Detecting galaxy clusters in the DLS and CARS: a Bayesian Cluster Finder

Begoña Ascaso University California, Davis

# COLLABORATORS

- David Wittman (UC Davis)
- Txitxo Benítez (IAA)
- Tony Tyson (UC Davis)
- Russell Ryan (UC Davis)
- Vera Margoniner (Sacramento State University)
- Ian Dell' Antonio (Brown University)
- Will Dawson (UC Davis)
- Ami Choi (UC Davis)
- James Jee (UC Davis)
- ... and the rest of the DLS team

### OUTLINE

- Introduction: Galaxy cluster detection
- The Bayesian Cluster Finder
  - The method
  - Simulations
- Applications
  - DLS
  - CARS
- Work in progress

# GALAXY CLUSTER DETECTION

- GEOMETRY: Voronoi Tessellation (*Kim et al. 2002, Ramella et al. 2001, Lopes et al. 2004*), Counts in cells (*Couch et al. 1991, Lidman & Peterson 1996*), Percolation FoF Algorithm (*Dalton et al. 1997*).
- MATCHED FILTER: (*Postman et al. 1996, 2002*), Adaptative Kernel (*Gal et al. 2000, 2003, 2006*), Hybrid Matched Filter (*Kepner et al. 1999*), Adaptative Matched Filter (*Kim et al. 2002*). High z: Spitzer (*Eisenhardt et al. 2008*)
- RED SEQUENCE: MaxBCG (Hansen et al. 2005, Koester et al. 2007), The Cluster Red Sequence Method (Gladders & Yee 2000, López-Cruz et al. 2004, Gladders et al. 2005), Cut-and-enhance (Goto et al. 2002), the C4 clustering algorithm (Miller et al. 2005). High z: SpARCS (Wilson et al. 2008)

# THE BAYESIAN CLUSTER FINDER

- Motivation: to take advantage of all the characteristics of every algorithm.
- Each galaxy in the survey is assigned a Bayesian probability that the galaxy belongs to a cluster at a certain redshift.
- Likelihood: Based on a variation of the Matched Filter Algorithm including photo-z information.
- Introduction of a Bayesian prior: CMR z relation and BCG magnitude – z relation.

Ascaso et al. 2010b,c, ApJ to be submitted

# GALAXY CLUSTERS DETECTION

- 1. Redshift slices  $(z_s)$  from  $0.1 \le z_s \le 1.2$  in steps of 0.1
- 2. Each galaxy ( $\alpha_i$ ,  $\delta_i$ ,  $z_{s,i}$ ) -> prob
- 3. Each  $z_s \rightarrow$  background and  $\sigma$  probability. Only select  $3\sigma$  detections.
- 4. Output:
  - Richness ( $\Lambda_{cl}$ ; effective number of L<sup>\*</sup> galaxies in the cluster)
  - Position ( $\alpha_c$ ,  $\delta_c$ )
  - Maximum probability redshift z<sub>s</sub>
  - Mean redshift  $(z_m)$  from the photo-z's galaxy distribution
- 5. Only keep candidates that  $|z_s-z_m| < 0.06(1+z_s)$
- 6. Clusters with D<1.5Mpc and  $|z_{s,1}-z_{s,2}|<0.3$  are merged

# GALAXY CLUSTERS DETECTION

- 1. Redshift slices  $(z_s)$  from  $0.1 \le z_s \le 1.2$  in steps of 0.1
- 2. Each galaxy ( $\alpha_i$ ,  $\delta_i$ ,  $z_{s,i}$ ) -> prob
- 3. Each  $z_s \rightarrow$  background and  $\sigma$  probability. Only select  $3\sigma$  detections.



# GALAXY CLUSTERS DETECTION

- 1. Redshift slices  $(z_s)$  from  $0.1 \le z_s \le 1.2$  in steps of 0.1
- 2. Each galaxy ( $\alpha_i$ ,  $\delta_i$ ,  $z_{s,i}$ ) -> prob
- 3. Each  $z_s \rightarrow$  background and  $\sigma$  probability. Only select  $3\sigma$  detections.
- 4. Output:
  - Richness ( $\Lambda_{cl}$ ; effective number of L<sup>\*</sup> galaxies in the cluster)
  - Position ( $\alpha_c$ ,  $\delta_c$ )
  - Maximum probability redshift z<sub>s</sub>
  - Mean redshift  $(z_m)$  from the photo-z's galaxy distribution
- 5. Only keep candidates that  $|z_s-z_m| < 0.06(1+z_s)$
- 6. Clusters with D<1.5Mpc and  $|z_{s,1}-z_{s,2}|<0.3$  are merged

