ol R il el N
L r

Making you all experts on CMB '
internal (de)lensing

Marius Millea

Lagrange
rlul

BERKELEY CENTER for
COSMOLOGICAL PHYSICS  mmstitut
I

() @marius311 YW @cosmicmar

with

Ethan Anderes Ben Wafnldelt

Workshop — Jan 16, 201

BCCP Lensin

B g L M
£ it wdmswm.m&némm P N P




r,-i'{,:._-*l;, FoTRL - Rl T R . P e a > -.r_..- i r F - b . - . g I B g P L .- "‘i‘i"' % "“I__‘:E:'I_"-?'."F‘:."‘:- “&1
¥z "

IF' f; _'fi- i ¢ I.' W § . .':.'n: B ¥
§ard . . !

Making you all experts on CMB
internal (de)lensing

- A i
o - A




' Making you all experts on CMB
internal (de)lensing

» Why is this interesting scientifically?




Making you all experts on CMB
internal (de)lensing

» Why is this interesting scientifically?
» The quadratic estimate and beyond
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» Why is this interesting scientifically?
» The quadratic estimate and beyond

* LenseFlow and the Bayesian sampling
solution
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Measurements of the power spectrum of the lensing potential are
becoming increasingly precise and will continue to do so.
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A powerful probe of gravity, structure formation,
galaxy bias, neutrino masses, etc...
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Measurements of the power spectrum of the lensing potential are v
becoming increasingly precise and will continue to do so.
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A powerful probe of gravity, structure formation,
galaxy bias, neutrino masses, etc...
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Th’e most exutmg possibility...

T controls amplitude of tensor fluctuations
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most exciting possibility...
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The most exciting possibility... How to achieve this
Fisher forecast
performance in practice is
an open question.
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The most exciting possibility... How to achieve this
Fisher forecast

performance in practice is
an open question.
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The detailed accuracy of
the “Fisher forecast” itself
is also an open question.
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Lensing potential

MM, Anderes, Wandelt (2017)
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Lensing potential -\

MM, Anderes, Wandelt (2017)

CN\B “fields” Cosmo params
(T, E B)
/ Data
¥ Lensing operator These depend on @
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Lensing potential \
CN\B “fields” Cosmo params
(T, E B)
/ Data
¥ Lensing operator These depend on @
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exp{—1diy-1
P(o,0]d) = p{dzzl; d}exp{—%qﬁc;lqb}

here = L(d)CrL(6)T + O,
K where (0)CrL(9) )
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C’V\B “fields” Cosmo params
(T, E B)
/ Data
¥ Lensing operator These depend on @
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Lensing potential \
C’V\B “fields” Cosmo params
(T, E B)
/ Data
/ Lensing operator These depend on @

P40 1) - ' oo
. t a1 Leio-t Lotcy?
| =eo{-il- s G- 20 - 116 - d0e's)

4 ) B )
xp{—LdT¥X—1q
P(¢,0]d) = - p{dZtZ }exp{—%fbm;lqﬁ}
here = L(d)CrL(6)T + O,
K where (9)CrL(P) )
4 N/ Quadratic estimate )

X

P(0|d)

¢QE ZwEL d(€+ L)




el

|~ R g R e e e S

Lensing potential

CN\B “fields” Cosmo params
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Lensing operator
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4 Y4 Quadratic estimate )
P@|d) ~ bor(L ZwEL )d(£ + L)

Hu & Okamoto (2003)

Q every application to real data ever ... vl
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The cf"Uadratlc estimate: o it

~

(FOf'(€+ L)) ~ o(L)
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The quadratlc cttimate: fi o
(f(&)f'(€+ L)) ~ ¢(L)

dor(L Zwe L)d(€)d(£ + L)
LU

optimal welghts
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: The quadratlc eStlmate suboptimal because it doesn t
use this information

