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FIG. 1: Schematic illustration of the ‘large-scale lens’ regime, in which the unlensed image varies on much smaller scales than
the lensing convergence field. In this regime, shear and convergence are uniform on the scale of several galaxies, or several
CMB hot or cold spots. The figure shows the analogy between galaxy lensing and CMB lensing estimators in this regime.
Left column: The large-scale lens regime is one of the regimes in which the CMB lensing quadratic estimator operates. In
this regime, the quadratic estimator can be shown to look for monopolar (magnification) and quadrupolar (shear) distortions
in the local observed power spectrum [16, 51]. Central column: The shear is estimated from the galaxy shape (quadrupole
of the image), and in principle magnification from the galaxy size, brightness or number density (monopole of the image).
Right column: Näıve schematic of the power spectrum of an optical image, on a field containing galaxies and with uniform
magnification/shear. We schematically describe the power spectrum as a clustering component, plus a 1-halo or 1-galaxy term.
The amplitude of this 1-halo/1-galaxy encodes both the galaxy number density and brightness, and its turnover encodes the
galaxy size and shape. The e↵ect of magnification is to rescale the multipoles `x, `y isotropically, as well as the power spectrum
amplitude. Magnification thus a↵ects the local number density, brightness and size of the galaxies, without distorting their
shapes. On the other hand, the e↵ect of shear is an anisotropic rescaling of the multipoles `x and `y, leaving the number density
and brightness unchanged. This figure shows that the shape, size, brightness and number density measured from individual
objects (individual galaxies or CMB hot spots) is also encoded in the power spectrum of these objects (power spectrum of
the galaxy field image or the CMB). In the large-scale lens regime, the information measured by galaxy lensing estimators on
individual objects is completely analogous to that measured by the quadratic estimator on the CMB power spectrum.

of several galaxies. This regime also occurs in CMB lensing, for lensing modes that are coherent over many CMB
hot and cold spots. In this case, the CMB lensing quadratic estimator e↵ectively looks for distortions of the locally
measured power spectrum. Indeed, for a small patch with roughly uniform shear � and convergence , the local power
spectrum is modified as [16]:
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where C
0
` and C` are the unlensed and lensed power spectra respectively,  is the convergence and � the shear

amplitude, assumed to be uniform on the patch where the power spectrum is measured. The angle ✓` is the angle
between the direction of the shear and the wave vector `. As this equation shows, magnification results in a monopole
distortion of the 2D power spectrum, and shear produces a quadrupolar distortion.

In this large-scale lens regime, where the CMB quadratic estimator measures shear and magnification, it is close to
optimal. However, this estimator would be suboptimal in galaxy lensing, for several reasons. For example, applying a
quadratic estimator to the intensity map of a highly populated galaxy field would implicitly weight galaxies by their
brightness, instead of the uncertainty on their shapes. The estimator would thus be dominated by the few brightest
galaxies in the field.

