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Optimal weak lensing data analysis
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Outline: goals of optimal data analysis
• We would like to optimally extract information from the data: if 

we have the full likelihood and the prior we can obtain the 
posterior. We have minimized Bayes risk and obtained optimal 
results. Often we use summary statistics as intermediate stage.

• The complication is that we only have an implicit likelihood as a 
function of many parameters, most of which we do not care 
about: we need to marginalize. 

• Model evaluation can be very expensive (a full simulation)
• MCMC is often too expensive 
• MAP/VI approximate and often wrong (inconsistent)
• We would like an analysis that is as good as MCMC, at a fraction 

of computational cost (as few likelihood evaluations as possible)
• Collaborators: G. Aslanyan, Y. Feng, B. Horowitz, C. Modi, B. Yu…
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Linear case example: from implicit likelihood to 
power spectrum analysis

• We can write the probability distribution as a function of data 

d and modes s, where d=Rs+n: implicit likelihood

• By integrating over s (marginalizing) we can write the 

probability distribution of the data d: explicit likelihood

• C=RSRT+N

• We can rewrite this into an optimal quadratic estimator, which 

requires C-1d

• We can simplify by simpler weighting (pseudo-Cl=FKP) 3
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Which is easier? 
• To get just the power spectrum pseudo-Cl analysis is easiest, 

since there is no C-1 operation needed
• It is suboptimal on large scales due to the mask, but nearly 

optimal on small scales (hence used in CMB etc)
• This comes at a price: no obvious path to get the covariance

matrix
• In practice it is modeled with simulations (mocks) or theory
• In contrast, if one sticks to the likelihood analysis one gets the 

covariance from the shape of the likelihood at the peak
• In explicit form this requires repeated C-1d: expensive
• In implicit form this requires finding the peak posterior of s:

Wiener filter
• Sampling of the modes very expensive (Gibbs sampling), but 

has been attempted in CMB
4
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Example: WL analysis Wiener filter  

Horowitz, US, Aslanyan
2018
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Example: WL power 
spectrum analysis
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What about the nonlinear case?
• We could follow “moment matching” path: evaluate all the N-

point functions

• We would also need to get their covariance matrix. This is
already very hard for 2-pt function, becomes impossible 
analytically for higher orders

• If one has N simulations then covariance matrix becomes 
singular with M>N summary statistics

• We can however try some specially powerful summary 
statistics (e.g. next talks) 

• Alternative: likelihood analysis
• Writing down implicit likelihood is easy: d=f(s)+n

• f(s) is a simulation of the data

• Need to first find peak posterior of s (MAP) 7
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Finding MAP of s in 1010 dim parameter space 
• Maximize posterior=minimize the loss function (d=x) 

8

Hessian

gradient

Newton’s method

Need a gradient Rij: derivative of a full simulated data wrt all initial modes s dotted with a 
vector: no large matrices needed
Also need nonlinear model F(s): a full simulation
Need to compute fast F(s) and its gradient
We can drop F”(d-F) in Gauss-Newton approximation (good when close to the minimum)
We are doing L-BFGS or Steihaug-CG 
(Gauss Newton with trust region and conjugate gradient)
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Nonlinear case: from implicit to explicit 
likelihood

• Integrate out the modes around the minimum variance map 
(approximate multivariate gaussian integrals)

• Hessian D in s basis: not sparse
• This is explicit likelihood: no longer depends on s
• It maps data likelihood into a gaussian
• D determinant needed to preserve probability (i.e. Jacobian) 9
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What just happened? 
• Iterative solution to MAP has found a nonlinear mapping of the 

data to a gaussian distribution
• Likelihood analysis ensures optimal weighting of all the higher order 

statistics: this is the power of likelihood analysis
• If gravity creates non-linearity one can view this operation as

reversing gravity
• All the higher order moments have been mapped back to the 2nd

moment (power spectrum)
• Summarizing information in the data is now easy, since it is a 

gaussian: everything is in power spectrum (and forward model 
parameters such as matter density)