FO)f'(6+ L)) ~ &(L 24 ..
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dqe(L Zw (€, L)d(£)d(€+ L) + (L = 0 terms)
Kde-l-n

optimal welghts
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“'Quadrafic estimator 1. ca i =
The quadratlc estlmate suboptimal because it doesn t

use this information

F(0)f'(€+ L)) ~ ¢(L) + ¢* + ... -
SO £+ L))~ (L) + ¢7 + / N R
dqe(L Zw (€, L)d(£)d(€+ L) + (L = 0 terms)

optimal welghts d=f+n

How to reduce variance of the quadratic estimate?
<¢2QE> -~ <dddd> (Clensed Cnmse)
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The quadratIC estlmate suboptimal because it dossi

/ use this information

F(0)f'(€+ L)) ~ ¢(L) + ¢* + ... -
FOfer) ~oB + )N
dqe(L Zw (€, L)d(£)d(€+ L) + (L = 0 terms)

optimal welghts d = f T

How to reduce variance of the quadratic estimate?
<¢2QE> -~ <dddd> -~ (Clensed Cnmse)

e

| can reduce the total variance by
“iteratively” delensing if:

* Lensed power > noise

* Lensed power > unlensed power
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/ Quadratlc estimator is.
The quadratIC estlmate suboptimal because it dossi

/ use this information

F(0)f'(€+ L)) ~ ¢(L) + ¢* + ... -
FOfer) ~oB + )N
dqe(L Zw (€, L)d(£)d(€+ L) + (L = 0 terms)

optimal welghts d = f T

How to reduce variance of the quadratic estimate?
(dor) ~ (dddd) ~ (Cp™ + Cnollje)l -

e

| can reduce the total variance by
“iteratively” delensing if:

* Lensed power > noise

* Lensed power > unlensed power

--- unlensed —— lensed ',
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Iterating the quadratic estimate in practice:
(ie there is no such thing as “the iterated quadratic estimator”)
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Iterating the quadratic estimate in practice:
(ie there is no such thing as “the iterated quadratic estimator”)

AV = L(dgp)d”
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Iterating the quadratic estimate in practice:
(ie there is no such thing as “the iterated quadratic estimator”)




I.ry.'-;"-.:"._l-*h F 'P_".'{' I e . v ke s L .'."r-.l-'f g F J L * ot e . T * 2 b IR = PO 2 L..- Qo e e q.'i\ ~ t s

Iterating the quadratic estimate in practice:
(ie there is no such thing as “the iterated quadratic estimator”)

C - !
—14(0) dV = r ¢ (0) 4(0)
d <C¢ -+ ng ¢QE
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Iterating the quadratic estimate in practice:
(ie there is no such thing as “the iterated quadratic estimator”)

C —1
i — 1 ( : <o>) 0
Co —I—N¢¢

T

After first iteration, this noise is no longer
analytic / diagonal in Fourier space
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Iterating the quadratic estimate in practice:
(ie there is no such thing as “the iterated quadratic estimator”)

C —1
i — 1 ( : <o>) 0
Co —I—N¢¢

T

After first iteration, this noise is no longer
analytic / diagonal in Fourier space

bon(L) = w(e,L)dV (e)d™V (£ + L)
Y4




Iterating the quadratic estimate in practice:
(ie there is no such thing as “the iterated quadratic estimator”)

C —1
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After first iteration, this noise is no longer
analytic / diagonal in Fourier space

dop(L Zw (¢, L)dM (£)d™V (¢ + L)

“

Calculating these optimal weights
is now no longer simple / analytic




Iterating the quadratic estimate in practice:
(ie there is no such thing as “the iterated quadratic estimator”)

C —1
i — 1 ( : <o>) 0
Co + N¢¢

T

After first iteration, this noise is no longer
analytic / diagonal in Fourier space

dop(L Zw (¢, L)dM (£)d™V (¢ + L)
Calculating these optimal weights In practice, this heurestic
is now no longer simple / analytic procedure has only been used

for forecasting
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Iterated quadratic estimate forecasting:

N = | RS 1 (CLE)
¢ 20+ 1 2 it Cpres + NPB ) \ CEF + NfE

£189
pree ((CEPR ) (e
Cot+Ng= ) \op? + Ny?