The CIB is a somewhat intermediate case. Similarly to galaxy images, the unlensed CIB is a non-Gaussian field for
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FIG. 1: Schematic illustration of the ‘large-scale lens’ regime, in which the unlensed image varies on much smaller scales than
the lensing convergence field. In this regime, shear and convergence are uniform on the scale of several galaxies, or several
CMB hot or cold spots. The figure shows the analogy between galaxy lensing and CMB lensing estimators in this regime.
Left column: The large-scale lens regime is one of the regimes in which the CMB lensing quadratic estimator operates. In
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in the local observed power spectrum [16, 51]. Central column: The shear is estimated from the galaxy shape (quadrupole
of the image), and in principle magnification from the galaxy size, brightness or number density (monopole of the image).
Right column: Näıve schematic of the power spectrum of an optical image, on a field containing galaxies and with uniform
magnification/shear. We schematically describe the power spectrum as a clustering component, plus a 1-halo or 1-galaxy term.
The amplitude of this 1-halo/1-galaxy encodes both the galaxy number density and brightness, and its turnover encodes the
galaxy size and shape. The e↵ect of magnification is to rescale the multipoles `x, `y isotropically, as well as the power spectrum
amplitude. Magnification thus a↵ects the local number density, brightness and size of the galaxies, without distorting their
shapes. On the other hand, the e↵ect of shear is an anisotropic rescaling of the multipoles `x and `y, leaving the number density
and brightness unchanged. This figure shows that the shape, size, brightness and number density measured from individual
objects (individual galaxies or CMB hot spots) is also encoded in the power spectrum of these objects (power spectrum of
the galaxy field image or the CMB). In the large-scale lens regime, the information measured by galaxy lensing estimators on
individual objects is completely analogous to that measured by the quadratic estimator on the CMB power spectrum.
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optimal. However, this estimator would be suboptimal in galaxy lensing, for several reasons. For example, applying a
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Left column: The large-scale lens regime is one of the regimes in which the CMB lensing quadratic estimator operates. In
this regime, the quadratic estimator can be shown to look for monopolar (magnification) and quadrupolar (shear) distortions
in the local observed power spectrum [16, 51]. Central column: The shear is estimated from the galaxy shape (quadrupole
of the image), and in principle magnification from the galaxy size, brightness or number density (monopole of the image).
Right column: Näıve schematic of the power spectrum of an optical image, on a field containing galaxies and with uniform
magnification/shear. We schematically describe the power spectrum as a clustering component, plus a 1-halo or 1-galaxy term.
The amplitude of this 1-halo/1-galaxy encodes both the galaxy number density and brightness, and its turnover encodes the
galaxy size and shape. The e↵ect of magnification is to rescale the multipoles `x, `y isotropically, as well as the power spectrum
amplitude. Magnification thus a↵ects the local number density, brightness and size of the galaxies, without distorting their
shapes. On the other hand, the e↵ect of shear is an anisotropic rescaling of the multipoles `x and `y, leaving the number density
and brightness unchanged. This figure shows that the shape, size, brightness and number density measured from individual
objects (individual galaxies or CMB hot spots) is also encoded in the power spectrum of these objects (power spectrum of
the galaxy field image or the CMB). In the large-scale lens regime, the information measured by galaxy lensing estimators on
individual objects is completely analogous to that measured by the quadratic estimator on the CMB power spectrum.
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In this large-scale lens regime, where the CMB quadratic estimator measures shear and magnification, it is close to
optimal. However, this estimator would be suboptimal in galaxy lensing, for several reasons. For example, applying a
quadratic estimator to the intensity map of a highly populated galaxy field would implicitly weight galaxies by their
brightness, instead of the uncertainty on their shapes. The estimator would thus be dominated by the few brightest
galaxies in the field.
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Quadratic estimator ≃ Shear & Magnification

`x

`y

Unlensed

`x

`y

`x

`y

Magnified 
→ monopole

Sheared 
→ quadrupole

Emmanuel Schaan

hT`TL�`i = �L

✓
2L

L2

◆h
`C0

` + (L� `)C0
|L�`|

i

' �L C0
`

2

664
d ln `2C0

`

d ln `| {z }
magnification

+cos 2✓L,`
d lnC0

`

d ln `| {z }
shear E-mode

+...

3

775

“Does the observed power spectrum Cl vary on scale L?”

for L«l

Zaldarriaga Seljak 98, Lu Pen 08, Bucher+10, Prince+17



Dramatic foreground reduction
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Quadratic estimator ≃ Shear & Magnification
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Foregrounds are themselves lensed
Measure lensing of the CIB, not by the CIB: 
SNR~100 for !CIB x !CMB or !CIB x WISE
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Cause a multiplicative bias in !CMB:

Nishant Mishra 
& Schaan, in prep
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Conclusions

Foregrounds > noise for upcoming CMB lensing from temperature. 
                 
Shear E reduces all extragalactic foregrounds,  
both in auto and cross-correlation 

Magnification & Shear B provide null tests 

Generalization: multipoles

arXiv:1804.06403
Emmanuel Schaan

https://arxiv.org/abs/1804.06403
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→ Dramatic reduction of primary 
and trispectrum biases 
→ Secondary contraction 
subtracted with shear B
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FIG. 5. Relative foreground bias on the CMB lensing power
spectrum, as a function of lensing multipole L, when includ-
ing temperature multipoles ` = 30 � 3500 at 148GHz. The
grey boxes indicate bins of lensing multipoles with the cor-
responding statistical error bars for the standard quadratic
estimator (lensing noise plus cosmic variance). Top: primary
bispectrum bias, dominant at low L. Middle: trispectrum
bias, dominant at high L. Bottom: secondary bispectrum
bias.
The dominant biases (primary and trispectrum) are much
larger than the statistical error bars for the QE and mag-
nification estimator, and are barely measurable for the shear
estimator. The secondary bispectrum bias is smaller, and
similar in size for all estimators. The secondary bispectrum
bias is identical for the shear E and B estimators, making the
di↵erence of the two an unbiased lensing estimator.
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responding statistical error bars for the standard quadratic
estimator (lensing noise plus cosmic variance). Top: primary
bispectrum bias, dominant at low L. Middle: trispectrum
bias, dominant at high L. Bottom: secondary bispectrum
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The dominant biases (primary and trispectrum) are much
larger than the statistical error bars for the QE and mag-
nification estimator, and are barely measurable for the shear
estimator. The secondary bispectrum bias is smaller, and
similar in size for all estimators. The secondary bispectrum
bias is identical for the shear E and B estimators, making the
di↵erence of the two an unbiased lensing estimator.
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Multi-frequency component separation: noise cost

