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• Dahlen	et	al.	2013	tested	the	
fracLon	of	spectroscopic	
redshiMs	that	are	in	the	inner	
68%	or	inner	95%	of	their	PDFs	
for	CANDELS	photo-z's	

• Coverage	is	all	over	the	place;	
no	codes	were	good	at	both	
68%	and	95%	points	

20 Dahlen et al.

Fig. 13.— Top panel: distribution of difference in photometric redshifts for close pairs (black line) and random pairs (red line). Bottom
panel: Overdensity of galaxy pairs with similar photometric redshifts after subtracting the random pair distribution. The red solid line is a
Gaussian fit to the data.

Table 5

Error measurement accuracies for the H-band and the z-band selected catalogs.

Code WFC3 H-selected ACS z-selected
conf. int: 68.3% 95.4% 68.3% 95.4%

2A 46.1 40.9
3B 81.6 92.8 76.1 89.1
4C 64.0 88.2 58.5 85.7
5D 2.5 4.2 2.9 5.8
6E 52.0 84.7 48.3 81.6
7C 65.0 87.3 62.9 89.1
8F 15.3 15.6 14.2 14.7
9G 16.3 44.1 15.0 39.6
11H 35.2 54.0a 30.9 46.9a

12I 88.7 96.7 80.1 96.3
13C 52.0 72.7 35.7 51.0

Note. — a This is the result for the 90% confidence interval. The table shows the fraction of galaxies with known spectroscopic redshifts
that falls inside the 68.3% and 95.4% confidence intervals calculated by the different photometric redshift codes. A number significantly lower
than 68% in the 68.3% column indicates that errors are underestimated, and vice versa.
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Dahlen	et	al.	2013

Many	people	assume	photo-z	codes	provide	a	staLsLcal	PDF	for	the	
redshiM	of	each	object...	that	is	not	currently	the	case
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Figure 4. The stacked p(z) produced by each photo-z code (N̂(z), red) compared to the spectroscopic redshift

distribution (N 0(z), blue). Varying levels of small-scale structure are seen in the codes. N 0(z) is smoothed using a

single bandwidth chosen via Scott’s rule for all codes.

Figure 5. A visual representation of the Kolmogorov-Smirnoff (KS, blue diamond), Cramer-von Mises (CvM, black

star), and Anderson-Darling (AD, red asterisk) statistics for the N̂(z) distributions. The statistics are correlated,

the codes with the lowest KS statistics tend to have the lowest CvM and AD statistics. CMNN performs markedly

better than the others in reconstructing the overall N(z) distribution, while SkyNet scores poorly due to an overall

bias in its redshift predictions.

c� 0000 RAS, MNRAS 000, 000–000

• Many	dark	energy	probes	use	
per-object	redshiM	probability	
distribuLon	funcLon	(p(z))	
informaLon	

• Schmidt,	Malz	et	al.	2019:	
TesLng	a	dozen	photo-z	codes	
with	large,	representaLve	
training	sets,	and	full	template	
knowledge	and	priors	passed	
to	template-based	algorithms	

• SubstanLal	variaLon	in	
stacked	p(z)	among	algorithms	
(though	talk	to	Alex	Malz	
about	why	you	shouldn't	do	
that	for	science!)	

S.	Schmidt

Many	people	assume	photo-z	codes	provide	a	staLsLcal	PDF	for	the	
redshiM	of	each	object...	that	is	not	currently	the	case



• Even	when	given	perfect	
training	sets	and	
template	knowledge,	
codes	sLll	fail	to	yield	p(z)	
which	meet	the	staLsLcal	
definiLon	of	a	probability	
distribuLon	(assessed	via	
Q-Q	staLsLcs	and	
Probability	Integral	
Transform	[PIT])	
• Except	for	degenerate	

'TrainZ'	algorithm	
that	just	uses	input	z	
distribuLon	as	p(z):	
gives	bad	predicLons	
for	individual	objects

S.	Schmidt
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Figure 2. Summary plots for all eleven photo-z codes illustrating performance for the interim posterior statistics.

The top panel of each pair shows both the Quantile-Quantile (QQ) plot (red) and the histogram of PIT values

(blue). The desired behavior is a QQ plot that matches the diagonal dashed line, and a PIT histogram that matches

a uniform distribution matching the thin horizontal black line. The bottom panel of each pair shows the difference

between the QQ quantile and the diagonal, illustrating departure from the desired performance. Histograms with

an overabundance of PIT values at the centre of the distribution indicate p(z) distributions that are overly broad,

while an excess of values at the extrema indicate p(z) distributions that are overly narrow. Values of PIT=0 and

PIT=1 indicate “catastrophic failures” where the true redshift is completely outside the support of p(z). Asymmetric

features are indicative of systematic bias in the redshift predictions. A variety of behaviors are evident, and specific

details are discussed in the text.

tions and limits on storage resources may be con-1256

sidered in future work. We will discuss this further
in Section 6.1258

Fig. 2 shows both the quantile-quantile plots
(red) and the histogram of PIT values (blue) sum-1260

marizing the results from each photo-z code. The
red line shows the measured quantiles, while the1262

black diagonal represents the ideal QQ values if
the distribution were perfectly reproduced. A sec-1264

ond panel below the main panel for each code

shows the difference between Qdata and Qtheory,1266

i. e. the departure from the diagonal, for clarity.
Biases and trends in whether the average width1268

of the p(z) values being over/under-predicted are
evident. An overall bias where the predicted red-1270

shift is systematically low manifests as the mea-
sured QQ value falling above the diagonal, as is1272

the case for BPZ and EAZY, while a system-
atic overprediction shows up as the measured QQ1274

value falling below the diagonal, as seen in TPZ. In
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Many	people	assume	photo-z	codes	provide	a	staLsLcal	PDF	for	the	
redshiM	of	each	object...	that	is	not	currently	the	case



Codes	that	have	good	performance	when	assessed	by	spectroscopic	
redshiMs	can	disagree	greatly	even	when	applied	to	the	same	data

• Kodra	et	al.	2019:	compares	predicLons	of	CANDELS	codes	in	
space	of	p(z	|	H):	a	test	that	requires	no	spectroscopy

data arrays (logspace z): GOODS-S

Figure : Linear color scale, excluded objects: 417

• Disagreement	on	where	
there	are	redshiM	
spikes	

• Priors	have	huge	effect	
at	low	z	(non-
monotonic	behavior)	

• Different	effecLve	
smoothings	

• The	performance	of	
these	codes	for	zpeak	
isn't	all	that	
different.	.	.	