1
Bres —_— 2
Cfl - 24‘?1 n 1 % f:‘ flfzf‘
2

Smith et al. (2010)
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£189
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Smith et al. (2010)
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This method is:
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Itefated quadratlc estimate forecasting:
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Smith et al. (2010)
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This method is:
* Not a Fisher forecast
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" lterated quadratic estimate forecasting:

y 1 1 (CH")*
N = | SR 2
14 2€ + 1 ~ 1£2 Cﬁres + NE?B CEEE + NgE
1

1 y (CEE)? (CP?)?
CBreS _ Z ‘féEEBE‘Q CEEECC,'@?@ o lo \¢ _
h 201 + 1 12 2 CEE+ NEE )\ 9?4 N9?

lof
Smith et al. (2010)

This method is:

* Not a Fisher forecast

* Validated at 10% by
comparing against a table
from Seljak & Hirata (2003)
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Iterated quadratic estimate forecasting:

N$? = Y fEad 1 G )
¢ 2€ +1 nef \ oPe  NPB ) \ CEE 4+ NEP

{169
EFE\2 ol
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This method is:

* Not a Fisher forecast

* Validated at 10% by
comparing against a table
from Seljak & Hirata (2003)

* Which is itself approximate
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Iterated quadratic estimate forecasting:

EE\2
N = | S ISR L (C57)
¢ 20 4+ 1 Jlilat Ogr'cs + NE?B CEE + NgE

102
CEECP? — (Ce") (G7)
* ot \CEEHNEE )\ e+ NY?

1 Z
Bros —_ EB |2
2

This method is:

* Not a Fisher forecast

* Validated at 10% by
comparing against a table
from Seljak & Hirata (2003)

* Which is itself approximate

* And does not achieve the
Fisher limit for an as-of-yet
unknown reason.
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* Not a Fisher forecast . —PeLBetD_
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Lensing potential \

C’V\B “fields” Cosmo params
(T, F, B/
/ Data
/ Lensing operator These depend on @

f, 6,0|d) = ’ YN
. t 1 —1 1 —1
=t con)'e a- o) e - deiete)
- N\

exp{—1dix!
P(o,0]d) = p{dzg; d}exp{—%qﬁc;lqﬁ}

here ¥ = L(d)CtL(O)T + C,
L where (@)CrL(0) Y

4 N f Quadratic estimate\
P0]d)

X

Hu & Okamaoto (2003)
/ Q every application to real data ever . . e e
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Lensing potential

CN\B “fields” Cosmo params
(T, E B)
/ ’/ Data

f7¢70‘d

Lensing operator These depend on @

v ¥ N

-

\_ = exp{—4[d— L(6)f]'C. 1 [d— L(6)f] ~151C; ' f - JoTC; o] /
~

exp{—idiy—1
P¢,0|d) = S22 o rgiesta)

det X
where ¥ = L(¢)C;L(¢)" + C,,

\_ J
4 N\ Quadratic estimate )
P(0]d) ~ dqe(L ZwEL d(£+ L)
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Lensing operator These depend on @
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exp{—idiy—1
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det X
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4 N\ Quadratic estimate )
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P(g,0]d) = p{dgtz }exp{—%as*cq;lqb}

where ¥ = L(¢)C:L(¢)T + C,

Newton-Raphson iteration:

0
¢ = ¢—H_1%10g7’(¢,9|d)




exp {—%dTE_ld}

det X

exp { —10'C; 0]

where ¥ = L(¢)C:L(¢)T + C,

Newton-Raphson iteration:

0

¢ =¢—H ' —logP(¢,0]d)

o




SErexp i —cd Y d =
P(p,0]d) = SR8 Z 0 £ sgrerg)
where ¥ = L(¢)C:L(¢)T + C,
\- /
Newton-Raphson iteration:
0
log P(¢ |0, d) ¢ = ¢ — H—lﬁ log P(¢,0|d)
I — _/
Y

