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Outline: goals of optimal data analysis

 We would like to optimally extract information from the data: if
we have the full likelihood and the prior we can obtain the
posterior. We have minimized Bayes risk and obtained optimal
results. Often we use summary statistics as intermediate stage.

 The complication is that we only have an implicit likelihood as a
function of many parameters, most of which we do not care
about: we need to marginalize.

 Model evaluation can be very expensive (a full simulation)
e MCMC is often too expensive
 MAP/VI approximate and often wrong (inconsistent)

* We would like an analysis that is as good as MCMC, at a fraction
of computational cost (as few likelihood evaluations as possible)

* Collaborators: G. Aslanyan, Y. Feng, B. Horowitz, C. Modi, B. Yu...
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Linear case example: from implicit likelihood to

power spectrum analysis

 We can write the probability distribution as a function of data
d and modes s, where d=Rs+n: implicit likelihood

p(s,d|S) = (27)"N+M)/24et(SN) 2 exp (—%STS—IS +(d— Rs)'N~'(d - Rs))

* By integrating over s (marginalizing) we can write the
probability distribution of the data d: explicit likelihood

- ‘ 1
L(d|®) = (2rr) M2 det(C) % exp (—§d’fc—1d>

C=RSR™+N

We can rewrite this into an optimal quadratic estimator, which
requires C'd

(FO), sz,, F idic™'Q,C'd — by)

* We can simplify by simpler weighting (pseudo-Cl=FKP) 3
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Which is easier?

* To get just the power spectrum pseudo-Cl analysis is easiest,
since there is no C! operation needed

* |tissuboptimal on large scales due to the mask, but nearly
optimal on small scales (hence used in CMB etc)

* This comes at a price: no obvious path to get the covariance
matrix

* In practice it is modeled with simulations (mocks) or theory

* |n contrast, if one sticks to the likelihood analysis one gets the
covariance from the shape of the likelihood at the peak

* |n explicit form this requires repeated C'd: expensive

* |In implicit form this requires finding the peak posterior of s:
Wiener filter

 Sampling of the modes very expensive (Gibbs sampling), but
has been attempted in CMB
4
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Example: WL analysis Wiener filter

Horowitz, US, Aslanyan
2018

—— ——
250 Mpc/h ‘ 250 Mpc/h
(b) Observed Shear Field, 1 (c) Observed Shear Field, 72

(d) Reconstructed Field (e) True Field - Reconstructed
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What about the nonlinear case?

We could follow “moment matching” path: evaluate all the N-
point functions

We would also need to get their covariance matrix. This is
already very hard for 2-pt function, becomes impossible
analytically for higher orders

If one has N simulations then covariance matrix becomes
singular with M>N summary statistics

We can however try some specially powerful summary
statistics (e.g. next talks)

Alternative: likelihood analysis
Writing down implicit likelihood is easy: d=f(s)+n
1

P(s|d) = (27)"M+N)/2 4ot (SN) ™2 exp (—— {s*‘s—ls +ld—f(s)'N"'[d— f(s)]}) .
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f(s) is a simulation of the data
Need to first find peak posterior of s (MAP) 7




Finding MAP of s in 10!’ dim parameter space

 Maximize posterior=minimize the loss function (d=x)

xX*(s)=8'S7's +[d— F(s)]'/N~'[d — F(s)].  x*(s) = x2 +2gAs+ AsDAs

_ 16_)(2 _ Sm tng—1 - OF (8m); gradient
9=3%s — 5 RINTld—Flom)] i3 =",
D = 1 28 =S '+ RN 'R+ F"[d— F(8m)] Hessian
2 0808 "
dx*(s)

=0, As=-D"g. Newton’s method

O0As

Need a gradient R;;: derivative of a full simulated data wrt all initial modes s dotted with a
vector: no large matrices needed

Also need nonlinear model F(s): a full simulation

Need to compute fast F(s) and its gradient

We can drop F”(d-F) in Gauss-Newton approximation (good when close to the minimum)
We are doing L-BFGS or Steihaug-CG

(Gauss Newton with trust region and conjugate gradient) 8
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Nonlinear case: from implicit to explicit
likelihood

Integrate out the modes around the minimum variance map
(approximate multivariate gaussian integrals)

L(d]©) = / P(s,d — F(s))dMs

= (27r) " M+N)/2 det(8) /2 det(N) 2 exp (%[gfm —d N—IJ]> X

I exp{—%[s _ 3" D[s — 3]}dMs

= (2m) " N/2 det(SN D) /2 exp (%[sTm —d N—IJ]) .
: : : 1 0x?
Hessian D in s basis: not sparse D= 5% =S'+R'N'R
808