D.	Kodra



luminosity functions (z = 1.5): GOODS-S [median (3,3)]

Figure : slice of z = 1.5

• This	can	have	large	(factor	of	few)	effects	on	the	inferred	number	
of	objects	at	a	given	redshiM

D.	Kodra

Codes	that	have	good	performance	when	assessed	by	spectroscopic	
redshiMs	can	disagree	greatly	even	when	applied	to	the	same	data



Spectroscopic	samples	can	be	used	for	training	
photo-z	algorithms,	making	them	be=er

Zhan 2006

• Training:	opLmizaLon	of	
algorithms	using	sets	of	
objects	with	spectroscopic	
redshiM	measurements	

• Basis	of	all	machine	learning	
algorithms	(including	SOM),	
but	useful	for	template	
methods	too	

• Be=er	training	shrinks	
photo-z	errors	for	individual	
objects:	training	improves	
photo-z's,	makes	them	
be2er

Benitez et al. 2009

– Training	datasets	will	contribute	to	calibraLon	of	photo-z's.		
~Perfect	training	sets	can	solve	calibraLon	needs.



Improved	photometric	redshiM	training	can	increase	the	science	from	
imaging	experiments	like	LSST

• Smaller	photo-z	errors	from	
be=er-trained	algorithms	using	
representaLve	samples	of	
galaxies	with	spectroscopic	
redshiMs	can	improve	dark	energy	
constraints,	especially	for	BAO	
and	clusters	

Zhan 2006

• LSST	system-limited	photo-z	accuracy	is	𝛔z~0.02-0.025(1+z)	(vs.	
𝛔z~0.05(1+z)	in	similar	samples	today):	difference	is	knowledge	of	
templates/intrinsic	galaxy	spectra	

• Perfect	training	set	would	increase	LSST	DETF	FoM	by	at	least	40%

Perfect 
Training

Today's
Training



Based	on	past	experience,	our	training	sets	may	be	
systemaLcally	incomplete

• In	exisLng	deep	samples,	a	significant	
fracLon	(>20%)	of	faint	galaxies	fail	to	yield	
secure	spectroscopic	redshiMs	

• Spectral	features	must	be	outside	
wavelength	range	covered	or	be	weak	

• Broader	wavelength	coverage	from	new	
instruments	should	help,	but	how	much?	

• If	we	want	to	use	training	redshiMs	for	
calibraLon	(e.g.	KIDS	'Direct'	method),	need	
>99%	-	>99.9%	completeness	
• Long	exposure	Lmes	are	needed	to	
ensure	even	>75%	redshiM	success	rates	
for	upcoming	projects:	~180	hours	at	
Keck	to	achieve	DEEP2-like	S/N	at	i=25.3	
LSST	lensing	limit	

• See	http://adsabs.harvard.edu/abs/2015APh....
63...81N

Newman	et	al.	2015



Biggest	concern	about	training	photo-z's:	how	will	we	get	the	telescope	
access	for	the	faint	samples	LSST	+	WFIRST	need?

Updated	from	Newman	et	al.	2015,	Spectroscopic	Needs	for	Imaging	Dark	Energy	Experiments

Instrument / Telescope
Total time (years), >75% 
complete LSST sample

Total time (years), >90% 
complete LSST sample

4MOST 7.7 48.4
Mayall 4m / DESI 5.1 31.9
WHT / WEAVE 9.0 56.0
Magellan LASSI 1.8 11.2
Subaru/PFS 1.1 6.9
VLT/MOONS 4.0 25.0
Keck/Deimos 10.2 63.9
Keck/FOBOS 4.4 27.5
ESO SpecTel 0.66 4.1
MSE 0.60 3.7
GMT/MANIFEST + GMACS 0.42 2.6
GMT/MANIFEST + GMACS 0.75 4.7
TMT / WFOS 1.8 11.1
Fiber WFOS-pessimistic 0.36 2.2
Fiber WFOS-optimistic 0.14 0.87
E-ELT / MOSAIC Optical 0.60 3.7
E-ELT / MOSAIC NIR 1.2 7.4

+

v. A

v. B

Instrument / Telescope
Total time (years), >75% 
complete LSST sample

Total time (years), >90% 
complete LSST sample

4MOST 7.7 48.4
Mayall 4m / DESI 5.1 31.9
WHT / WEAVE 9.0 56.0
Magellan LASSI 1.8 11.2
Subaru/PFS 1.1 6.9
VLT/MOONS 4.0 25.0
Keck/Deimos 10.2 63.9
Keck/FOBOS 4.4 27.5
ESO SpecTel 0.66 4.1
MSE 0.60 3.7
GMT/MANIFEST + GMACS 0.42 2.6
GMT/MANIFEST + GMACS 0.75 4.7
TMT / WFOS 1.8 11.1
Fiber WFOS-pessimistic 0.36 2.2
Fiber WFOS-optimistic 0.14 0.87
E-ELT / MOSAIC Optical 0.60 3.7
E-ELT / MOSAIC NIR 1.2 7.4

+



Excellent	calibraLon	of	photo-z's	is	needed	or	else	
dark	energy	inference	will	be	wrong

• For	weak	lensing	and	
supernovae,	individual-object	
photo-z's	do	not	need	high	
precision,	but	the	calibraLon	
must	be	accurate		-	i.e.,	bias	
and	errors	need	to	be	
extremely	well-understood	or	
dark	energy	constraints	will	
be	off	

• Poor	training	causes	
increased	random	errors;	
poor	calibraLon	causes	
systemaLc	errors

– uncertainty	in	bias,	σ(δz)=	σ(<zp	–zs>),	and	in	sca=er,	σ(σz)=	σ(RMS(zp	–zs)),	must	both	
be	<~0.002(1+z)	in	each	bin	for	Stage	IV	surveys.		CalibraLon	may	be	done	via	cross-
correlaLon	methods	using	DESI/4MOST	redshiMs	(Newman	2008)

Newman et al. 2015



For	direct	calibraLon,	even	with	100%	complete	samples,	
current	false-z	rates	can	compromise	calibraLon	accuracy

Figure based on simulated redshift distributions for 
ANNz-defined DES bins in mock catalog from Huan Lin, 
UCL & U Chicago, provided by Jim Annis

• Only	the	highest-confidence	
redshiMs	should	be	useful	
for	precision	calibraLon:	
lowers	spectroscopic	
completeness	further	when	
restrict	to	only	the	best	

• EsLmates	of	width	of	
distribuLon	are	parLcularly	
sensiLve	to	outliers:		

• For	a	σ=0.1	sample,	one	
Δz=1	outlier	in	a	
thousand	redshiMs	biases	
recovered	σ	by	0.005!	
(0.001	effect	on	mean	z)

Approx 
LSST Req't



If	we	restrict	to	the	highest-confidence	redshiMs,	much	
more	of	color	space	is	untrained

• Grey	regions:	cells	in	self-organized	maps	of	galaxy	color	space	that	
are	not	constrained	by	spectroscopic	redshiMs	10

Fig. 6.— Left: The median spectroscopic redshift of galaxies associating with each SOM cell, using only very high confidence (∼100%)
redshifts from the COSMOS master spectroscopic catalog (Salvato et al., in prep). The redshifts come from a variety of surveys that have
targeted the COSMOS field; see text for details. Gray regions correspond to parts of galaxy color space for which no high-confidence
spectroscopic redshifts currently exist. These regions will be of interest for training and calibration campaigns. Right: The same figure,
but including all redshifts above !95% confidence from the COSMOS spectroscopic catalog. Clearly, more of the color space is filled in
when the quality requirement is relaxed, but nevertheless large regions of parameter space remain unexplored.