At ¢ =0 and with

H = F this is exactly
the Wiener filtered
quadratic estimate.
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\ Wiener filtered QBQE
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Vol xR ]
P(g,0]d) = p{dgtz }exp{—%wcglqb}

here ¥ = L(d)CtL(O) + C,
K where (9)CrL()) y

Newton-Raphson iteration:

log (6|0, d) o —d— H 'L log P(6,0]d)

- 0¢
" ll — s
o ~
: . At ¢ =0 and with
Lo H = F this is exactly
| the Wiener filtered
o quadratic estimate.
X
b
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\ Wiener filtered QBQE
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% exp {—1d =14
P(p,0]d) = 220278 o f 1g1c1)

here Y. = L(¢)C:L(P)T + C,,
X where (¢)CrL(9) y

Newton-Raphson iteration:

log P(¢| 6, d) o = b — H—I% log P(6.0 | d)

— 7
~

At ¢ =0 and with

H = F this is exactly
the Wiener filtered
quadratic estimate.
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\ Wiener filtered QBQE
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e exp {—1di¥1d
P(p,0]d) = 220278 o f 1g1c1)

here Y. = L(¢)C+L(P)T + C,,
K where (0)CrL(P) )

Newton-Raphson iteration:

log (6|0, d) o —d— H 'L log P(6,0]d)

b 0¢
P — _
;g V! Y

P& At ¢ =0 and with

AN H = F this is exactly
Iy the Wiener filtered
N quadratic estimate.
i

=f l : :,' —1 - —1 — ¢

\ Wiener filtered QBQE
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Remaining challenges:

* Neither MAP nor MLE estimators are “optimal” (w.r.t
mean-squared error)

* Noise bias and error bars need to be computed via
Monte Carlo of an expensive iterative computation

* Bias and error bars are cosmology dependent
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Remaining challenges:

* Neither MAP nor MLE estimators are “optimal” (w.r.t

mean-squared error)
* Noise bias and error bars need to be computed via

Monte Carlo of an expensive iterative computation
* Bias and error bars are cosmology dependent

0.2 A

0.0

C?¢/CIZ¢¢, input _1
S
N

~0.4

—0.6 1

Qg fid. band-powers

Q fid. (wo lik. corrections)

¢ FFP10 fid. rec. @ Qfid. (w. corrections)
463 581 700 832 1475
L

Shift due to
accounting for

1 _ / cosmology

dependence in
Planck quadratic
estimator analysis.
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Lensing potential

CN\B “fields” Cosmo params
(T, E B)
/ ’/ Data

f7¢70‘d

Lensing operator These depend on @

v ¥ N

-

\_ = exp{—4[d— L(6)f]'C. 1 [d— L(6)f] ~151C; ' f - JoTC; o] /
~

exp{—idiy—1
P¢,0|d) = S22 o rgiesta)

det X
where ¥ = L(¢)C;L(¢)" + C,,

\_ J
4 N\ Quadratic estimate )
P(0]d) ~ dqe(L ZwEL d(£+ L)
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Lensing potential

CN\B “fields” Cosmo params
(T, E B)
/ ’/ Data

f7¢79‘d

Lensing operator These depend on @

v ¥ N

| to1 Lrictly— Loptc!
(& = exp{—4[d— L(6)f]'C. 1 [d— L(6)f] ~151C; ' f - JoTC; o] /
p p

exp{—idiy—1
P(6,01d) = SA20E o (L 1gicto)

det X
where ¥ = L(¢)C:L(6) + C,

U J
4 N/ Quadratic estimate )
P(0]d) ~ dqe(L ZwEL d(£+ L)
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Lensing potential

CN\B “fields Cosmo params
(T, E, B/ Data
Y
fv ¢7 0 | d

Lensing operator

v

\_ exp {—4 [d - ﬁ(qb)f}*cz:l[d— L(o)f] ~4f1¢;"f — 30'C; o) /

"'\?_ T

MM, Anderes, Wandelt (2017)

These depend on @

¥ N
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Lensing potential -\

CN\B “fields” Cosmo params
(T, E B)
/ Data
/ Lensing operator These depend on §

f, 6,0]d) = ¢ oo
. f a1 Letclr— Lot !
_ :exp{—ﬁ[d—ﬁ(qb)f} Cit[d=L(O)f] =3 11C; f = 307C5 ¢} .