This is explicit likelihood: no longer depends on s
It maps data likelihood into a gaussian
D determinant needed to preserve probability (i.e. Jacobian) 9




What just happened?
* |[terative solution to MAP has found a nonlinear mapping of the
data to a gaussian distribution

* Likelihood analysis ensures optimal weighting of all the higher order
statistics: this is the power of likelihood analysis

* |f gravity creates non-linearity one can view this operation as
reversing gravity

« All the higher order moments have been mapped back to the 2"
moment (power spectrum)

 Summarizing information in the data is now easy, since it is a
gaussian: everything is in power spectrum (and forward model
parameters such as matter density)

* The only problem is that determinant: in high dimensions it is
impossible to evaluate it
VzL(5) — VzIndet D

 We candetermine 2™termu_._ > ' _ "%~ " nulations: we
run MAP on the simulation and evaluate the above gradient

* Gradient has to vanish if we evaluate the gradient at the value of z
used to generate the simulation

10
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Applications to cosmology problems

 Forward model: FastPM (Yu etal) N-body simulation: we can
do 1019 particles

* We marginalize over these latent variables and determine the
mean and covariance of summary statistics, which are their
power as a function of scale (we use 30-40 bandpowers)

11
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high noise
(P=1000Mpc/hA
3), low
smoothing

750Mpc/h box,
12873
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Low noise, low
smoothing

750Mpc/h box,
12873
Seems to

reconstruct well
all scales
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2d projections
(weak lensing)

No
reconstruction
along line of
sight, as
expected
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» 2d projections
(weak lensing)

»  Good
reconstruction

transverse to
line of sight

»  More gaussian
because of
wider
projection
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Forward model to galaxies: from initial to final
dark matter to galaxies  Modietal 2018

Group finding:
Friends of Friends Dark
Matter
Halos
(d)

Final
Dark
Matter
Field
(d)

Initial Particle Mesh Sims
Dark Matter
Field
(Gaussian)

(s)

Pn—1/2 — F(an)Vé,Aa, -

Leapfrog
evolution F(a,i1/2) £N
—_— xﬂ l L/ pn } 1 /2 Aa I'I e e i \‘\_\\-\

Xn+1 = 2
a c /
nil/2 v//)e 4@;,,@ _—
( \ \ ~
/ \ ", f \
/ \ O 2) | \ /’J

Poisson -0~ 38 .
! o= ——0—~ 1) |

Equation 2 ’ [

q a | - u‘_f‘o %{ /P ,1'

Pn+1/2

For /V time steps
nitial I;_)ark Matter

I T 3 o e Y o
- e AT Nl T WL
ll: 3 'l.' R E oo . A ; ¥
'l-t P bpirin Sy R
S L et A
e Al TR o R
- o il gy o W
.-I'N--'- : ,a'_:...' r
B o "': o e A | d
e e T e ] ’
e I o N B L LT ;
=1 et pie u "h.:_. ‘|."
. 5 =k 3 2 - rt iy L -
L ‘s o xr}'ﬂl.. urat. o
s N W . . -
. e P N
1._..:1'- L \_‘4:_' :I- 2 =
g o\ y }
[ oot il Evlg




Example of MAP galaxy reconstruction

Initial Dark Matter
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We use optimization that finds the best solution in terms of final

data. This 3-d example optimizes in 2 million dimensions
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Reconstructing the power spectrum

* Plot shows ratio of reconstructed power to true power
* We get unbiased results, with expected scatter
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Hessian: inverse covariance matrix
e More samples reduce noise

* Finite difference with 2 simulations best (power injection method)
 Diagonal elements: we reconstruct more power at low k due to noise
e Off diagonals: almost zero

* Asymptotic limit: mean and covariance suffice for posterior
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Beyond gaussian distribution

* Mapping a gaussian to an inverse Wishart distribution: if a
bandpower has few modes then its distribution is not
gaussian

(MF®), + b))
(MFM )

~InL(©®®) =) X;(x;—Inz —1) X, =
[

- (:)1+bl
O+ b’

Ly

* Nuisance parameters: baryonic effects (Biwei Dai talk), shear
systematics etc.

20
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Marginals and posteriors

* We have some summary statistics of the data with its
covariance matrix: both can be model dependent

* The model depends on a number of parameters, which are all
correlated with each other

* We only care about certain parameters: we marginalize over
the others

* We are left with the posterior of the parameters we care: we
would like to quantify this posterior in terms of its 1-d PDF

and various summary statistics such as mean, mode, median,
68% and 95% credible intervals...

 Sometimes we also show 2-d PDF, but these are more for

qualitative use (e.g. how correlated are two variables) than for
any quantitative applications.