The preceding analysis treats the photo-z calibration
as a stratified sampling problem, in which the overall
statistics of a population are inferred through targeted
sampling from relatively homogeneous subpopulations.
The gain in statistical precision from using Equation (10)
to estimate ⟨z⟩ can be attributed to the systematic way
in which the full color space is sampled, relative to blind
direct sampling. However, stratified sampling will only
outperform random sampling in the case that the sub-
populations being sampled do, in fact, have lower disper-
sion than the overall distribution–i.e., in the case that the
Pi(z) distributions for the color cells have lower redshift
dispersion than the N(z) distribution of all the galaxies
in a tomographic bin.

6.2. Simulating different sampling strategies

Now we attempt to more realistically estimate the
spectroscopic coverage needed to achieve the requirement
in our knowledge of ⟨z⟩. To begin, we assume that the
cell redshift PDFs from Le Phare are reasonably accu-
rate, and can be taken to represent the true Pi(z) distri-
butions for galaxies in each color cell. (This assumption
is, of course, far from certain, and simply serves as a
first approximation). With the known occupation den-

sity of cells of the map (Figure 3), we can then use Equa-
tion (8) to generate realistic N(z) distributions for differ-
ent tomographic bins. For this illustration, we break the
map up into photo-z-derived tomographic bins of width
∆z = 0.2 over 0 < z < 2 (although Euclid will most
likely use somewhat different bins in practice). An ex-
ample of one of the N(z) distributions modeled in this
way is shown in Figure 8.
The uncertainty in the estimated ⟨z⟩ of these N(z) dis-

tributions can then be tested for different spectroscopic
sampling strategies through Monte Carlo simulations, in
which spectroscopy is simulated by randomly drawing
from the Pi(z) distributions. (Alternatively, given our
knowledge of the individual σ⟨zi⟩ uncertainties, Equa-
tion (11) can be used directly. In fact, the results were
checked in both ways and found to be in agreement).
The results of three possible sampling strategies are

given in Table 1. The simplest strategy tested (“Strategy
1”) is to obtain one spectrum per color cell in order to
estimate the cell mean redshifts. Equation (10) is then
used to compute the overall mean of the tomographic
bin. We expect to meet the Euclid requirement, ∆⟨z⟩ ≤
0.002(1+⟨z⟩), for 3/10 bins (and come close in the others)
with this approach, which would require ∼11k spectra in

Masters	et	al.	2015
cells with <1% failure rate z's with <5% failure rate z's



An	addiLonal	issue:	some	photo-z/spec-z	outliers	are	
physical

Zhou,	Cooper,	JN	et	al.	2019,	in	prep.

• A	few	percent	of	DEEP2	
spectroscopic	targets	
correspond	to	mulLple	galaxies	
when	you	look	at	HST	catalogs	

• 1%	of	DEEP2	objects	show	
spectral	features	from	mulLple	
redshiMs	

• Can	idenLfy	many	but	NOT	all	
of	these	blends	with	space-
based	imaging	



• A	few	percent	of	DEEP2	
spectroscopic	targets	
correspond	to	mulLple	galaxies	
when	you	look	at	HST	catalogs	

• 1%	of	DEEP2	objects	show	
spectral	features	from	mulLple	
redshiMs	

• Can	idenLfy	many	but	NOT	all	
of	these	blends	with	space-
based	imaging	

Newman	et	al.	2013
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physical



If	spectroscopy	proves	incomplete,	calibraLon	will	probably	
need	to	come	from	cross-correlaLon	methods...

•	Galaxies	of	all	types	cluster	
together:	trace	same	dark	ma=er	
distribuLon		

•	Enables	reconstrucLon	of	z	
distribuLons	via	spectroscopic/
photometric	cross-correlaLons	
(Newman	2008)	

•	For	LSST	calibraLon,	>500	degrees	
of	overlap	with	DESI-like	survey	
would	meet	LSST	science	
requirements	(>4000	sq	deg	of	
overlap	expected)		

•...	IF	LSST	data	is	uniform	(aMer	
calibraLon),	as	DESI	is	in	North	

Snowmass	white	paper:	Spectroscopic	
Needs	for	Imaging	DE	Experiments	

(Newman	et	al.	2015,	h=p://arxiv.org/abs/
1309.5388)



Biggest	concern:	disentangling	cross-correlaLons	from	
clustering	and	lensing	magnificaLon

•	Black:	cross-correlaLons	
between	photo-z	objects	(z=0.75	
Gaussian)	and	spectroscopic	
sample	as	a	funcLon	of	z	

•	Blue:	observed	cross-correlaLon	
due	to	spectroscopic	objects	
lensing	photometric	ones	

•	Red:	observed	cross-correlaLon	
due	to	photometric	objects	
lensing	spectroscopic	ones	

•	Weak/CMB	lensing	could	help	us	
predict	the	red	curves	 Daniel Matthews Ph. D. 

thesis, 2014



Note:	even	for	100%	complete	samples,	current	
false-z	rates	would	be	a	problem

Based on simulated redshift 
distributions for ANNz-defined DES 
bins in mock catalog from Huan Lin, 
UCL & U Chicago, provided by Jim 
Annis

• Only	the	highest-
confidence	redshiMs	
should	be	useful	for	
precision	calibraLon:	
lowers	spectroscopic	
completeness	further	
when	restrict	to	only	the	
best	

• A	major	reason	why	
ge|ng	highly	secure	
redshiMs	is	important 

Approx LSST 

Req't



Biggest	concern:	disentangling	cross-correlaLons	from	
clustering	and	lensing	magnificaLon

Daniel Matthews Ph. D. 
thesis, 2014

The KiDS collaboration: KiDS+VIKING-450: Cosmic shear tomography with optical+infrared data