A difficulty:
A P(f) ¢7 0 | d)
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Lensing potential \
CN\B “fields” Cosmo params
(T, FE,B)
// Data
/ Lensing operator These depend on §

f, 6,0]d) = ¢ oo
. f a1 Letclr— Lot !
_ :exp{—ﬁ[d—ﬁ(qb)f} Cit[d=L(O)f] =3 11C; f = 307C5 ¢} .

A difficulty:
. P(f,6,0|d) . P(f.¢,0]|d)
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Lensing potential \
CN\B “fields” Cosmo params
(T, E B)
/ Data
/ Lensing operator These depend on §

f, 6,0|d) = ’ YN
. t 1 1 —1 1 —1
_ :exp{—ﬁ[d—ﬁ(qb)f} Cit[d=L(O)f] =3 11C; f = 307C5 ¢} .

A difficulty:

v P(f,¢,0]d) P(f.¢,0|d) =P(f(f.¢),¢,0|d)
x |det L(¢)|

—1




Lensing potential \
CN\B “fields” Cosmo params
(T, E B)
/ Data
/ Lensing operator These depend on §

f, 6,0|d) = ’ YN
. t 1 1 —1 1 —1
_ :exp{—ﬁ[d—ﬁ(qb)f} Cit[d=L(O)f] =3 11C; f = 307C5 ¢} .

A difficulty:

v P(f,0,0|d) P(f.9,01d) =P(f(f,¢).4.0|d)

x |det L(¢)| -

We need the lensing
determinant, det £(¢)

> » to do this change-of-
¢ variables.
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’-What is the determinant of lensing?
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“What is the determinant of lensing?

Consider the usual Taylor series lensing approximation:

f(2) = f(z + Vo) ~ f(z) + V) Vo) + ...

T A R e



L ) F e R - L e S SRR e Sl " L Y e a% 48R ‘ L J & e st 2 - "y e B L & bl I .. it R Pl g N e e Y
A e S A e S N N ! » i s e G RPN R Bl R VR R | R O L, B PRI,
i S g 5 i # H 1 o iy ke ',‘ 3 kaﬂ

g N B e ;

What is the determinant of lensing?
Consider the usual Taylor series lensing approximation:
f(x) = flz +Vo(a)) = f(z) + V) Vo) + ..

T E B

i Matrix representation of £(¢)
T for 16x16 1’ pixel TEB maps for 7" order
= Taylor series approximation
E .| - log(abs(£(¢)is))
B 60_ £
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What is the determinant of lensing?

Consider the usual Taylor series lensing approximation:

f(2) = f(z + Vo) ~ f(z) + V) Vo) + ...

Matrix representation of £(¢)
for 16x16 1’ pixel TEB maps for 7" order

T 10
2 Taylor series approximation
E "~ log(abs(L(¢)y))

det |£(¢)] = 1.9 x 107°
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What is the determinant of lensing?
Consider the usual Taylor series lensing approximation:
f(x) = flz +Vo(a)) = f(z) + V) Vo) + ..

T E B

0 100 200 300 400 500 600 700
L I I I I

: Matrix representation of £(¢)
for 16x16 1’ pixel TEB maps for 7" order

T - Taylor series approximation

E | " log(abs(£(9)i;))

B :0— ) _9
det |£(¢)| = 1.9 x 10

Additionally, the variation of the determinant with is significant.




LenseFlow

Consider the usual Taylor series lensing approximation:

f(2) = f(z + Vo) ~ f(z) + V) Vo) + ...




LenseFlow
Consider the usual Taylor series lensing approximation:

f(2) = f(z + Vo) ~ f(z) + V) Vo) + ...

Define fi(x) = f(x +tVo(x))




LenseFlow

Consider the usual Taylor series lensing approximation:

f(z) = f(z + Vo(2)) ~ flz) + VF(z) Vo) + ...

Define fi(x) = f(x +tVo(x))
One can show f; obeys an ODE “flow” equation

dft(x)
dit

This allows easy inversion, gradients, transposes, and
the determinant can be made arbitrarily close to 1.