* We (almost) never look above 2-d (too difficult to visualize)
21
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Astronomy: MCMC dominated

* We are confusing Bayesian marginal analysis with
MCMC analysis, at a great CPU cost

* If the posterior is gaussian there is nothing wrong with
a MLE or MAP analysis

 Can we develop a method that starts at MAP and
expands around it to go to non-gaussian posteriors only
if needed

* Can we unchain posterior inference?

22
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Stochastic VI: KL divergence is noisy when sampling

 We have data x and parameter z. Assume gaussian g(z) and
also assume p(z|x) is gaussian in z, but we do not know it.

Lo=—Ingq(z), q(z) = N(z;u,%) Lp=—Inp(z|z)
KL((]HP) — <Eq - £p>qa KL(PHCI) — <£p - £q>p

 We cannot analytically evaluate KL, so we have to sample
from p or q. KL(p| | q) leads to MC sampling:

2 —p)? In(27Y

Let us minimize KL(p||q) with respect to p and X
—1 —1 2
p=N, sz,ZZNk Z(zk—,u)
k k

* Converges as N, */4, the usual MC scaling.

23
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Our proposal: EL,O (on arxiv today)
With Byeonghee Yu

L,=—Inq(z2), q(z) = N(z;p,2) Lp=—Inp(z|z)

* We propose to minimize L, norm between L, and L. It needs to be
sampled from some fiducial probability distr, which can be q

 ifgcoverspitis noiseless, if not it finds the closest solution to it

* EL,O: expectation with L, optimization p1,0 — (Ly— L, — )5

2
* For the problem above ELyO = Ny : Z [ i _Z'UJ)2 — Lp(2x) — CI}
d =c—(In 27rE)/2
* Thisis quadraticin z, linear least square (and thus convex) in
—c + pu?/2%, —,u/Z and 1/2
* N,=3 samples suffice to give complete solution. No sampling noise 24
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EL,O with gradient, Hessian...

Modern trend in ML/stats: automatic derivatives
(backpropagation or adjoints): huge gains in information

oo

1
Ep(zk + Azk) = E Cp(zk)(Azk)”
n=0 o
L,(zr+Az)=—Inqg(zr +Az) = n'V”E (zr)(Az)"
n=»(
EL;O = argmin<N(;ﬂl, Z Z VLL V%L,(2z,0)] >
0 n=0 i1,..1, _

p

¢(2) = N(z; 1, 2) = (21) N2 det 5123 (Z-WTE (2-p),

Lo = % ndet S + (z — ) S~ (z — p) + Nn(2r)] .

For n = 2 we optimize

M
EL;O = argmin N__ <Z{V V.. L, vzivzqu}2+2{vzi£p—Vziﬁq}z>

pX

1,7<1 1=1

p



Beyond full rank gaussian: bijective transformations
Full rank Gaussian is the only correlated distribution that we know how to
analytically marginalize: compute Hessian, invert to get covariance, remove the
unwanted variables, invert again to get Hessian of remaining parameters. We can

enhance it using 1d transforms which allow easy marginals

e dy;
bijective 1d transform q(z) = N(y; p, 2)IL|Ji|, J; = d_Z-’

* the resulting posterior can accommodate more of the variation of £, — corresponding to
skewness and curtosis in 1d  w = (zi — ) /EL

exp(€it;) — 1]

€

vyi(2;) = sinh,, [

yi(zi) = Sinhnui'for ¢ =0

n~'sinh(nx) (p > 0)
sinh,(z) =< = (n=0)
n~larsinh(nz) (m <O0)

* Model the posterior using &, , u, and ¥
* Can apply the transform multiple times 26
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Example: banana posterior

2.0

¢ Truth
MAP
157 MEVI
NL-GHEL>O

&' 1.0

0.5

0050 ~1.5 ~1.0 —0.5 0.0 0.5 1.0

<1

* MAP does not get the mean correctly.

* MFVI is better

* EL,O fully accommodates variation of the Hessian.
Convergence 1s achieved very quickly. 27

BERKELEY WEAK LENSING WORKSHOP UROS SELJAK




Example: banana posterior

------- True 1d posterior
— MAP

— MFVI

—— FRVI

—— NL-GHEL>O

— True mean

S~
~
~
=~
-

We get almost perfect PDF (true PDF not in the q family) )8
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Beyond full rank gaussian: gaussian mixtures

e Gaussian mixtures can handle multimodal posteriors and non-
bijective mappings

q(z) =) wiN(y/; 1/, )1

29
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Example: forward model posterior

Ep = [332_13: + (2 — xz)Q_l(z — xz)]

