(nθ) terms.

However, two symmetries exist for wp(rp, θ) which greatly restrict possible terms. First, by

parity, wp(rp, θ) = wp(rp,−θ), ruling out all sin(nθ) terms. Second, since the ellipticities are

invariant under rotations by π, wp(rp, θ) = wp(rp, θ + π), which allows only cos(nθ) terms

with n even. These symmetries also explain why we need only consider a range in θ of 0 to

π/2. In its most general form, therefore,

wg(rp, θ) = wg(rp) + Σan(rp) cos(2nθ) (19)

(Faltenbacher et al 2009)
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In the Appendix, we demonstrate that the only possible angular dependence for Gaus-
sian density fields is the cos(2θ)-term. This result is confirmed by a calculation of wg(rp, θ)
using the formalism of Gaussian likelihood, also shown in the Appendix. [What, if anything,
do we gain from the analytic proof? Is it more physically illuminating?] We then have:

wg(rp, θ) = wg(r) + 2w̃g+(rp) cos(2θ) (20)

where the normalization of the terms is set to enforce (17) and (18). Assuming the
general possibility of two different galaxy populations, with bias factors b1 and b2, and
choosing b1 for the galaxy population with measured ellipticities and b2 for the general
galaxy sample used to trace background matter distribution, the galaxy alignment correlation
function can be expressed in terms of density correlation functions:

wg(rp, θ) = b1b2w(r) + 2b2w̃δ+(rp) cos(2θ) (21)

Figure 6 shows comparison of the angular correlation function with the SDSS main
sample measurements of (7). Table 2 shows the fit results, including bias factor bg for each
luminosity bin.

Magnitude bin −20 < Mr < −19 −21 < Mr < −20 −22 < Mr < −21 −23 < Mr < −22

AC̃1ρcrit 0.15 ± 0.07 0.16 ± 0.12 0.29 ± 0.08 0.97 ± 0.10

bg 1.05 1.08 1.19 1.45

Table 2: Best-fit values for AC1 and bg from SDSS measurement of w(rp, θ) in 4 luminosity
bins ((7)).

Recent work (18) has detected a small correlation between θ and γ0, which affects their
measurement of GI correlations at the ≈ 15% level. In the absence of such a correlation,
the ratio between ellipticity-weighted and non-weighted statistics is simply the sample mean
ellipticity �γ0�. Although γ0 has no explicit dependence on θ in the linear alignment model,
an implicit dependence between the two arises when considering correlations with the density
field, since galaxies pointing towards over-dense regions have larger ellipticities on average.
[The way this was previously worded, it seemed scale-dependent, since the concept of prox-
imity is invoked. I’m not sure which way is better to think about it]. In the presence of this
correlation, we can express the ratio between ellipticity-weighted and non-weighted statistics

For Gaussian density fields and the LA model, we find:

look for higher cos(nθ) terms 
to probe non-Gaussianity and 
non-linear alignment

0-30
30-60
60-90
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In the Appendix, we demonstrate that the only possible angular dependence for Gaus-
sian density fields is the cos(2θ)-term. This result is confirmed by a calculation of wg(rp, θ)
using the formalism of Gaussian likelihood, also shown in the Appendix. [What, if anything,
do we gain from the analytic proof? Is it more physically illuminating?] We then have:

wg(rp, θ) = wg(r) + 2w̃g+(rp) cos(2θ) (20)

where the normalization of the terms is set to enforce (17) and (18). Assuming the
general possibility of two different galaxy populations, with bias factors b1 and b2, and
choosing b1 for the galaxy population with measured ellipticities and b2 for the general
galaxy sample used to trace background matter distribution, the galaxy alignment correlation
function can be expressed in terms of density correlation functions:

wg(rp, θ) = b1b2w(r) + 2b2w̃δ+(rp) cos(2θ) (21)

Figure 6 shows comparison of the angular correlation function with the SDSS main
sample measurements of (7). Table 2 shows the fit results, including bias factor bg for each
luminosity bin.

Magnitude bin −20 < Mr < −19 −21 < Mr < −20 −22 < Mr < −21 −23 < Mr < −22

AC̃1ρcrit 0.15 ± 0.07 0.16 ± 0.12 0.29 ± 0.08 0.97 ± 0.10

bg 1.05 1.08 1.19 1.45

Table 2: Best-fit values for AC1 and bg from SDSS measurement of w(rp, θ) in 4 luminosity
bins ((7)).