Fig. C.1. Similar to Fig. 1 showing the fiducial redshift distributions and also some alternative n(z) estimates. The red lines and their confidence
regions correspond to the weighted direct calibration technique (DIR, Sect. 3.2), blue corresponds to a smoothed version of the DIR method
(sDIR, Appendix C.1), and green shows the small-scale clustering-z measurements (CC, Appendix C.2) after correction for the spectroscopic bias
but before fitting with a Gaussian mixture model and correction for the photometric bias (the latter being negligible). The clustering-z n(z) as
estimated with the optimal-quadratic-estimator (OQE, Appendix C.3) out to z < 0.9 are shown in purple. Note that the normalisation of the green
CC estimate is somewhat ambiguous due to noise and the resulting negative amplitudes. The purple OQE estimates have been normalised to the
same area as the CC estimates for the redshift range z < 0.9. We also include the DIR n(z) that result when the combined spec-z calibration sample
is replaced by the COSMOS-2015 photo-z catalogue (orange; shown without uncertainties).

Fig. C.2. Illustration of the sDIR method. The blue line represents the
unweighted spectroscopic redshift distribution of the calibration sam-
ple. The red line is the DIR estimate of the redshift distribution of the
full lensing catalogue, nDIR,all(z). The black line in the upper panel shows
a parametric fit to the red line and the lower panel shows the ratio of this
fitted function to the blue line, which is a first guess of the smoothing
weight.

Fig. C.3. Refinement of the smoothing weight for each calibration ob-
ject. The blue data points represent the initial guess of the smoothing
weights, wi(z), that just depend on redshift (equivalent to the lower panel
of Fig. C.2) while the green data points represent wp,i, which is the ratio
of wi and the average hwii of the wj of the k nearest neighbours around
an object i.

3. Define a weight function as
w(z) = nsmooth,all(z)/nDIR,all(z) (solid line in bottom panel of
Fig. C.2 and blue data points in Fig. C.3).

Article number, page 25 of 31

Hildebrandt et al. 2018



Note:	even	for	100%	complete	samples,	current	
false-z	rates	would	be	a	problem

Based on simulated redshift 
distributions for ANNz-defined DES 
bins in mock catalog from Huan Lin, 
UCL & U Chicago, provided by Jim 
Annis

• Only	the	highest-
confidence	redshiMs	
should	be	useful	for	
precision	calibraLon:	
lowers	spectroscopic	
completeness	further	
when	restrict	to	only	the	
best	

• A	major	reason	why	
ge|ng	highly	secure	
redshiMs	is	important 

Approx LSST 

Req't



What	might	an	ideal	photo-z	algorithm	look	like?

• What	might	an	ideal	LSST	photo-z	algorithm	for	the	next	decade	look	
like?	

• Trained	with	>30,000	spectra	spanning	range	of	photometric	objects	

• Develops	priors	&	tweaks	templates	via	hierarchical	Bayesian	
hyperparameters	

• Incorporates	variaLons	in	effecLve	filter	wavelengths	due	to	
observaLonal	condiLons:	requires	applying	algorithm	to	O(1000)	
measurements	instead	of	O(6)	

• Incorporates	AGN	classificaLon	and	AGN	photo-z	determinaLon:	
colors	are	not	constant	with	Lme	for	many	objects!	

• Want	algorithms	to	be	fast:	create	ML-based	emulators	for	template	
photo-z's?	

• For	bright	objects,	may	also	be	useful	to	compare	template	to	ML	
techniques	to	idenLfy	potenLal	outliers	(different	failure	modes)



Conclusions

• Current	codes	appear	sufficient	to	meet	LSST	requirements,	but	are	
not	opLmal.		Be=er	photo-z's	would	increase	the	value	of	LSST.	

• Don't	assume	that	photo-z	algorithms	will	give	you	PDFs	that	meet	
the	staLsLcal	definiLon	

• Don't	assume	that	we	will	get	LSST/WFIRST	depth	photo-z	training	
sets	without	broad	community	support	to	make	that	happen	

• Don't	assume	that	those	training	samples	will	definitely	be	
complete	enough	to	use	for	calibraLon	

• Don't	assume	that	all	your	spectroscopic	redshiMs	will	be	correct	
• Showing	false-z	rates	are	low	enough	for	calibraLon	is	

expensive...	can't	use	the	same	redshiMs	to	select	good	regions	
of	color	space	and	to	demonstrate	that	failure	rates	are	small	

• Don't	assume	that	you	can	ignore	magnificaLon	signal	in	cross-
correlaLon	photo-z	calibraLon	(remove	iteraLvely?)



Requirements	for	photometric	redshiM	training	for	
LSST

• Need	highly-secure	spectroscopic	redshiMs	
for	20k-30k	galaxies	sampling	full	range	of	
galaxy	colors,	magnitudes,	and	redshiMs	

• Newman	et	al.	2015,	Spectroscopic	Needs	
for	Imaging	Dark	Energy	Experiments,	
presents	a	baseline	scenario:	
• >30,000	galaxies	down	to	LSST	weak	
lensing	limiLng	magnitude	(i~25.3)	

• 15	widely-separated	fields	at	least	20	
arcmin	diameter	to	allow	sample/cosmic	
variance	to	be	miLgated	&	quanLfied		

• Equal	cosmic	variance	to	Euclid	C3R2	
plan	but	much	lower	sky	area	

• Long	exposure	Lmes	are	needed	to	
ensure	>75%	redshiM	success	rates:	>100	
hours	at	Keck	to	achieve	DEEP2-like	S/N	
at	i=25.3	

• See	http://adsabs.harvard.edu/abs/2015APh....63...81N
Newman	et	al.	2015



Summary	of	(some!)	potential	instruments	for	photo-z	training

Instrument / Telescope Collecting Area (sq. m) Field area (sq. deg.) Multiplex
4MOST 10.7 4.000 1,400
Mayall 4m / DESI 11.4 7.083 5,000
WHT / WEAVE 13.0 3.139 1,000
Magellan LASSI 32.4 1.766 5,000
Subaru / PFS 53.0 1.250 2,400
VLT / MOONS 58.2 0.139 500
Keck / DEIMOS 76.0 0.015 150
FOBOS 76.0 0.087 500
ESO SpecTel 87.9 4.9 3,333
MSE 97.6 1.766 3,249
GMT/MANIFEST + GMACS 368 0.087 760
GMT/MANIFEST + GMACS 368 0.087 420
TMT / WFOS 655 0.011 100
Fiber WFOS-pessimistic 655 0.022 1,000
Fiber WFOS-optimistic 655 0.056 2,000
E-ELT / Mosaic Optical 978 0.009 200
E-ELT / MOSAIC NIR 978 0.009 100