### SIMULATIONS

#### Clusters

- Richness:  $10 \le \Lambda_{cl} \le 250$  (equivalent to  $0 \le RA \le 4$ )
- Redshifts:  $0.1 \le z_c \le 1.2$
- Magnitudes: Schechter LF model with  $\alpha$ =-1.1 and M\*= -21.
- Positions: Plummer profile.
- Galaxies redshift: spread as a normal function with  $\mu = z_c$ and  $\sigma = 2(1+z_c)0.06$
- Colors: Using spectra templates combined with a spread technique in order to match the observed CMR
- Field galaxies
  - Magnitudes, colors and photo-z distribution from the original data
  - Positions: Rayleigh-Levy two point correlation function

### **RECOVERY RATE**



Both purity and completeness rates are over 80% for clusters richer than  $\Lambda_{cl}$  >20 and z<1.1

# **APPLICATION TO SURVEYS I: DLS**

• The Deep Lens Survey (DLS)

- Wittman et al. 2002, 2006
- □ 20 □<sup>2</sup> (5 x 4 □<sup>2</sup>).
- Four optical bands: BVRz, complete up to 26/26/27/26 mag/<sup>2</sup>
- Pixel size: 0.257"
- Best seeing in R band (<0.9"). For non-R images, seeing averages ~1.2"

(Ascaso et al. 2010c, ApJ, to be submitted)



# APPLICATION TO SURVEYS I: DLS

- More than 700 galaxy clusters detected up to z <1.2</li>
- Detect 100% of the optical detections by MaxBCG and the spectroscopically confirmed clusters by *Wittman et al. 2006*
- Large Scale Structure
- Weak Lensing maps (Dawson et al. 2010 in prep) correlations with optical detections



- The CFHTLS-Archive-Research Survey (CARS; Erben et al. 2009)
  - based on the public archive images from the CFHTLS-Wide (37 □<sup>2</sup>)
  - Five optical bands (ugriz)
  - Complete up to 24 in R band
  - Pixel size: 0.186"
  - BPZ photo-zs (Benítez 2000)

(Ascaso et al. 2010b, ApJ, to be submitted)



- Olsen et al. (2007): 65% agreement. Many more at high z.

- Adami et al (2010): We find an agreement of 81% and 74% over 3 and 2σ respectively



- Olsen et al. (2007): 65% agreement. Many more at high z.

- Adami et al (2010): We find an agreement of 81% and 74% over 3 and 2σ respectively



- Olsen et al. (2007): 65% agreement. Many more at high z.

- Adami et al (2010): We find an agreement of 81% and 74% over 3 and 2σ respectively



# WORK IN PROGRESS

- Extend the DLS detections to high redshift clusters (z>1) by using existing IR data.
- Developing telescope proposals to confirm the completeness and purity rates and to diminish the photometrical redshift errors.

# Comments, suggestions or collaborations are welcome

ascaso@physics.ucdavis.edu

#### ¡GRACIAS!

#### Detections and comparison with other works: Olsen et al. 2007

- They detect 32 clusters in Deep 1 (one degree overlap with W1) excluding 14 C or D systems.
- We find 62 clusters in W1 (65% in common)
- We detect many more, in particular at z>0.9 in less deep fields



(Ascaso et al. 2010b, ApJ, to be submitted)

#### Adami et al. 2010

• They detect clusters in Wide and Deep fields.

• We obtain more than 1200 galaxy clusters in 25  $\Box^2$  in common, while they find ~600 and 1000 over 3 and 2 $\sigma$  resp.

• We find an agreement of 81% and 74% over 3 and 2 $\sigma$  resp.











#### SIMULATIONS Color-Magnitude simulation



# THE LIKELIHOOD

- The likelihood models the probability that a galaxy with its position, photo-z, magnitude and morphological type belongs to a cluster at that position, with a given redshift and richness.
- It is the product of the model probability for
  - A cluster spatial profile: e.g., a Plummer profile.
  - A luminosity function: e.g. a Schechter function,
  - A redshift probability distribution: either from a photometric redshift software (e.g. from BPZ) or a Gaussian.

| Density |               | Luminosity |        | Redshift     |           |
|---------|---------------|------------|--------|--------------|-----------|
| Plummer |               | Schechter  |        | Gaussian     |           |
| $r_{c}$ | $r_{\rm cut}$ | $\alpha$   | $M^*$  | < z >        | σ         |
| (Kpc)   | (Mpc)         |            |        | $\mathbf{Z}$ |           |
| 1.25    | 1.25          | -1.05      | -21.44 | 0.1 - 1.2    | 0.06(1+z) |

#### THE PRIOR

- The prior enhances the probability that a cluster exists at a given position by including any a priori information about clusters. We have considered:
- The cluster CMR at any redshift: obtained from a set of template spectra and a fix slope. We use B-R and R-z.
- The BCG magnitude-redshift relation: obtained from the MaxBCG sample of 13823 BCGs (Koester et al. 2007)

