ry about when | worry about photo-z's

Jeffrey Newman, U. Pittsburgh / PITT-PACC




Many people assume photo-z codes provide a statistical PDF for the
redshift of each object... that is not currently the case

Dahlen et al. 2013 tested the

fraction of spectroscopic Code WFC3 H-selected
redshifts that are in the inner conf. int: 68.3% 95.4%
68% or inner 95% of their PDFs ?)‘g ;lgjé 09
for CANDELS photo-z's AC * 640 8.9
Coverage is all over the place; ZIE) . 522°50 84427
noocodes wc:re g?od at both - 65.0 7.3
68% and 95% points SF 15.3 15.6
9G 16.3 44.1
11H * 35.2 54.0¢
121 *  88.7 96.7
13C *  52.0 72.7

Dahlen et al. 2013



Many people assume photo-z codes provide a statistical PDF for the
redshift of each object... that is not currently the case

e Many dark energy probes use
per-object redshift probability

— zspec KDE sum —pKDEm —pKDEm — zspec KDE sum

distribution function (p(z)) 15 R Bama ——t
information Z
e Schmidt, Malz et al. 2019: /V\\/V\\\
Testing a dozen photo-z codes ~ —wmen — —aeoran  —oan  — ot
with large, representative -
training sets, and full template EMW\NN
knowledge and priors passed
to template-based algorithms |, —&iilin  Z&uln,  TEEET SERE
e Substantial variation in
stacked p(z) among algorithms
(though talk to Alex Malz oo 0s o s a0 as Lo 15 00 o5 M s a0 6s Lo i3

redshift redshift redshift redshift

about why you shouldn't do
that for science!)

S. Schmidt



Many people assume photo-z codes provide a statistical PDF for the
redshift of each object... that is not currently the case

e Even when given perfect
training sets and
template knowledge,
codes still fail to yield p(z)
which meet the statistical
definition of a probability
distribution (assessed via
Q-Q statistics and
Probability Integral
Transform [PIT])

e Except for degenerate
'TrainZ' algorithm
that just uses input z
distribution as p(z):
gives bad predictions
for individual objects
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Codes that have good performance when assessed by spectroscopic
redshifts can disagree greatly even when applied to the same data

e Kodra et al. 2019: compares predictions of CANDELS codes in
space of p(z | H): a test that requires no spectroscopy

e Disagreement on where . _.....
there are redshift )
spikes .

e Priors have huge effect ;
at low z (non- g
monotonic behavior) 1

e Different effective _
smoothings :

e The performance of
these codes for zpeak :
isn't all that oo I

) v
3 g 3

different. . .

D. Kodra



Codes that have good performance when assessed by spectroscopic
redshifts can disagree greatly even when applied to the same data

e This can have large (factor of few) effects on the inferred number
of objects at a given redshift

plot of luminosity functions, z = 1.50 corresponding to distance modulus mu = 45.23

— FHnkelstein
— Fontana
— Salvato
—  Wiklind
10%} Wuyts
=  FM (sqgr)
T
(=]
[T}
—
[
N
o
=
4]
=
E 102}
5]
-26 Y 22 ~20 ~18 ~16 —14 =) ~10

abs. mag = mag. H - dist. mod. = mag. H - 5*log(d_L / 10pc)

D. Kodra



Spectroscopic samples can be used for training
photo-z algorithms, making them better

e Training: optimization of
algorithms using sets of
objects with spectroscopic
redshift measurements

0.03(1+2z)

o,

e Basis of all machine learning
algorithms (including SOM),
but useful for template
methods too

=0.003(1+2z)

PAU o,

e Better training shrinks

Redshift space

‘:{ 'I:“{NK % .,"J' 5

photo-z errors for individual %\., S
objects: training improves
photo-z's, makes them
better

Benitez et al. 2009

— Training datasets will contribute to calibration of photo-z's.
~Perfect training sets can solve calibration needs.