• The only problem is that determinant: in high dimensions it is 
impossible to evaluate it

• We can determine 2nd term using forward model simulations: we 
run MAP on the simulation and evaluate the above gradient

• Gradient has to vanish if we evaluate the gradient at the value of z 
used to generate the simulation

10
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Applications to cosmology problems

• Forward model: FastPM (Yu etal) N-body simulation: we can 
do 1010 particles

• We marginalize over these latent variables and determine the 
mean and covariance of summary statistics, which are their 
power as a function of scale (we use 30-40 bandpowers)

11
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• high noise 
(P=1000Mpc/h^
3), low 
smoothing

• 750Mpc/h box, 
128^3 

• High k 
suppressed

• Slices 6Mpc/h

12
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• Low noise, low 
smoothing

• 750Mpc/h box, 
128^3 

• Seems to 
reconstruct well 
all scales

13
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• 2d projections 
(weak lensing)

• No 
reconstruction 
along line of 
sight, as 
expected

14
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• 2d projections 
(weak lensing)

• Good 
reconstruction 
transverse to  
line of sight

• More gaussian
because of 
wider 
projection

15
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Forward model to galaxies: from initial to final 
dark matter  to  galaxies

16

Modi etal 2018
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Example of MAP galaxy reconstruction

17

We use optimization that finds the best solution in terms of final 
data. This 3-d example optimizes in 2 million dimensions
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Reconstructing the power spectrum 
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• Plot shows ratio of reconstructed power to true power
• We get unbiased results, with expected scatter
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Hessian: inverse covariance matrix

19

• More samples reduce noise
• Finite difference with 2 simulations best (power injection method)
• Diagonal elements: we reconstruct more power at low k due to noise
• Off diagonals: almost zero
• Asymptotic limit: mean and covariance suffice for posterior
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Beyond gaussian distribution
• Mapping a gaussian to an inverse Wishart distribution: if a 

bandpower has few modes then its distribution is not 
gaussian

• Nuisance parameters: baryonic effects (Biwei Dai talk), shear 
systematics etc.

20
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Marginals and posteriors

• We have some summary statistics of the data with its 
covariance matrix: both can be model dependent

• The model depends on a number of parameters, which are all 
correlated with each other 

• We only care about certain parameters: we marginalize over 
the others

• We are left with the posterior of the parameters we care: we 
would like to quantify this posterior in terms of its 1-d PDF 
and various summary statistics such as mean, mode, median, 
68% and 95% credible intervals…

• Sometimes we also show 2-d PDF, but these are more for 
qualitative use (e.g. how correlated are two variables) than for 
any quantitative applications. 

• We (almost) never look above 2-d (too difficult to visualize)
21
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Astronomy: MCMC dominated

• We are confusing Bayesian marginal analysis with 
MCMC analysis, at a great CPU cost 

• If the posterior is gaussian there is nothing wrong with 
a MLE or MAP analysis

• Can we develop a method that starts at MAP and 
expands around it to go to non-gaussian posteriors only 
if needed

• Can we unchain posterior inference?

22
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Stochastic VI: KL divergence is noisy when sampling
• We have data x and parameter z. Assume gaussian q(z) and 

also assume p(z|x) is gaussian in z, but we do not know it. 

• We cannot analytically evaluate KL, so we have to sample 
from p or q. KL(p||q) leads to MC sampling:

• Converges as Nk
-1/2, the usual MC scaling. 23
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Our proposal: EL2O (on arxiv today)

• We propose to minimize L2 norm between Lp and Lq. It needs to be 
sampled from some fiducial probability distr, which can be q

• if q covers p it is noiseless, if not it finds the closest solution to it
• EL2O: expectation with L2 optimization

• For the problem above 

• This is quadratic in z, linear least square  (and thus convex) in 

• Nk=3 samples suffice to give complete solution. No sampling noise 24

With Byeonghee Yu
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EL2O with gradient, Hessian…
• Modern trend in ML/stats: automatic derivatives 