= Vo(z) - [L+tVV(z)] " -V fi(x)
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LenseFlow Conceptually

Taylor series lensing

1

T
PN

More and more terms

\ 4 Remaining on-circle

2 .
corresponds to determinant=1

) -

[cos(t)] B [1 —t2/2 + ]

T t—t 6+ ...
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LenseFlow Conceptually

Taylor series lensing LenseFlow

1 e

More and more ODE timesteps

More and more terms‘_ Remaining on-circle

N\ 4 .
2\ corresponds to determinant=1

ARzt M B 1
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“, durmg ODE integration Lense Flow In Action
T map (256x256 @ 1) E map (256x256 @1 B map (256x256 @ 1')
2°-i'w' i 2°T'r- o ™ . 20 2o F ' ; ! E o
e olv = .
B 289 v Yoty 15 15
e ’ LAY At
1° _‘ .* i — 1° " -.‘ a 10 1° b 4 1.0
" ;1 '; - w '\. 5 0.5
9 “» - o) FOOBN A ]
D 0TF e o 0 O 0°f feny 0 @ 0°f 1 0.0
a 4 Q e O
I AL » l] s W emr -5 -0.5
~1° 5y v e S {" ™t - ~10 -1 1 M-10
- TrE. = ﬁ'*.q;" .
2 - 1 . 3 " -200 , K‘ 2 i \ ) -15 ) 15
—_— » L. _ﬂ.m.'l- - W ! _"‘_I ; ; | ]
_20 _10 00 10 20 ey - _10 00 _20 _20 _10 00 10 20 _20




el | U YRl Tl T R g W e S e AL R a AT : L J & e st - - L L s e RPN 4 Lk Y.y S s Ll i N S

-.}r?ﬁ“f-;w'-‘-- SRR ek e, R y EAE- Tl e AR B S e A SR g T TR W t; ;n, .
O Y B IS : WE B
N o

f: during ODE integration  LenseFlow In Actlon
a

T map (256)(256 @1 E map (256x256 @1 B map (256x256 @ 1')
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LenseFlow 7-step RK4
—-= Taylens 3rd order
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With LenseFlow in hand, we
can first maximize P(f,¢|6,d)
which we do in practice by
coordinate descent:
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With LenseFlow in hand, we
can first maximize P(f,¢|6,d)
which we do in practice by
coordinate descent:

~




With LenseFlow in hand, we
can first maximize P(f,¢|6,d)
which we do in practice by
coordinate descent:

P(f,6,0|d) =

—

~

= oxp {—41d = f11C; [d = fl = §FHIL@)C L)) -

1
2
N—

¢
¢ step
—
2 ¢TC¢¢}

e

fstep : @ Wiener filter
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With LenseFlow in hand, we
can first maximize P(f, ¢ |0, d)
which we do in practice by
coordinate descent:
5 ¢
- B step
= exp {—4[d - flic; d — ) - 1FTIL(0)CL(0)] 1 f - $oiCs0 ]
\— ~ %
f step : a Wiener filter
¢ iterations ] ; .
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With LenseFlow in hand, we
can first maximize P(f, ¢ |0, d)
which we do in practice by
coordinate descent:
5 ¢
- B step
= exp {—4[d - flic; d — ) - 1FTIL(0)CL(0)] 1 f - $oiCs0 ]
\— ~ %
f step : a Wiener filter
¢ iterations ] ; .
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In terms of sampling, the problem breaks up similarly nicely:

g f’ ~ p(f | gb’ (9’ d) This is Gaussian, so can be done exactly / easily
¢ ~ 7)(¢ | f7 (9’ d) Can be done via Hamiltonian Monte Carlo

L6 ~ 73(9 ‘ f’ gb, d) For 1 or 2 params, can just grid and sample

Gibbs
A
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In terms of sampling, the problem breaks up similarly nicely:

- ]; N P(fl gb, 9’ d) This is Gaussian, so can be done exactly / easily

8 s
g < ¢ ~ P(gb | {07 (9’ d) Can be done via Hamiltonian Monte Carlo
~ 7)(9 ‘ f7 gb’ d) For 1 or 2 params, can just grid and sample
o% — S——— unlensed T p— unlensed B
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g EB data, 1pk-arcmin (isotropic, w/ knee), 3’ beams, 25deg?