DO | =

* MAP or gaussian VI completely fail
e Solve with 2 symmetric gaussians

6 1 I‘
i i‘ —— MAP = FRVI = FR-EL;O
ik EL,0 GM+NL:
“.‘ Y / ’." | sampling from p
) Fs 1] I .
4 LY ;o ! sampling from ¢
\ \ PO | 1 .
“\‘ N i - sampling from p + ¢
‘\ \\\\‘\ l, ’lll :
\\ \‘\\ / ,I 1
N ' ) ’ 1 :
A') :
= 1
1
1
1
1
1
]
1
1
1
0 i
1
]
i
1 : —
-4 2 2 1 -2 -1 0 1 2 3 4 5
yA

BERKELEY WEAK LENSING WORKSHOP UROS SELJAK




EL,O gives error estimate

- Another advantage is that L, distance can tell us
how well the approximation works

- In VI ELBO is meaningless on its own

- EL,O less than 0.2 is very good

2.0
—— NL-EL,O 1.4 ——  EL,O GM+NL: sampling from ¢
. \ \
—— MF-EL,O Y ' —— EL;O GM+NL: sampling from p
\
FR-EL,O 19 Yo EL,O GM+NL: sampling from p+ ¢
1.5 \ ==== EL,O GM only (without NL)
\ \
1.0
Q Q
9" Lo L' 08
= €2
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0.2
1 3 5 7 9 11 1 3 5 7 9 11 13 1
-]Vitm'm ion Nit(‘l'ntinn

31

BERKELEY WEAK LENSING WORKSHOP UROS SELJAK




Multi-modal posterior

-Single starting point finds both maxima once we use 2 GM

-Several starting points lead to two different maxima and
gaussian mixtures properly normalizes the two

-
S-

0
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Example: BOSS RSD analysis

» Take summary statistics of galaxy clustering P, (k), where [ =0, 2, 4 are the
multipoles of the power spectrum and £ is the wavevector.

* Data: Measured P, (k) of the BOSS DR12 galaxies (LOWZ+CMASS)
* Covariance: nearly diagonal, but model dependent (sampling variance

component)
* Model: Predicted P, (k) which depends on 13 parameters, presented in Hand

etal (arXiv:1706.02362)
Ppi(k) = (1 = f5)?Po(k) + 2fs(1 — fs)Po(k) + f3 P (k)

Sample Description

type A centrals isolated centrals (no satellites in the same halo)

type B centrals non-isolated centrals (at least one satellite in same halo)

type A satellites isolated satellites (no other satellites in same halo)

type B satellites non-isolated satellites (at least one other satellite in the same halo)

33
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Power Spectrum Model

Free Parameters

Name [Unit] Prior
Q| U(O.S, 1.2)
O{” U(O.S, 1.2)
f 14(0.6,1.0)
o8 (zeft) 14(0.3,0.9)
bc, U(1.2,2.5)
fs 4(0,0.25)

fon U(,1)
(Nors) | N(24,0.1)

o [ h~Mpc] U(0,3)

os, | h~1Mpc] U2,6)
Yo N(1.45,0.3)
Ysg N(2.05,0.3)

w N
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13 physically motivated parameters:

* Cosmology parameters
* Linear bias parameters
e Sample fractions

* Velocity dispersions

* 1-halo amplitudes

* Model evaluation cost: seconds to
minutes, because it 1s PT based




SDSS RSD analysis (B. Yu etal)

* Analytic derivatives are available for 9 parameters, leaving the
remaining 4 to numerical finite difference method.

* Use Gauss-Newton approximation to get the Hessian.

 We get a good fit to the data with about 20 iterations

e Different starting points help find global minimum

 Adding a bit of stochasticity helps get out of shallow local minima

* Additionally a few samples to get a good posterior. Total number
of iterations 25 (5 calls per iteration because of finite difference)

* Emcee starting at MAP converges with 10°++ calls

* Emcee starting far from MAP never converges

35
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Example: BOSS RSD analysis
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Our model fits the data very well, accurately
modeling P,, P,, and P, down to k= 0.4 hMpc!
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Example: BOSS RSD analysis

MAP EL,O

e MAP 7 \ e GHEL;O

fih, sgss Oc fih, sss Oc

EL,O is better than MAP and equal to MCMC:

Averaging Hessian over samples smooths out small scale noise
LOWZ+CMASS, bin 2 (0.4 <z<0.6) 37
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Summary

* Full analysis of WL data requires sophisticated statistical
methods

* These can be broken into several components:
* implicit to explicit likelihood: MAP (initial field reconstruction)

 compression of explicit likelihood into optimal summary
statistics and their probability distribution: bandpower
analysis, covariance matrix, inverse Wishart

* Bayesian posterior analysis: from summary statistics to
cosmological parameters.

* For the last step EL,O looks very promising as a tool to do
inference and may even some day replace MCMC

39
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