Nulling CIB & tSZ  ⇒  Noise power spectrum x ~50
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Using the SO noise curves described in section 2, we
have performed a forecast for the fraction o ensing B-
mode power remaining in the delensed CMB map, A lens ,
after delensing. We include in this forecast iterative max-
imum likelihood lensing reconstruction, as outlined in
Smith et al. (2012). We assume that the lensing poten-
tial will be obtained using the minimum variance lens-
ing estimator, using both temperature and polarization,
though, where indicated, we also show polarization-only
lensing reconstruction for comparison.
In Figure 20, we show the fraction o ensing B-mode

power remaining in the delensed CMB map, A lens as
a function of the fraction of time spent observing the
small-aperture survey footprint with the large-aperture
telescope. Here, 100% observing time corresponds to a
large-aperture survey covering only the 10% of sky co-
incident with the small-aperture survey. Observing per-
centages of 50% and 25% correspond to a large-aperture
survey covering 20% and 40% of the full sky respectively.
Here we assume standard ILC foreground cleaning as dis-
cussed in section 2, although we show in Table 6 A lens
values with di erent levels o oreground cleaning, as-
suming the large-aperture telescope surveys 40% of the
sky.
It can be seen that the delensing performance is best

for surveys focusing on small sky areas where the map
noise level is lowest. Polarization-only reconstruction,
which potentially has fewer systematic concerns, does not
perform as well. There is some loss of delensing e ciency
due to higher levels o oreground cleaning . From figure
20, the fraction of B-mode lensing power remaining af-
ter delensing is optimistically of order 0.5, which would
reduce σ( r ) by 30%, as detailed in Tables 2 and 3.

5.2. Neutrino mass and lensing spectra
Non-zero neutrino masses suppress the amplitude of

structure measured at late times relative to the the am-
plitude measured early on, at the CMB last scattering
surface. We can exploit this to measure the sum of the
neutrino masses using the combination of the primary
CMB power spectrum and the CMB lensing potential au-
tospectrum. We obtain a Fisher matrix forecast for the
sum of neutrino masses using this combination, where
we assume Planck primary CMB observations cover 60%
of the sky, and we include them in the fraction of sky
not overlapping the SO survey area. In the SO survey
area, we include both SO and Planck primary CMB data,
which has been combined and foreground cleaned as dis-
cussed in section 2. We use unlensed Cls for the primary
CMB, and thus do not include any covariance between
the primary CMB and the CMB lensing spectra. This
is reasonable for neutrino mass constraints, which are
tau limited currently. We also include DESI BAO in our
forecasts, which serves to break parameter degeneracies
(in particular, with the matter density).
We plot the forecast constraints as a function of sky

area in the top panel of Figure 21. Here we include
foreground-cleaning with explicit thermal-SZ deprojec-
tion for temperature and dust deprojection for polariza-
tion, since these foregrounds potentially could cause the
largest systematic e ects (see Section 5.5 below). It can
be seen that the constraints are only weakly dependent
on sky area, and moderately dependent on sensitivity.
This is due to the fact that the constraints are limited
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Fig. 21.— Top:Neutrino mass constraints from temperature and
polarization CMB power spectra and lensing potential autospec-
trum, including foreground-cleaning with explicit tSZ deprojection
for temperature and dust deprojection for polarization, as a func-
tion of sky area. Bottom: Lensing potential autospectrum signal-
to-noise ratio from temperature and polarization CMB data as a
function of sky area. Foreground cleaning is included with stan-
dard ILC (deproj0) or tSZ deprojection for temperature and dust
deprojection for polarization (deproj1), as discussed in in section 2.

by the knowledge of the CMB optical depth τ , which de-
termines our knowledge of the high-redshift amplitude of
structure; the constraints improve greatly when a better
τ constraint is assumed.
Since the lensing potential power spectrum is more

generally a powerful cosmological probe, we also show
forecasts for the signal-to-noise ratio of that observable in
the bottom panel of Figure 21. We note that this signal-
to-noise ratio only includes the lensing power spectrum
derived from the four-point function. Here, we see that
the signal-to-noise ratio improves as sky area increases,
although there is no improvement when we consider the
potentially more systematic-error-free polarization-only
lensing power spectrum.
In Table 6, we show the constraints on neutrino mass,

the signal-to-noise ratio of the lensing power spectrum,
and A lens for a variety of di erent foreground cleaning
options. We show results using standard ILC foreground
cleaning, and also results either explicitly deprojecting
thermal-SZ in temperature maps and Galactic dust in
polarization maps, or explicitly deprojecting thermal-SZ