Improved photometric redshift training can increase the science from

imaging experiments like LSST

e Smaller photo-z errors from
better-trained algorithms using
representative samples of
galaxies with spectroscopic
redshifts can improve dark energy
constraints, especially for BAO
and clusters

) x a(w,)

Q.

w

o

0.1

0.01

10-3

— — WL
BAO
—— IBAO + WL

Perfect T°°_'a¥'s
Training Training

W

| | I N N I I |

IIlIIIII

0.05
o,/(1+z)

e LSST system-limited photo-z accuracy is 6,~0.02-0.025(1+z) (vs.
0.~0.05(1+z) in similar samples today): difference is knowledge of

templates/intrinsic galaxy spectra

e Perfect training set would increase LSST DETF FoM by at least 40%

0.1
Zhan 2006



Based on past experience, our training sets may be
systematically incomplete

In existing deep samples, a significant
fraction (>20%) of faint galaxies fail to yield

secure spectroscopic redshifts o2 Fgpivateniglan frog, 4 nighfs@GML
Spectral features must be outside
wavelength range covered or be weak z 08
Broader wavelength coverage from new S 06
instruments should help, but how much? é

. . . z
If we want to use training redshifts for g O
calibration (e.g. KIDS 'Direct' method), need &

& 02 M DEEP?

>99% - >99.9% completeness zCOSMOS

. 0.0 :
- Long exposure times are needed to 18 19 20 21 22 23

ensure even >75% redshift success rates a
for upcoming projects: ~180 hours at
Keck to achieve DEEP2-like S/N at i=25.3

- See http://adsabs.harvard.edu/abs/2015APh....
63...81N




Biggest concern about training photo-z's: how will we get the telescope
access for the faint samples LSST + WFIRST need?

Total time (years), >75% Total time (years), >90%

Instrument / Telescope complete LSST sample complete LSST sample
AMOST 7.7 48.4
Mayall 4m / DESI 5.1 31.9
WHT / WEAVE 9.0 56.0
Magellan LASSI 1.8 11.2
Subaru/PFS 1.1 6.9
VLT /MOONS 4.0 25.0
Keck/Deimos 10.2 63.9
Keck/FOBOS 4.4 27.5
ESO SpecTel 0.66 4.1
MSE 0.60 3.7
GMT/MANIFEST + GMACS v. A 0.42 2.6
GMT/MANIFEST + GMACS v. B 0.75 4.7
TMT / WFOS 1.8 11.1
E-ELT / MOSAIC Optical O._Ei() 34_7
E-ELT / MOSAIC NIR 1.2 7.4

Updated from Newman et al. 2015, Spectroscopic Needs for Imaging Dark Energy Experiments



Excellent calibration of photo-z's is needed or else
dark energy inference will be wrong

¢ For weak lensing and
supernovae, individual-object
photo-z's do not need high 2.5

3.0

precision, but the calibration g
must be accurate -i.e., bias 2 20 /
and errors need to be 5
extremely well-understood or ~ ° 15 )
dark energy constraints will
be off 10—
e Poor training causes 0.0001 0.0010 0.0100 0.1000

Ao

z

increased random errors;
poor calibration causes
systematic errors

Newman et al. 2015

— uncertainty in bias, 0 (6 )= o(<zp -z >), and in scatter, 0(c )= c(RMS(zp —2_)), must both

be <~0.002(1+z) in each bin for Stage IV surveys. Calibration may be done via cross-
correlation methods using DESI/4MOST redshifts (Newman 2008)



For direct calibration, even with 100% complete samples,

current false-z rates can compromise calibration accuracy ‘ﬂDESC

e Only the highest-confidence
redshifts should be useful
for precision calibration:
lowers spectroscopic
completeness further when
restrict to only the best

e Estimates of width of
distribution are particularly
sensitive to outliers:

e For a0=0.1sample, one
Az=1 outlierin a
thousand redshifts biases
recovered o by 0.005!
(0.001 effect on mean 2)

Error in <z>

et

0010 . .
0.001 .
[ —— 100k calib. spectra

- - - 0.5% wrong

—— 2.75% wrong

—--= 5% wrong

1 | 1 l l 1 1 l 1 l 1 I | 1 l l | 1 1 I 1 | 1 I 1 1 l
0.0 0.2 04 0.6 0.8 1.0 1.2 14

Nominal mean z

Figure based on simulated redshift distributions for
ANNz-defined DES bins in mock catalog from Huan Lin,
UCL & U Chicago, provided by Jim Annis



If we restrict to the highest-confidence redshifts, much
more of color space is untrained

e Grey regions: cells in self-organized maps of galaxy color space that
are not constrained by spectroscopic redshifts