Allowing r to vary in the chain:

*simulation truth

5| —— KDE, first half of chain | 0.16 -
—— KDE, second half of chain
B hist, all samples Sidr )
20r T 0.12} -
0.10+ E
ez 15 i
k.
& = 0.08} 1
10 i 0.06 | .
0.04 | -
5F i
0.02 | -
O L 000 E 1 1 | 1 | [
0.00 002 004 006 008 010 012 014 0.16 0 1000 2000 3000 4000 5000

r chain step
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EB data, 1pk-arcmin (isotropic, w/ knee), 3’ beams,. 25deg2

Allowing r to vary in the chain:

*simulation truth

25 | ——— KDE, first half of chain | 0.16
—— KDE, second half of chain
B hist, all samples o
207 0.12}
0.10+
- 15
k.
& = 0.08}
107 0.06
0.04
5 L
0.02
0 : 0.00 e— L L L ! L
0.00 002 004 006 008 010 012 014 0.16 0 1000 2000 3000 4000 5000
r chain step

Stepping back and looking at these results:

 Gradient approximation not assumed

* No bias terms or covariances needed to be calculated (and none were
ignored)

* Ongoing work comparing to Fisher forecasts (see MM+2018 in prep)
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We can sample other parameters besides r, for example A,

(Ag, ¢r) 1.00 (Ag, \/ Ay br) 1.00 (As, Fis(Agp)r) 1.00
0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14
0.75 0 ' ' ' ' " 0.75 0 ' ' ' ' ' ' "] 0.75
0.50 2 0.50 2r 0.50
4 at
10.25 10.25 10.25
6 6L
40.00 10.00 40.00
8 8L
{-0.25 {-0.25 {-0.25
10 10 F
—0.50 12 -0.50 12k —0.50
-0.75 14 -0.75 14}, -0.75

—1.00 -1.00 —1.00
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We can sample other parameters besides r, for example A,

(Ag, ¢r) 1.00 (Aps v/ Ag ) 1.00 (Ag, Fo(As)i) 1.00
c 2 4 6 8 10 12 14 o 2 4 6 8 10 12 14 c 2 4 6 8 10 12 14
0.75 0 B B 0.75 0 d B B 0.75
0.50 2 0.50 2r 0.50
4 a4+
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~0.50 12 ~0.50 12} ~0.50
-0.75 14 -0.75 14, -0.75
-1.00 -1.00 -1.00
PP
Ay Cy
150}
Using a reparametrization inspired by Racine < Il l I | W Hu Wl
et al. (2016), we can massively decorrelate & e N 3
the chain and improve Gibbs convergence. N2 T , | | | | |
0 100 200 300 400 500 600 700 800
| am hopeful using tricks like these we can 120 '
eventually sample the full theoretical < 12
bandpowers directly, providing a maximally 1.00 |-+~ - 7L e VAT 71
convenient data product. 0.75
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chain step
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We can sample other parameters besides r, for example A,

(Ag, ¢r) 1.00 (Aps v/ Ag ) 1.00 (Ag, Fo(As)i) 1.00
c 2 4 6 8 10 12 14 o 2 4 6 8 10 12 14 c 2 4 6 8 10 12 14
0.75 0 B B 0.75 0 d B B 0.75
0.50 2 0.50 2r 0.50
4 a4+
40.25 40.25 40.25
6 6L
40.00 10.00 40.00
8 8L
1-0.25 1-0.25 1-0.25
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~0.50 12 ~0.50 12} ~0.50
-0.75 14 -0.75 14, -0.75
-1.00 -1.00 -1.00
PP
Ay Cy
150}
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* Check out our code and run a sample Jupyter
notebook in your browser: e
https://github.com/marius311/CMBLensing. jllela
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