SO Science paper

polarization only

temperature & polarization

SO lensing relies on temperature



Shear & magnification estimators

2

where C0 is the unlensed power spectrum, L the lensing
convergence, and ✓L,` the angle between vectors L and `.
The first line is exact, to first order in . The second line
is approximate, valid only in the large-scale lens regime
L ⌧ `, but highlights the distinct e↵ects of isotropic mag-
nification 2 (independent of ✓L,`) and anisotropic shear

(/ cos 2✓L,`), as in galaxy lensing. Because lensing is

characterized by only one scalar field (e.g., L), shear
and magnification are related, and the QE measures both
e↵ects simultaneously. However, foreground contamina-
tion will a↵ect magnification and shear di↵erently, so we
estimate them separately. Quadratic estimators sensitive
only to shear or magnification can be built as:
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`
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.
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These match the harmonic-space version of [14, 15], af-
ter normalizing them to be unbiased and substituting
T`TL�` to T`+L/2TL/2�`, to permit fast evaluation
as convolutions with FFT. We further substitute the
lensed CMB power spectrum to C0, as is customary
for the QE [16, 17]. The magnification estimator e↵ec-
tively measures monopolar distortions of the small-scale
CMB power spectrum, while the shear estimator mea-
sures quadrupolar distortions, thanks to the cos(2✓L,`)
weighting. While the estimators in Eq. 2 are only in-
terpreted as shear/magnification estimators in the large-
scale limit, they are still unbiased estimators of L on
all scales.

Throughout this letter, we consider an upcoming stage
3 (‘CMB S3’) experiment, with 1.40 beam FWHM and
7µK 0 sensitivity at 148GHz. We apply the lensing es-
timators to the single-frequency map at 148GHz, with-
out any multi-frequency component separation. For the
lensing weights, we include the lensed CMB, all the fore-
grounds of Sec. III and the detector white noise in the
total power spectrum.

2 To be consistent with the optical lensing literature, this e↵ect
should really be called ‘convergence’ instead of ‘magnification’.
Since we already use the namagnificationme ‘convergence’ to des-
ignate the lensing field  that is being reconstructed, we decided
to call shear and magnification the two distinct e↵ects, to avoid
confusion.

Statistical signal-to-noise

As can be seen in Eq. (1), a scale-invariant power spec-
trum (@ ln `2C0

` /@ ln ` = 0) is not a↵ected by magnifica-
tion, while a white spectrum (@ lnC0

` /@ ln ` = 0) is not
a↵ected by shear. The unlensed CMB power spectrum
is neither white nor scale-invariant, so a similar signal-
to-noise is expected for the shear and magnification es-
timators. Indeed, as shown in Fig. 1, the lensing noise
in shear and magnification is comparable. This is con-
venient: the shear and magnification can be compared
as a consistency check for residual foregrounds. At fixed
`max,T , the total signal-to-noise in shear and magnifica-
tion is similar, and about 60% of that in the QE, includ-
ing the cosmic variance. However, as we show below, the
shear estimator is less a↵ected by foregrounds, allowing
to use `max,T = 3500 instead of `max,T = 2500 for the QE.
Overall, the signal-to-noise in shear with `max,T = 3500
is larger than that in QE with `max,T = 2500 by 10%. To
optimize further, one may combine the QE with `max,T =
2000 to the shear measured from ` = 2000 � 3500. This
‘hybrid’ estimator, shown in Fig. 1, increases the SNR by
37% compared to the QE with `max,T = 2500, from 70
to 96, equivalent to almost doubling the survey area.

Expected sensitivity to foregrounds

Because a power spectrum is necessarily positive, any
residual foreground causes an excess power spectrum
monopole in the CMB map. From Eq. (1), since the
CMB is very steep (@ ln `2C0

` /@ ln ` < 0) over the scales
of interest (` & 1000), this excess monopole power is then
mistaken for a negative magnification, thus producing a
negative bias in the QE and magnification estimators.

On the other hand, foregrounds with isotropic 2D
power spectra produce no quadrupole power, and there-
fore do not bias the shear estimator. This is the case if the
foreground sources have azimuthally-symmetric emission
profiles, and are unclustered (Poissonian) or isotropically
clustered. If the foreground sources have independent
random ellipticities, they will produce extra noise in the
shear estimator, analogous to the shape noise in galaxy
lensing (but no bias). The same occurs for example if the
foreground objects are point-like but clustered in ellipti-
cal filaments with random orientations. On the other
hand, any quadrupolar halo profile or halo clustering,
aligned with the local tidal field, would bias the shear
estimator, analogously to intrinsic alignments in galaxy
lensing (see App. D in [26]).

In summary, any residual foreground causes a negative
bias in the QE and magnification estimators, whereas
only foregrounds with very specific anisotropies can a↵ect
the shear estimator. We quantify this intuition in the
next section.