0 1 2 0 2 3 4 5 6
Median spec-z, high conﬂdence ~1 00/) redsh|fts Median spec z, confidence > 95/ redshﬁts
P4 .Mk il T T | | i F 1 ™ v ll,..“-‘ ‘- " - - : mi R

"-. -J.W.L'"’r = - - ':‘ ] L o =y - ok -

140 St ! E. e B L -y ol "
-' _. ; .~ N -
_- ! —

120 (— -

cells with <1% failure rate z's with <5% failure rate z's
Masters et al. 2015



An additional issue: some photo-z/spec-z outliers are
physical

ONMAD 2002209
e A few percent of DEEP2 30 (Az) >0.15(1 +2) outliers = 4.66%

spectroscopic targets I
correspond to multiple galaxies 25 R R ) ;
when you look at HST catalogs S o
2,0 yeeeeeeeeee o oo <y S A it S
* 1% of DEEP2 objects show ] P
spectral features from multiple 3 1sp @ oo gt
redshifts B - '; & .tf:’" = |
1-0,‘""f'f."'-"";fi;"’ii.‘ ‘:'/é',"’ “““““““““ I
e Can identify many but NOT all v S
of these blends with space- o.s-:::i;:,i""' J;:jf.".g'ﬁ; ,,,,,,,, e S—
based imaging ar i o | oners

0'8.0 0.5 1.0 1.5 2.0 2.5 3.0

Zhou, Cooper, JN et al. 2019, in prep.



An additional issue: some photo-z/spec-z outliers are

physical

e A few percent of DEEP2
spectroscopic targets

correspond to multiple galaxies
when you look at HST catalogs

1% of DEEP2 objects show

spectral features from multiple

redshifts

Can identify many but NOT all

of these blends with space-
based imaging

0.15

e
p—t
)

0.05

Fraction with multiple matches

0.00 L.

Newman et al. 2013




If spectroscopy proves incomplete, calibration will probably
need to come from cross-correlation methods...

W T [ T T T T T I T T T T T ]

e Galaxies of all types cluster 500 deg” ¢BOSS
| ®—= 3000 deg” DESI
together: trace same dark matter T 30K with 5.75% hadt e
distribution T —

e Enables reconstruction of z 0,010
distributions via spectroscopic/ :
photometric cross-correlations
(Newman 2008)

Error in <z>

e For LSST calibration, >500 degrees

of overlap with DESI-like survey

would meet LSST science 0.001 |
requirements (>4000 sq deg of e L
overlap expected) Hominsimean

Snowmass white paper: Spectroscopic
e... IF LSST data is uniform (after Needs for Imaging DE Experiments

calibration), as DESI is in North (Newman et al. 2015, http://arxiv.org/abs/
1309.5388)



\ I
Biggest concern: disentangling cross-correlations from ":;-;_..,_',',

clustering and lensing magnification — 2DESC
* Black: cross-correlations 0.5 T T
between photo-z objects (z=0.75 :
Gaussian) and spectroscopic 0.4
sample as a function of z % |
< 0.3}
¢ Blue: observed cross-correlation S |
S

due to spectroscopic objects

0.2}

lensing photometric ones 9§>

* Red: observed cross-correlation 0.1
due to photometric objects
lensing spectroscopic ones 0.0F

e Weak/CMB lensing could help us
predict the red curves

Daniel Matthews Ph. D.
thesis, 2014



Note: even for 100% complete samples, current
false-z rates would be a problem

e  Only the highest-
confidence redshifts el
should be useful for
precision calibration:
lowers spectroscopic
completeness further
when restrict to only the
best

0.010 - . B

Error in <z>

e A major reason why
getting highly secure
redshifts is important

0.001 .

—— 100Kk calib. spectra

) ) - - - 0.5% wron
Based on simulated redshift | — 2,75370 wroﬁg

distributions for ANNz-defined DES —--= 5% wrong
bins in mock catalog from Huan Lin, o b b e e e
UCL & U Chicago, provided by Jim 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Annis Nominal mean z




Biggest concern: disentangling cross-correlations from -
clustering and lensing magnification =2l

0.9<2z<1.2

DIR
. sDIR
C15

0.001 deg)

w( =

0 Oi5 1i0 115 §
Z Daniel Matthews Ph. D.
Hildebrandt et al. 2018 thesis, 2014



Note: even for 100% complete samples, current
false-z rates would be a problem

e  Only the highest-
confidence redshifts el
should be useful for
precision calibration:
lowers spectroscopic
completeness further
when restrict to only the
best

0.010 - . B

Error in <z>

e A major reason why
getting highly secure
redshifts is important

0.001 .

