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Small-Scale CDM Problems?

* CDM works well on scales larger than 10 kpc,
but seems to fail on smaller scales (maybe):

 Missing Dark Matter Satellites?
e Cores vs cusps?
* Too-big to fail?

 Too much diversity?

 Data on the properties of structure on scales
below 10 kpc is not conclusive

Key Question: What do matter fluctuations look like on small-scales?
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Measurements of Small-Scale Structure

e |dentifying dwarf galaxies by their stars - star formation may be quenched,
masses of dwarfs require expensive spectroscopy

* Measure abundance of ultra-faint, high-z galaxies in Hubble Frontier fields
- photo-z, survey volume, survey selection uncertainties

* Abundance of high-z gamma-ray bursts - uncertainty in mass of host halo

e Tidal debris streams from disrupted MW satellites - uncertainties in
progenitor of streams and impact of passing through baryonic disk

* Lyman-alpha forest - baryons may have power on small scales not traced
by dark matter

e Galaxy-galaxy strong lensing in optical and mm-wavelegths - need to
model lensing halo, need many (~100) expensive strong lensing systems,
need to assume sub-halo density profile to obtain sub-halo mass
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Gravitational Lensing of the

Cosmic Microwave Background

e CMB Lensing is when
light from the primordial

CMB is bent by
intervening matter

e Traditionally measured to
probe large-scale
structure

e Recently, it has been
used to measure halo-
sized objects

First Measurement of CMB Lensing on Halo Scales
Madhavacheril, NS, for the ACT Collaboration
PRL, 114, 2015



Advantage of CMB Lensing to
Probe Small-Scale Structure

1. Directly sensitive to dark matter via gravitational lensing
2. Source light is at well-defined redshift
3. Properties of primordial CMB are well understood

4. Sensitive to structure at higher redshifts than other
gravitational lensing probes; this makes it more sensitive
to FDM/WDM-type models
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CMB Lensing Power Spectrum

CMB Lensing Power Spectrum
IS matter power spectrum
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Contrast between CDM and models that wash out

small-scale structure is larger at higher redshifts
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CMB Lensing Power Spectrum for
CDM Versus FDM/WDM
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Fractional difference between
FDM/WDM and CDM for the CMB

lensing power spectrum
| While we directly measure

structure with lensing, as opposed
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may still suppress matter power

0.2
0.0 pommemmm st i e \
—0.2
—-0.4
—0.6
— 107%’eV FDM
—0.8
1keV WDM
-- CDM+Baryons
s (/L 1 LA T 10*
L

10°

But shape may be different

1.) If see little deviation from pure
CDM curve, that constrains both
baryons and alternate DM models

2.) If see significant deviation, then
can potentially use shape of curve
to determine whether it is due to
baryons or alternative to CDM
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CMB Lensing Noise Curves
to Estimate Sensitivity
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Potential Ability to Distinguish
Between Dark Matter Models
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Dark Matter Constraints Not
Degenerate with Neutrino Mass

CMB-S4 Science Book
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CMB lensing is known for its
potential to constrain the
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Alternative DM models of
Interest suppress power on
much smaller scales
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Dark Matter Constraints Not
Degenerate with Neutrino Mass
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Potential Advantage/Complementarity
of CMB vs Optical Weak Lensing

Small-scale matter power spectrum may also be
measured by galaxy shear from optical surveys

Some advantages of CMB:
* Well defined redshift of background light source

* Properties of background light source well understood
(Cyr-Racine, Keeton, Moustakas, 2018 -1806.07897)

e Easier to remove correlated modes on small scales?
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Potential Advantage/Complementarity
of CMB vs Optical Weak Lensing
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Possible optical complication is correlated modes on small
scales from, e.g., point spread function uncertainties

For CMB lensing, realization-dependent subtraction of
Gaussian component minimizes correlation between modes
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Theory Questions

Remove frequency-dependent astrophysical foregrounds

(extragalactic radio and infrared galaxies, thermal SZ from galaxy clusters,
Galactic dust and synchrotron)

e Deproject foreground in the large-scale map (I < 2000)
e Filter out scales with 1<5000 in the small-scale map

e Remove Poisson sources by template subtraction in

small-scale map
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Theory Questions

Remove frequency-independent astrophysical foregrounds

(kinetic SZ)

e Exploit fact that kSZ is not aligned 107 107
with background CMB gradient, T retonivation k59
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Theory Questions

Degeneracy between baryons impacting matter
and alternatives to CDM

Use difference in shape
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Quantifying baryon effects on the matter power
spectrum and the weak lensing shear correlation

Aurel Schneider, Romain Teyssier, Joachim Stadel, Nora Elisa Chisari, Amandine
M. C. Le Brun, Adam Amara, Alexandre Refregier



Summary

Key question: what do matter fluctuations look like on small scales
(important for dark matter properties and galaxy evolution)

Multiple technigues to measure this are proposed, each with
different challenges and systematics

Another complementary, potentially powerful technique, with
different systematics, is to use ultra-deep, high-resolution CMB
lensing to measure the matter power spectrum

Requires enhanced CMB-S4-type telescope on a 50-ish meter dish
Traditional CMB science would also gain from this (r and Ne)

Potentially good motivation for next stage ground-based CMB
experiment, i.e. CMB in HD