Updated	from	Newman	et	al.	2015,	Spectroscopic	Needs	for	Imaging	Dark	Energy	Experiments

v. A

v. B



Dark	Lme	(with	1/3	losses	for	weather	+	overheads)	
required	for	each	instrument

Updated	from	Newman	et	al.	2015,	Spectroscopic	Needs	for	Imaging	Dark	Energy	Experiments

Instrument / Telescope
Total time (years), >75% 
complete LSST sample

Total time (years), >90% 
complete LSST sample

4MOST 7.7 48.4
Mayall 4m / DESI 5.1 31.9
WHT / WEAVE 9.0 56.0
Magellan LASSI 1.8 11.2
Subaru/PFS 1.1 6.9
VLT/MOONS 4.0 25.0
Keck/Deimos 10.2 63.9
Keck/FOBOS 4.4 27.5
ESO SpecTel 0.66 4.1
MSE 0.60 3.7
GMT/MANIFEST + GMACS 0.42 2.6
GMT/MANIFEST + GMACS 0.75 4.7
TMT / WFOS 1.8 11.1
Fiber WFOS-pessimistic 0.36 2.2
Fiber WFOS-optimistic 0.14 0.87
E-ELT / MOSAIC Optical 0.60 3.7
E-ELT / MOSAIC NIR 1.2 7.4

+ +

v. A

v. B



Open	issues:	template-based	and	training-based	methods	
have	different	failure	modes	-	how	best	to	combine?

EAZY	(template	code,	untuned) Random	Forest	Regression

Zhou,	JN	et	al.	2016,	in	prep.

• IdenLfy	potenLal	outliers	from	discrepant	results?



Open	issues:	Combining	PDF	results	from	mulLple	codes

• Dahlen	et	al.	found	that	medians	
of	point	esLmates	from	mulLple	
codes	(★'s)	have	smaller	sca=er	
(relaLve	to	spec-z)	than	any	
individual	code	

• All	codes	are	run	on	the	same	
data!		Current	codes	do	not	
make	opLmal	use	of	available	
informaLon...

Results'from'CANDELS'Photo5z'Test''
Results'ACS5z'and'WFC35H'selected'

Rms'vs.'outlier'frac9on'for'ACS5z'and'WFC35H'selected'catalogs.'
Red'dots:'codes'3,'6,'7,'11,'13'
Black'star:'median(all)'
Red'star:'median(3,'6,'7,'11,'13)'
'

Dahlen	et	al.	2013



• Dahlen	et	al.	presented	a	hierarchical	Bayesian	combinaLon	
method	(cf.	Press	&	Kochanek,	Lang	&	Hogg,	etc.)	

• Izbicki	&	Lee	2016	use	weighted	combinaLons	of	codes	
• Kodra	et	al.	(in	prep)	invesLgates	using	PDF	that	minimizes	total	

Fréchet	distance	to	remaining	PDFs:	analogous	to	median	

Ways to combine codes: MFD

Minimum Fréchet Distance: Measure of dissimilarity between two
curves.(Eiter T., Mannila H., Computing Discrete Fréchet Distance,
1994)

�P(zi ) = P1(zi )� P2(zi ), FDabs =
X

i

|�P(zi )|, FDsqr =
X

i

[�P(zi )]
2
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Open	issues:	Combining	PDF	results	from	mulLple	codes
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Example of combining codes.
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Open	issues:	Storing	p(z,α)

• Carrasco-Kind	&	Brunner	2014	achieved	strong	compression	of	
photo-z	PDFs	using	sparse	representaLon	and	well-chosen	basis	set	

• For	many	LSST	applicaLons,	want	2+-dimensional	PDFs	
• Can	suitably	sparse	(<few	hundred	#s)	representaLons	be	

achieved?		
• Are	samples	from	PDFs	OK	for	all	science	cases?Sparse representation of photo-z PDFs 5

Figure 3. Di↵erent normalized ||dj ||2 = 1 Voigt profile basis func-
tions with the same mean, µ = 0.3, and sigma, � = 0.01, for di↵erent
values of �, which ranges from 0 (blue) to 1� (red). Note that for
� = 0, we recover the standard Gaussian distribution. In a full dic-
tionary, we create these profiles over the entire redshift range of the
galaxy sample for di↵erent values of �.

One of the primary advantages of this method is that these
dictionary entries are composed of analytic functions that can
be combined with other functional forms. There are no re-
strictions, other than computational time, on how large of a
dictionary we can use, as there is no requirement for the dictio-
nary to be permanently stored. Furthermore, a photo-z PDF
can be restored even without reconstructing the dictionary, as
long as the indices and coe�cients are e�ciently stored.

We select Nµ Gaussian functions, whose mean values span
the redshift range of our galaxy sample, which has a redshift
resolution �z. Thus, we can compute:

Nµ =

⇠
�z
�z

⇡
(7)

where �z = z2 � z1 and z2 and z1 are, respectively, the upper
and lower limits of the redshift range spanned by our galaxy
sample. We select, at each Nµ location, N� values for the stan-
dard deviation that linearly span the range from a minimum
value of �min to a maximum value �max. The minimum value
is selected in such a way that we will approximately have a
single Gaussian that fills a single redshift bin of width �z. In
practice, a Gaussian vanishes at approximately 3� from the
mean; therefore, we can select �1 = �z/6.

On the other hand, we select the broadest basis function
to approximately cover half of the full redshift range �z at
each position; therefore, we select �max = �z/12. Although
the extreme basis functions are not frequently used, they en-
sure that we cover all possibilities. Finally, we set the resolu-
tion between di↵erent values of � to be �z/2 in order to make
sure the di↵erence between two consecutive Gaussian basis
functions is on the order of �z. Setting �� = �max � �min we
have that N� is given by:

N� =

⇠
2��
�z

⇡
(8)

which can be simplified to

N� =

⇠
�z
6�z

� 1
3

⇡
⇡ Nµ

6
(9)

Figure 4. The representation of an original photo-z PDF (green)
given by three techniques: multi-Gaussian (blue), single Gaussian
(blue dashed line), and sparse basis representation (red). The inset
panel shows the final bases (in black) used to represent the photo-z
PDF while the recovered distribution is shown in red.