Recent work (18) has detected a small correlation between θ and γ0, which affects their
measurement of GI correlations at the ≈ 15% level. In the absence of such a correlation,
the ratio between ellipticity-weighted and non-weighted statistics is simply the sample mean
ellipticity �γ0�. Although γ0 has no explicit dependence on θ in the linear alignment model,
an implicit dependence between the two arises when considering correlations with the density
field, since galaxies pointing towards over-dense regions have larger ellipticities on average.
[The way this was previously worded, it seemed scale-dependent, since the concept of prox-
imity is invoked. I’m not sure which way is better to think about it]. In the presence of this
correlation, we can express the ratio between ellipticity-weighted and non-weighted statistics



Summary

• The LA model provides a good description of IA at scales 
above ≈10 Mpc/h.

• Understanding how model parameters depend on galaxy 
sample properties will allow effective subtraction of IA.

• The angular correlation function may contain additional 
information, but it will be hard to observe.

• Other interesting things: stochasticity in the model, E and 
B modes, correlation between ϒ0 and θ... talk to me!

Come to the dinner tonight at 7!



Stochasticity
Non-linear astrophysics and 
measurement errors will affect 
orientation and magnitude of 
galaxy ellipticities

tidal field

Assume a misalignment angle with Gaussian distribution of width σ (e.g. 
Okumura et al 2009).  For cos(nθ) terms, this yields a suppression:
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Pfinal(θ) =

�
dθmP (θ − θm)f(θm) (28)

We are interested in are cos(nθ) terms [probably sin(nθ) terms for xx - make sure the
convolution is the same], so the relevant convolution is:

�
dθ� cos(n(θ − θ�))

1√
2πσ

exp

�
−1

2

�
θ�

σ

�2
�
= cos(nθ) exp

�
−1

2
n2σ2

�
(29)

Stochastic misalignment highly suppresses all intrinsic alignment signal, but does so
particularly strongly for higher-order effects (i.e. cos(nθ) terms for larger values of n). Since
wg+ comes from the n = 2 term of the alignment correlation function, stochasticity provides
a suppression of exp [−2σ2]. Similarly, since w++ and w×× come from the n=2 term of
an analogous correlation function but have two independent angles which both contribute
in the convolution, they will be suppressed by exp [−4σ2]. Thus, when we consider only
n = 2 ellipticity statistics, namely wg+, w++, and w××, we find that stochasticity leads to
A = exp [−2σ2]. However, when n �= 2, stochasticity will yield a different suppression to the
LA model prediction.

In their analysis, the authors of (19) find a value for σ of 35 deg = .61 rad. Although they
measure misalignment required of halos in a simulation to match the observed amplitude,
this value provides a reasonable estimate to the expected misalignment from the background
potential in the linear model. If the misalignment were greater, (19) would measure a
much weaker signal, and any scenario in which galaxies are more closely aligned with the
background potential than their host halos is contrived. Using this value, A ≈ 0.5, and the
suppression of an n = 4 term is ≈10 times greater than the n = 2 term.

Since much of this stochasticity should come from physical processes such as galaxy
mergers and gas dynamics on non-linear scales, it is likely that A will be a function of time.
In most reasonable scenarios, this dynamical evolution will serve to decrease the intrinsic
alignment signal, and so care must be taken when attempting to separate intrinsic alignment
signal based on redshift evolution (5). The tendency of stochasticity to increase with time will
affect the relative amplitudes of correlation statistics between galaxy samples that formed
at different redshift. One possible explanation for the trend of increased alignment with
increasing luminosity is that more luminous objects have formed more recently and thus
have had less time to develop alignment stochasticity. Dynamical processes such as accretion
and halo mergers are likely to alter the shape and alignment of galaxies in a manner not
captured in the LA model, or any other static model.

From simulations, Okumura et al find σ≈35 
deg., consistent with measurements.

Suppression factor

n=2: 0.5
n=4: 0.05

Higher n terms will be hard to observe

σ=σ(L) could explain luminosity 
dependence of signal



E and B modes
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LA prediction of ϒrms
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Outline

• Intrinsic alignment (IA)

• The linear alignment (LA) model

• Application to IA measurements

• Adding stochasticity


