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Joint probes
A channel for robust
beyond LCDM exploration

g = shear and/or clustering
k = CMB lensing



g = shear

Multiplicative bias calibration
(e.g. Schaan et. al. 2016)

g = redmagic clustering
alternative S8 independent of source

photo-zs
(e.g. DES Y1 results)

g = gold sample clustering
primordial non-Gaussianity from sample

variance cancellation
(e.g. Schmittfull, Seljak 2017)
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Foreground biases

(focus on tSZ for cross-corr)
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We are “systematics limited” now.
Factor of almost 2x reduction in constraints if not mitigated.



Foreground biases - now primarily from tSZ
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~20% at large scales from tSZ
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Status of multi-frequency analysis

e Planck measured the sky at 9 frequencies from 30-857 GHz (relatively
low res, high noise)

e ACT and SPT have been using single frequencies (150 GHz)
- severely limits ability to avoid foreground biases in cross-correlations

e High-resolution multi-frequency data from ground-based experiments
only beginning to be utilized
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Note of caution on “multi-frequency foreground cleaning”
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Problem: constrained cleaning
blows up noise on small scales

Solution: “gradient cleaning”
MM, Hill (PRD) 2018

(Also see alternatives like CMB lensing shear in
Emmanuel’s talk)



Gradient cleaning
Motivation: small-scale cluster lensing limit
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Hu, DeDeo, Vale 2007

Quadratic estimator picture in real space

Mathew Madhavacheril, Princeton University



CMB cluster lensing: eliminating tSZ bias

® Gradient needs to be measured
well only up to L=2000
® Planck component separated

temperature maps good enough for
gradient map!
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® Doesn’t work for kSZ but additional
low-pass filtering can help




CMB cluster lensing: eliminating tSZ bias
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Gradient cleaning strategy

e Use multi-frequency data (could be just Planck) with
constrained cleaning to get gradient -- your gradient is
effectively lower resolution now (expect some loss of S/N
for large-scale lenses)

e Use single frequency or multi-frequency standard cleaning
to get non-gradient

e Eliminates tSZ, CIB, Galactic foreground bias
(but not kSZ)
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End-to-end simulations for tSZ demonstrate gradient cleaning
<5% loss in S/N when cleaning only gradient with Planck
multi-frequency data but <<1% bias compared to 20% bias



Future / ongoing work

Near-term large-scale and cluster lensing

Preparing gradient cleaned lensing maps for ACT x DES cross-correlation
analyses

End-to-end simulations of deprojection + gradient cleaning with tSZ, CIB, kSZ,
dust and synchrotron for temperature + polarization

Test gradient cleaning on anisotropic galactic foregrounds (might do better
than shear?) and for delensing

Effective kSZ bias when using gradient cleaning + polarization estimators?
Shear estimators -- effect of maximum multipole (non-gaussianity biases)



Noise biases
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Large noise biases appear from
chance CMB correlations and
instrument noise correlated
between each of 4 legs

Instrument noise part is subtracted
off using simulations (but in a
realization dependent way -- which
adds robustness)

However...



Problem: we don’t want to
depend on hard-to-simulate
noise simulations to subtract
biases

Solution: split lensing
MM, Smith, Naess, Sherwin in prep



Split-based lensing power

CMB mapmakers provide n (n=4 MM, Smith, Naess, Sherwin in prep

typically) split maps that have
independent instrument noise.

Build “cross-only” estimator that 10—6
does not repeat splits. ]

Naively, for noise split T.
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requires O(n*) evaluations, but we

write down and use an estimator 0 10'00 ZOIOO 3000
with O(n?) complexity. [



Split-based lensing power

MM, Smith, Naess, Sherwin in prep
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Practically no hit in S/N because
CMB maps are signal dominated
over large ranges of ell



Conclusions

- CMB foregrounds currently limit
cross-correlations

- Robust multi-frequency mitigation
typically increases noise

- But “Gradient cleaning” approach
allows zero bias, no hitin S/N
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- CMB lensing autospectrum noise
biases require difficult simulations
of noise

- Split-based lensing approach
circumvents this with no hit in S/N



Bonus material



Diagonal <TT> -~ gTT 2-point function

Lens
Off-diagonal <TT> ~ ¢ reconstruction

<TTTT> ~ <§b¢> ~ O%qb 4-pt function
<TT(59> ~ <¢5g> ~ C%ég Cross-correlation



Foreground biases <ksz ksz g>

CMB S4 and LSST, ¢, = 3000

e KkSZ bias in temperature
regardless of - 7
multi-frequency "

e 5Some model uncertainty

but >3% biases (for S4)
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