—— 100Kk calib. spectra

) ) - - - 0.5% wron
Based on simulated redshift | — 2,75370 wroﬁg

distributions for ANNz-defined DES —--= 5% wrong
bins in mock catalog from Huan Lin, o b b e e e
UCL & U Chicago, provided by Jim 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Annis Nominal mean z




What might an ideal photo-z algorithm look like?

What might an ideal LSST photo-z algorithm for the next decade look
like?

Trained with >30,000 spectra spanning range of photometric objects

Develops priors & tweaks templates via hierarchical Bayesian
hyperparameters

Incorporates variations in effective filter wavelengths due to

observational conditions: requires applying algorithm to O(1000)
measurements instead of O(6)

Incorporates AGN classification and AGN photo-z determination:
colors are not constant with time for many objects!

Want algorithms to be fast: create ML-based emulators for template
photo-z's?

For bright objects, may also be useful to compare template to ML
techniques to identify potential outliers (different failure modes)



Conclusions

e Current codes appear sufficient to meet LSST requirements, but are
not optimal. Better photo-z's would increase the value of LSST.

e Don't assume that photo-z algorithms will give you PDFs that meet
the statistical definition

e Don't assume that we will get LSST/WFIRST depth photo-z training
sets without broad community support to make that happen

e Don't assume that those training samples will definitely be
complete enough to use for calibration

e Don't assume that all your spectroscopic redshifts will be correct

e Showing false-z rates are low enough for calibration is
expensive... can't use the same redshifts to select good regions
of color space and to demonstrate that failure rates are small

¢ Don't assume that you can ignore magnification signal in cross-
correlation photo-z calibration (remove iteratively?)



Requirements for photometric redshift training for
LSST

¢ Need highly-secure spectroscopic redshifts
for 20k-30k galaxies sampling full range of
galaxy colors, magnitudes, and redshifts

Equivalent I, from 4 nights@GMT
55 by AB TG MENGE 26

e Newman et al. 2015, Spectroscopic Needs o
for Imaging Dark Energy Experiments,
presents a baseline scenario:

- >30,000 galaxies down to LSST weak
lensing limiting magnitude (i~25.3)

- 15 widely-separated fields at least 20
arcmin diameter to allow sample/cosmic
variance to be mitigated & quantified

Fraction with successful z

0.2
: : : —— DEEP2
* Equal cosmic variance to Euclid C3R2 2COSMOS
plan but much lower sky area 0.0 :
: 18 19 20 21 22 23 24
* Long exposure times are needed to Lun

ensure >75% redshift success rates: >100
hours at Keck to achieve DEEP2-like S/N
at j=25.3

- See http://adsabs.harvard.edu/abs/2015APh....63...81N

Newman et al. 2015



Summary of (some!) potential instruments for photo-z training

Instrument / Telescope Collecting Area (sq. m) Field area (sq. deg.) Multiplex

AMOST 10.7 4.000 1,400
Mayall 4m / DESI 11.4 7.083 5,000
WHT / WEAVE 13.0 3.139 1,000
Magellan LASSI 32.4 1.766 5,000
Subaru / PFS 53.0 1.250 2,400
VLT / MOONS 58.2 0.139 500
Keck / DEIMOS 76.0 0.015 150
FOBOS 76.0 0.087 500
ESO SpecTel 87.9 4.9 3,333
MSE 97.6 1.766 3,249
GMT/MANIFEST + GMACS v. A 368 0.087 760
GMT/MANIFEST + GMACS v.B 368 0.087 420
TMT / WFOS 655 0.011 100
Eiber—WHR0 Smpessimristic 55 0-022 1000
Frver=W O S=optimistic 655 0-656 2-666
E-ELT / Mosaic Optical 978 0.009 200
E-ELT / MOSAIC NIR 978 0.009 100

Updated from Newman et al. 2015, Spectroscopic Needs for Imaging Dark Energy Experiments