(backpropagation or adjoints): huge gains in information

25
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Beyond full rank gaussian: bijective transformations
Full rank Gaussian is the only correlated distribution that we know how to 
analytically marginalize: compute Hessian, invert to get covariance, remove the 
unwanted variables, invert again to get Hessian of remaining parameters. We can 
enhance it using 1d transforms  which allow easy marginals

bijective 1d transform

• the resulting posterior can accommodate more of the variation of ℒp – corresponding to 
skewness and curtosis in 1d 

• Model the posterior using ", η, µ, and #
• Can apply the transform multiple times 26
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Example: banana posterior

• MAP does not get the mean correctly.
• MFVI is better
• EL2O fully accommodates variation of the Hessian. 

Convergence is achieved very quickly. 27
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Example: banana posterior

28
We get almost perfect PDF (true PDF not in the q family)
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Beyond full rank gaussian: gaussian mixtures

• Gaussian mixtures can handle multimodal posteriors and non-
bijective mappings

29
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Example: forward model posterior

• MAP or gaussian VI completely fail
• Solve with 2 symmetric gaussians

30
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EL2O gives error estimate

31

- Another advantage is that L2 distance can tell us 
how well the approximation works
- In VI ELBO is meaningless on its own
- EL2O less than 0.2 is very good 
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Multi-modal posterior

-Single starting point finds both maxima once we use 2 GM

-Several starting points lead to two different maxima and 
gaussian mixtures properly normalizes the two
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Example: BOSS RSD analysis

• Take summary statistics of galaxy clustering Pl (k), where l = 0, 2, 4 are the 
multipoles of the power spectrum and k is the wavevector. 

• Data: Measured Pl (k) of the BOSS DR12 galaxies (LOWZ+CMASS)
• Covariance: nearly diagonal, but model dependent (sampling variance 

component)
• Model: Predicted Pl (k) which depends on 13 parameters, presented in Hand 

etal (arXiv:1706.02362)

33
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Power Spectrum Model

13 physically motivated parameters:

• Cosmology parameters
• Linear bias parameters
• Sample fractions
• Velocity dispersions
• 1-halo amplitudes

• Model evaluation cost: seconds to 
minutes, because it is PT based
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SDSS RSD analysis (B. Yu etal)
• Analytic derivatives are available for 9 parameters, leaving the 

remaining 4 to numerical finite difference method. 
• Use Gauss-Newton approximation to get the Hessian.
• We get a good fit to the data with about 20 iterations
• Different starting points help find global minimum
• Adding a bit of stochasticity helps get out of shallow local minima
• Additionally a few samples to get a good posterior. Total number 

of iterations 25 (5 calls per iteration because of finite difference)
• Emcee starting at MAP converges with 105++ calls
• Emcee starting far from MAP never converges

35



BERKELEY WEAK LENSING WORKSHOP            UROŠ SELJAK

Example: BOSS RSD analysis

Our model fits the data very well, accurately 
modeling P0, P2, and P4 down to k = 0.4 hMpc-1

36
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Example: BOSS RSD analysis

37

EL2O is better than MAP and equal to MCMC:
Averaging Hessian over samples smooths out small scale noise
LOWZ+CMASS, bin 2 (0.4 < z < 0.6)

EL2OMAP
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Example: BOSS RSD analysis

38
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Summary

• Full analysis of WL data requires sophisticated statistical 
methods

• These can be broken into several components:
• implicit to explicit likelihood: MAP (initial field reconstruction)
• compression of explicit likelihood into optimal summary 

statistics and their probability distribution: bandpower
analysis, covariance matrix, inverse Wishart

• Bayesian posterior analysis: from summary statistics to 
cosmological parameters.  

• For the last step EL2O looks very promising as a tool to do 
inference and may even some day replace MCMC

39