As some photo-z PDFs have extended wings, we also gen-
erate N� basis functions for each Gaussian basis function with
extended profiles by using a Voigt profile. Voigt profiles are
widely used in spectral line fitting, and are defined as the con-
volution between a Gaussian distribution and a Lorentzian
distribution. A Voigt profile can be written as the real part of
the Faddeeva function (Abramowitz & Stegun 1972):

V (x;�, �) =
1

�
p
2⇡

Re
h
e�z2 (1� erf(�iz))

i
(10)

where erf(�iz) is the complex error function. z = (x�µ)+i�

�
p
2

is
a complex variable, where µ is the center of the function, � is
the standard deviation from the Gaussian, and � determines
the strength of the extended wings and is a parameter from the
Lorentz distribution. As a result, if � = 0, we have a Gaussian
distribution with parameters µ and �.

We present examples of di↵erent Voigt profiles in Figure 3
given a fixed µ = 0.3 and � = 0.01, but with � varying from
zero (Gaussian) to one �. We do not, however, select pure
Lorentzian profiles, as they produce distributions that are too
extended to be practical for this analysis. In practice, we find
that an upper limit of � = 0.5� is su�cient to accurately
model any extended wings. Thus, including the Gaussian case
with � = 0, we fix N� = 6 and allow � to vary linearly from
0 to 0.5� in steps of 0.1�. Thus, in the most simple case we
would only consider basis functions with � = 0 and N� = 1.

In total, the dictionary is composed of Ntotal = Nµ⇥N�⇥
N� bases, which all have `2 norm equal to unity. By using our
previous definitions, we have the following approximate rule
of thumb for creating a dictionary:

Ntotal ⇡ N2
µ =

✓
�z
�z

◆2

(11)

Although this is an estimate, it provides a very good approx-
imation to the total number of bases needed given the reso-
lution of the original photo-z PDF. Additional bases are not
necessary and little is gained by using a finer resolution. Photo-
z codes generally provide photo-z PDFs by using roughly two
to three hundred points. According to Equation 11, we notice
that for 250 sample points in a PDF, we would need approx-

c� 2014 RAS, MNRAS 000, 1–12
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Figure 6. The median of the residual distribution as a function of
the number of fixed bases used to reconstruct each galaxy’s photo-z
PDF when using the sparse representation technique (blue dots).
For reference, the median of the multi-Gaussian residual distribu-
tion (red triangle) and the median of the sparse representation with
variable number of bases (black star) are also shown, where on av-
erage both techniques need fourteen points per photo-z PDF.

which corresponds to a median reconstruction of all one mil-
lion test galaxies at 99.82% at a resolution of �z = 0.011. Since
the original photo-z PDF contained two hundred points, this
implies a compression ratio of ten.

Clearly these results will vary depending on the galaxy
sample. In particular, the data we use in this analysis are from
the CFHTLenS, which is a representative deep survey with
galaxies that have photo-z PDFs with up to twelve peaks. The
performance of the sparse representation also depends directly
on the number of peaks in each PDF when we globally fix
the number of bases. In Figure 7, we display the median of
the residual distribution as a function of the number of peaks
in the photo-z PDF, with di↵erent curves corresponding to
di↵erent numbers of globally fixed bases. For a fixed number
of bases, the residual increases as the number of peaks increase.
Thus, a galaxy sample that consistently has a low number of
peaks will have increased performance when using a smaller
number of bases.

For example, we achieve a 99.5% reconstruction by using
only ten values for galaxies with four or fewer peaks. In Car-
rasco Kind & Brunner (2014b), we discussed the relationship
between the number of peaks and the shape of the photo-z
PDFs with the outlier fraction. With this in mind, we could
reduce the number of bases used to reconstruct a sample and
flag those with a high number of peaks, where the reconstruc-
tion is less reliable, for further investigation. In fact, we achieve
a reconstruction of 99% for photo-z PDFs with three or fewer
peaks when using only five bases for the sparse representation.
This produces a compression ratio of forty when the original
photo-z PDF has two hundred points.

For comparison, we also show the fitting residuals for the
multi-Gaussian (black dashed line) and sparse representation
(black dashed-dotted lines) where the variable number of bases
matches the number of multi-Gaussians. The performance of
the multi-Gaussian fitting is less dependent on the number of
peaks simply because the number of parameters dynamically
changes for each photo-z PDF. Overall, the multi-Gaussian
performance is fairly consistent at around 0.005, even as we

Figure 7. The median of the residual distribution as a function of
the number of peaks in the photo-z PDF when using (solid color
lines) a di↵erent number of fixed bases in the sparse basis represen-
tation, (black dashed line) when using the multi-Gaussian fitting
technique, and (black dashed-dotted line) when using the sparse
representation when the number of bases is equivalent to the num-
ber of multi-Gaussians.

increase the number of peaks. The sparse representation with a
variable number of bases, on the other hand, is less dependent
on the number of peaks and has residuals that are nearly 50%
smaller than the multi-Gaussian fitting at an approximately
constant value of 0.003.

PDF Storage

In the previous section, we discussed how the sparse represen-
tation and the multi-Gaussian fitting can accurately represent
a photo-z PDF by using only a few dozen values with a re-
construction level of 99%. In the case of the multi-Gaussian
fitting, the number of parameters to be stored will depend on
the number of peaks in each individual PDF. As discussed
previously, we will have 3(Npk + 1) parameters, which are all
floating point numbers. For this dataset we found that the av-
erage number of values (or floating point parameters) required
is fourteen; but to store these data for all galaxies, we would
need to combine the results from di↵erent galaxies in order to
take advantage of the galaxies that require fewer values so that
we can also store those galaxies that require a larger number
of parameters. Varying the number of values to store galaxy
photo-z PDFs in this manner might not be practical, as it will
likely depend strongly on the archival and storage system while
also increasing the computational di�culty in dealing with a
varying number of parameters for di↵erent photo-z PDFs. The
practical solution would be to use thirty-nine fixed values (the
maximum required for this dataset) for all galaxies and store
them independently. This result is also true for the varying
sparse representation, which we have demonstrated has a bet-
ter performance in comparison to the multi-Gaussian when
representing a photo-z PDF.