Dark time (with 1/3 losses for weather + overheads)
required for each instrument

Total time (years), >75% Total time (years), >90%
Instrument / Telescope complete LSST sample complete LSST sample
AMOST 7.7 48.4
Mayall 4m / DESI 5.1 31.9
WHT / WEAVE 9.0 56.0
Magellan LASSI 1.8 11.2
Subaru/PFS 1.1 6.9
VLT /MOONS 4.0 25.0
Keck/Deimos 10.2 63.9
Keck/FOBOS 4.4 27.5
ESO SpecTel 0.66 4.1
MSE 0.60 3.7
GMT/MANIFEST + GMACS v. A 0.42 2.6
GMT/MANIFEST + GMACS v.B 0.75 4.7
TMT / WFOS 1.8 11.1
FHrer=t-O5=pesstmistie 536 22
+Hrer—P O Goptimstic Ot Spess
E-ELT / MOSAIC Optical 0.60 3.7
E-ELT / MOSAIC NIR 1-|.-2 71-4

Updated from Newman et al. 2015, Spectroscopic Needs for Imaging Dark Energy Experiments



Open issues: template-based and training-based methods
have different failure modes - how best to combine?

°
EAZY (template code, untuned)
O..\'.\I.-\D =003595
3.0 (Az) >0.15(1 +z) outliers = 8.36%
25 I //
2.0} :
' 1;/:': //
8 .// .:' /’/
2 15 “/:. % e
chi‘ \,/ "‘ ) ,//
AR ‘,,.5 '///
/t R j s
1.0+ 5 24
//,, P2 .:; ’." ’
0.5/
ot ' DEEP2/3
, Al 3D-HST
) 0.5 1.0 15 2.0 25 3.0
zspec

~

Identify potential outliers from discrepant results?

Random Forest Regression

ONMAD =002209

3.0 (Az) >0.15(1 +=) outliers = 4.66%
2.5’ /’
2.0t ;
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S 15f PR e
e il
1.0} DA A
0.5}, o
5" gy DEEP2/3
b 3D-HST
08, 0.5 1.0 15 2.0 25 3.0
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Zhou, JN et al. 2016, in prep.



Open issues: Combining PDF results from multiple codes

e Dahlen et al. found that medians R —
of point estimates from multiple - z—selected .
codes (%'s) have smaller scatter c | (Qe& o 1
(relative to spec-z) than any % @AQ’ .
individual code E =k & _
5 . . *
* All codes are run on the same oo **8°° -
data! Current codes do not i T
make optimal use of available 2Q0s  oor  oos  ou

information... : :
rms(excluding outliers)

Dahlen et al. 2013



Open issues: Combining PDF results from multiple codes

Dahlen et al. presented a hierarchical Bayesian combination
method (cf. Press & Kochanek, Lang & Hogg, etc.)

Izbicki & Lee 2016 use weighted combinations of codes

Kodra et al. (in prep) investigates using PDF that minimizes total
Fréchet distance to remaining PDFs: analogous to median

14

O 1 1 1 = .
0.40 0.45 0.50 0.55 0.60 0.65 0.70

. D. Kodra



Open issues: Combining PDF results from multiple codes

14

12F

10F

P(z)

GOODSS ID16209, spec z = 1.331

1.0
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1.2

1.3

1.4

Finkelstein original
Fontana original
Salvato original
Wiklind original
Wuyts original

1.5
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1.8

D. Kodra



Open issues: Combining PDF results from multiple codes

14

GOODSS ID16209, spec z=1.331

12

10F

P(z)

Finkelstein original
Fontana original
Salvato original
Wiklind original
Wuyts original

HB
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D. Kodra



Open issues: Combining PDF results from multiple codes

GOODSS ID16209, spec z=1.331

14

— HB
»—+ mFDa ||
= mFDs

D. Kodra



Open issues: Storing p(z,a)

Carrasco-Kind & Brunner 2014 achieved strong compression of
photo-z PDFs using sparse representation and well-chosen basis set
For many LSST applications, want 2+-dimensional PDFs

Can suitably sparse (<few hundred #s) representations be
achieved?

Are samples from PDFs OK for all science cases?

0.07F ' ' ' ' ' ' ' ' T ] 0.011f" ' ' —
— Original — Sparse rep. ® ® Sparse rep. fixed bases
— Multi Gaussian - - Single Gaussian A Multi Gaussian fitting
0.061 | 0.000 1 % Sparse rep. same number of points as MG | |
— bases
0.05
K —= 0.007}
— 0.04 ] \ %
(&} ! \
T AN A
0.03f |, ‘ = 0.005}
! =
®
0.02+ fal 1 *
! \ \\(/ 0.003
' \ o
0.01f/ v SURECR
\
I_II_.-' I N I 'I I I I I 0-001_________. ............ . ............ ._ .....
000551 0.3 0.5 0.7 0.9 11 13 15 17 5 10 15 0 >5 30 35 20
redshift Points per PDF

Carrasco-Kind & Brunner 2014



Open issues: Optimizing spectroscopic targeting

e Current state of the art: Masters et al. 2015

[
e Se -organlzed map o galaxy colors
20
Cell # 8642, x =17, y =115 Cell # 8988, x =63, y =119
21E  Photo-z estimate: 1.186 -~ Photo-z estimate: 0.595
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g m®
5 <]
2 0] m
! ]
]
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27 s L s L
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2 uf | 0]
258 u
m Cell #3051, x =51, y = 40
26E * N 26E Photo-z estimate: 0.529
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Masters et al. 2015



Open issues: Optimizing spectroscopic targeting

e Prioritize cells with few redshifts for spectroscopic follow-up
e Are there better ways to do this?

0 1 2 3 4 5 6 0 1 2 3 4 5 8

Median spec-z, high confidence (~100%) redshifts Median spec-z, confidence > 95% redshifts

b R -y . T
i . =

-
- P

120

Masters et al. 2015



Spectroscopic training set requirements

e Goal: make 6,and o(c,) so small that systematics are subdominant

Many estimates of training set requirements (Ma et al. 2006, Bernstein &
Huterer 2009, Hearin et al. 2010, LSST Science Book, etc.)

General consensus that roughly 20k-30k extremely faint galaxy spectra
are required to characterize:

spec-Zphot €FTOF distribution

— Typical z

— Accurate catastrophic failure rates for all objects withz |  <2.5

— Characterize all outlier islands in ZgpecZphot plane via targeted campaign

(core errors easier to determine)



What qualities do we desire in our training sets?

e Sensitive spectroscopy of faint objects (to i=25.3)
- Need a combination of large aperture and long exposure times from the
ground; >20 Keck-nights (=4 GMT-nights) equivalent per target, minimum
e High multiplexing

- Obtaining large numbers of spectra is infeasible without it

See Newman et al. 2015, Spectroscopic Needs for Imaging Dark Energy
Experiments, for details



What qualities do we desire in our training sets?

Coverage of full optical
window if working from
the ground

- Ideally, from below 4000
A to ~1.5um

- Require multiple
features for secure
redshift

wavelength [A]

20000 l l l
H. 6563
18000 .
O] 5007
16000} -
O] 3728
140001 .
| Laum _ _ _ _ -
12000 n
10000F - /= — - 2 — - - _ —
8000 .
6000 -
4000~ " " . S -
0.0 0.5 1.0 1.5
redshift

Comparat et al. 2013, submitted

2.0



What qualities do we desire in our training sets?

Significant resolution
(R>~4000) at red end if
working from the ground

- Allows redshifts from
[O11] 3727 A doublet
alone, key at z>1

- Not necessary if get
multiple features from
deep IR coverage

100

80

60

40

20

Percentage of [Oll] doublets resolved

Flux bins 3o

_ 20

15 |

10

N

3000 4000 5000 6000
Resolution

Comparat et al. 2013
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What qualities do we desire in our training sets?

e Field diameters > ~20 arcmin

- Need to span several correlation lengths for accurate clustering
measurements (key for galaxy evolution science and cross-correlation

techniques)
-ro~ 5 h'1 Mpc comoving corresponds to ~7.5 arcmin at z=1, 13 arcmin at

z=0.5

1000 |

320 640x10°
40 80 160

1/4 deg2 —

e Many fields K

1/8 deg®
. 5 1/32 deg?
. . . . - L
- Minimizes impact of sample/ ]
cosmic variance. E
- e.g., Cunha et al. (2012) 5 00}
Z L

estimated that 40-150 ~0.1 deg? i
fields are needed for DES for | Ogs(|biasi) = 1.0

sample variance not to impact 0 100 oo 10000

errors (unless we get clever) gals/patch
Cunha et al. 2012