On the other hand, requiring a fixed number of basis func-
tions per galaxy alleviates this issue and also has the additional
benefit that there is no need to pad with zeros since having
more points for single peaked galaxies simply provides a more
accurate representation. We have shown that by using ten to
twenty values we are able to produce a residual on the or-

c� 2014 RAS, MNRAS 000, 1–12

Carrasco-Kind	&	Brunner	2014



• Current	state	of	the	art:	Masters	et	al.	2015	
• Self-organized	map	of	galaxy	colors	 5

Fig. 1.— The 7-color self-organized map (SOM) generated from ∼131k galaxies from the COSMOS survey, selected to be representative
of the anticipated Euclid weak lensing sample. In the center is the 75 × 150 map itself, which encodes the empirical ugrizYJH spectral
energy distributions (SEDs) that appear in the data. The map is colored here by converting the H, i, and u band photometry of the cells to
analogous RGB values, while the brightness is scaled to reflect the average brightness of galaxies in different regions of color space. On the
sides we show examples of 8-band galaxy SEDs represented by particular cells, whose positions in the map are indicated with arrows. The
cell SEDs are shown as black squares. The actual SEDs (shifted to line up in i-band magnitude) of galaxies associated with the cells are
overlaid as green diamonds. Between 9 and 23 separate galaxy SEDs are plotted for each of the cells shown, but they are similar enough
that they are hard to differentiate on this figure. A key feature of the map is that it is topological, in the sense that nearby cells represent
objects with similar SEDs, as can be seen from the two example cells shown in the upper left. Note that the axes of the SOM do not
correspond to any physical quantity, but merely denote positions of cells within the map and are shown to ease comparison between figures.

the number of cells, the topology of the map, the num-
ber of training iterations, and the form and evolution of
the learning rate and neighborhood functions. Perhaps
most influential is the number of cells. The representa-
tive power of the map increases with more cells; however,
if too many cells are used the map will overfit the data,
modeling noise that does not reflect the true data dis-
tribution. Moreover, there is a significant computational
cost to increasing the number of cells. On the other hand,
if too few cells are used, individual cells will be forced
to represent larger volumes of color space, in which the
mapping of color to redshift is less well defined.
We explored a range of alternatives prior to settling on

the map shown throughout this work. A rectangular map
was chosen because this gives any principal component in
the data a preferred dimension along which to align. Our
general guideline in setting the number of cells was that
the map should have sufficient resolution such that the
individual cells map cleanly to redshift using standard
photo-z codes. With 11,250 cells, the map bins galaxies
into volumes, or “voxels”, of color space of comparable
size as the photometric error on the data, with the result
that variations within each color cell generally do not
result in significant change in photo-z estimates. As we
discuss in §6, the true spread in galaxy redshifts within
each color cell is an important quantity to understand

for the calibration of N(z).

4.2. Algorithm implementation

We implemented the SOM algorithm in C for computa-
tional efficiency. The number of computations required is
sizable and scales with both the total number of cells and
the number of training iterations. Optimizations are cer-
tainly possible, and may be necessary if this algorithm
is to be applied to much larger photometric datasets.
We initialized the values of the cell weight vectors with
random numbers drawn from a standard normal distribu-
tion. The number of training iterations used was 2×106,
as only minimal improvements in the map were observed
for larger numbers of iterations. At each iteration, a
random galaxy was selected (with replacement) from the
training sample to update the map.
We applied the algorithm based on seven galaxy colors:

u−g, g−r, r−i, i−z, z−Y , Y −J , and J−H , which are
analogous to the colors that will be measured by Euclid
and used for photo-z estimation. The errors in the colors
are computed as the quadrature error of the photometric
errors in the individual bands. If a training object has a
color that is not constrained due to bad photometry in
one or both of the relevant bands, we ignore that color in
the training iteration. Only the well-measured colors for
that object are used both to find the BMU and update

Open	issues:	OpLmizing	spectroscopic	targeLng

Masters	et	al.	2015



Open	issues:	OpLmizing	spectroscopic	targeLng

• PrioriLze	cells	with	few	redshiMs	for	spectroscopic	follow-up	
• Are	there	be=er	ways	to	do	this?	

10

Fig. 6.— Left: The median spectroscopic redshift of galaxies associating with each SOM cell, using only very high confidence (∼100%)
redshifts from the COSMOS master spectroscopic catalog (Salvato et al., in prep). The redshifts come from a variety of surveys that have
targeted the COSMOS field; see text for details. Gray regions correspond to parts of galaxy color space for which no high-confidence
spectroscopic redshifts currently exist. These regions will be of interest for training and calibration campaigns. Right: The same figure,
but including all redshifts above !95% confidence from the COSMOS spectroscopic catalog. Clearly, more of the color space is filled in
when the quality requirement is relaxed, but nevertheless large regions of parameter space remain unexplored.

The preceding analysis treats the photo-z calibration
as a stratified sampling problem, in which the overall
statistics of a population are inferred through targeted
sampling from relatively homogeneous subpopulations.
The gain in statistical precision from using Equation (10)
to estimate ⟨z⟩ can be attributed to the systematic way
in which the full color space is sampled, relative to blind
direct sampling. However, stratified sampling will only
outperform random sampling in the case that the sub-
populations being sampled do, in fact, have lower disper-
sion than the overall distribution–i.e., in the case that the
Pi(z) distributions for the color cells have lower redshift
dispersion than the N(z) distribution of all the galaxies
in a tomographic bin.

6.2. Simulating different sampling strategies

Now we attempt to more realistically estimate the
spectroscopic coverage needed to achieve the requirement
in our knowledge of ⟨z⟩. To begin, we assume that the
cell redshift PDFs from Le Phare are reasonably accu-
rate, and can be taken to represent the true Pi(z) distri-
butions for galaxies in each color cell. (This assumption
is, of course, far from certain, and simply serves as a
first approximation). With the known occupation den-

sity of cells of the map (Figure 3), we can then use Equa-
tion (8) to generate realistic N(z) distributions for differ-
ent tomographic bins. For this illustration, we break the
map up into photo-z-derived tomographic bins of width
∆z = 0.2 over 0 < z < 2 (although Euclid will most
likely use somewhat different bins in practice). An ex-
ample of one of the N(z) distributions modeled in this
way is shown in Figure 8.
The uncertainty in the estimated ⟨z⟩ of these N(z) dis-

tributions can then be tested for different spectroscopic
sampling strategies through Monte Carlo simulations, in
which spectroscopy is simulated by randomly drawing
from the Pi(z) distributions. (Alternatively, given our
knowledge of the individual σ⟨zi⟩ uncertainties, Equa-
tion (11) can be used directly. In fact, the results were
checked in both ways and found to be in agreement).
The results of three possible sampling strategies are

given in Table 1. The simplest strategy tested (“Strategy
1”) is to obtain one spectrum per color cell in order to
estimate the cell mean redshifts. Equation (10) is then
used to compute the overall mean of the tomographic
bin. We expect to meet the Euclid requirement, ∆⟨z⟩ ≤
0.002(1+⟨z⟩), for 3/10 bins (and come close in the others)
with this approach, which would require ∼11k spectra in

Masters	et	al.	2015



Spectroscopic	training	set	requirements

• Goal:	make	δz	and	σ(σz)	so	small	that	systemaLcs	are	subdominant 

• Many	esLmates	of	training	set	requirements	(Ma	et	al.	2006,	Bernstein	&	
Huterer	2009,	Hearin	et	al.	2010,	LSST	Science	Book,	etc.)	 

• General	consensus	that	roughly	20k-30k	extremely	faint	galaxy	spectra	
are	required	to	characterize: 

– Typical	zspec-zphot	error	distribuLon 

– Accurate	catastrophic	failure	rates	for	all	objects	with	zphot	<	2.5 

– Characterize	all	outlier	islands	in	zspec-zphot	plane	via	targeted	campaign	
(core	errors	easier	to	determine)  



What	qualiLes	do	we	desire	in	our	training	sets?

• SensiLve	spectroscopy	of	faint	objects	(to	i=25.3)	

-	Need	a	combinaLon	of	large	aperture	and	long	exposure	Lmes	from	the	
ground;	>20	Keck-nights	(=4	GMT-nights)	equivalent	per	target,	minimum 

• High	mulLplexing	

-	Obtaining	large	numbers	of	spectra	is	infeasible	without	it 

See	Newman	et	al.	2015,	Spectroscopic	Needs	for	Imaging	Dark	Energy	
Experiments,	for	details



What	qualiLes	do	we	desire	in	our	training	sets?

• Coverage	of	full	opLcal	
window	if	working	from	
the	ground	

-	Ideally,	from	below	4000	
Å	to	~1.5μm	

-	Require	mulLple	
features	for	secure	
redshiM	

Comparat et al. 2013, submitted
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Figure 6. Relative abundance of emission lines simulated vs. [Oii] flux. We
determine the relative abundance of emission lines at a given flux with the
[Oii] luminosity function at z ⌅ 1 measured by Zhu et al. (2009) on DEEP2.

The S NR is calculated with a Fisher matrix of the form given in
Eq. 9.

S NR = 1/
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4 RESULTS

4.1 Doublet detection and resolution at z ⌅ 1

The simulation contains ⌅ 15 ⇥ 106 simulated [Oii] lines sampling
the velocity dispersion, resolution, and flux range set in the above.

To statistically di⇥erentiate whether an observation of [Oii] is
identified as a doublet or a single emission line (SEL), given that
the numbers of degrees of freedom is high (35 < ndo f < 94), we
use �⌅2 = ⌅1/ndo f 1 � ⌅2/ndo f 2. A �⌅2 = 9 means the single line
emission model is ruled out at 3⇤ or with a 99.7% confidence level.
We compute the share of emission line with i < 24 (convolved by
the velocity dispersion distribution of Fig. 5 in black) detected as a
doublet at the 2 and 3 ⇤ confidence levels at redshift 1 as function
of the resolution for di⇥erent [Oii] flux detection limit, see Fig. 7.

The main trend is that the percentage of doublets increases as
a function of the resolution. In the regime of low [Oii] fluxes (be-
low the line 12), the gain is linear. It indicates we should push for
the highest resolution possible. For higher [Oii] fluxes, the marginal
increase of the doublet share is large for low resolutions and dimin-
ishes for higher resolution. This result advocates two strategies. For
a survey aiming only to observe the brightest [Oii] emitters (on Fig.
7), it is not necessary to aim for the highest resolution. R = 3300
is su⇤cient to obtain 90% of doublets. And for R > 3300, the
marginal cost of an extra percent of doublets decreases. For a sur-
vey aiming to observe all [Oii] emitters (MS-DESI line 10 on Fig.
7), it is necessary to push the resolution to its highest.

The DEEP 2 survey dealt with SEL using a neural network
(Kirby et al. 2007). They showed that given a fair spectroscopic
sample of an observed population with reliable redshifts, it is pos-
sible to infer correct redshifts to nearly 100% of the [Oii] SEL. The
H�, H⇥, and [Oiii] SEL cases are not as well handled by the neural
network with e⇤ciencies of ⌅ 90%, ⌅ 60%, and ⌅ 60% respec-
tively.

Figure 7. Share of doublets at the 3 and 2⇤ (confidence level of 99%, 95%
from top to bottom) vs. resolution for i < 24 doublets at z = 1 for di⇥erent
flux bins. Each line corresponds to a survey with a the flux detection limit
given on the right end of each line in units of 10�17erg cm�2 s�1. eBOSS
corresponds to the line 30 and MS-DESI to the line 10.

The combination of the two latter points shows it will be pos-
sible to derive robust [Oii] redshifts where [Oii] is the only emission
line available in the spectrograph, even if the fraction of 3⇤ doublet
detections is small.

4.2 Higher redshift, sky lines, completeness

The sky lines have an observed width of one resolution element,
therefore their width varies with the resolution. In the case of a
single sky line located on a doublet, it is not a problem to subtract
the sky line and obtain an accurate redshift. In the case of many
contiguous sky lines, it can cover completely a doublet and prevent
from getting any redshift in the zone or at a higher flux limit. To
quantify the impact of the sky lines obstruction as a function of
redshift, we simulate at various resolutions the observation of a sky
spectrum. The sky spectrum is taken from Hanuschik (2003).

At a given resolution, we convert the wavelength array of the
sky into a redshift array corresponding to the [Oii] redshift. We scan
the redshift array by steps of 0.0005 (it corresponds to the desired
precision of a spectroscopic redshift). At each step, we compare
the median value of the sky to the flux measured in the middle of
an [Oii] doublet with (where it is the lowest). If the median value
of the sky is greater than the value of the doublet, we consider we

c⇤ 2012 RAS, MNRAS 000, 1–8

What	qualiLes	do	we	desire	in	our	training	sets?

• Significant	resoluLon	
(R>~4000)	at	red	end	if	
working	from	the	ground	
- Allows	redshiMs	from	
[OII]	3727	Å	doublet	
alone,	key	at	z>1	

- Not	necessary	if	get	
mulLple	features	from	
deep	IR	coverage	

Comparat et al. 2013
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What	qualiLes	do	we	desire	in	our	training	sets?

• Field	diameters	>	~20	arcmin	
-	Need	to	span	several	correlaLon	lengths	for	accurate	clustering	
measurements	(key	for	galaxy	evoluLon	science	and	cross-correlaLon	
techniques)	
-	r0	~	5	h-1	Mpc	comoving		corresponds	to	~7.5	arcmin	at	z=1,	13	arcmin	at	
z=0.5

• Many	fields	

-	Minimizes	impact	of	sample/
cosmic	variance.			

-	e.g.,	Cunha	et	al.	(2012)	
esLmated	that	40-150	~0.1	deg2	
fields	are	needed	for	DES	for	
sample	variance	not	to	impact	
errors	(unless	we	get	clever) 

Cunha et al. 2012


