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Likelihood analysis

• Bayes' rule: 

• Gaussian Likelihood function:  

• Assumptions in standard likelihood analysis:  
Gaussian likelihood assumption
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Simulations

• Scinet LIght Cone Simulations (SLICS) 

• 932 lines-of-sight realizations of 100 deg2 

• N-body simulation: 15363 particles in a box size of 505 Mpc h-1 

• Reproduce redshift distribution of LSST (10 tomographic 
redshift bins with ngal = 2.6 gal/arcmin2 in each bin). 

• Intrinsic shape 𝜎e = 0.29 (shape noise can be switched off)

Harnois-Déraps J., van Waerbeke L., 2015, MNRAS, 450, 2857 

Covered in Joachim’s  talk yesterday



Theory curves from CosmoLike: 
Krause, E. and Eifler, T., MNRAS 2017 stx1261

• To avoid biases due to the mismatch between the mocks 
and the theory, we rescale the mock     data vector with 
compensating ratios: 

ξ
ξtheory/⟨ξmocks⟩



• 1-D histograms

1-D likelihood distributions



Skewness (asymmetry)

Kurtosis (tails, outliers)
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Figure 2. Information content versus number of principal components used
in data analysis: the square root of the determinant of the inverse parameter
covariance, i.e. the Fisher information matrix, quantifies the amount of re-
tained information in terms of constraining power. In the plot, the metric is
normalized by the total information content (770 components). By keeping
the first 150 components, we retain 77% of information with 20% of data
points.

limits parameters in the ranges (0.05<⌦m<0.6) and (0.5<�8<1.1)
is assumed.

Fig. 2 demonstrates the relation between the information con-
tent retained and the number of principal components used. The
amount of information that weak lensing correlation functions ⇠

carry about the cosmoogical parameters can be estimated from the
Fisher matrix. More specifically, we define the information content
as the square root of the determinant of the Fisher matrix. It shows
that we can retain 77% of the information with the first 20% of the
data points.

By doing a PCA transformation, we linearly decorrelate the
data points so that we can build more realistic likelihood models
with univariate distributions. We then continue to use two para-
metric functions, Gaussian function and Edgeworth function, to de-
scribe the one-dimensional distributions of principal components.

If we do a PCA transformation and then use univariate Gaus-
sian functions to describe the 1-D likelihood distributions of the
principal components, the resulting likelihood function is equiv-
alent to the standard multivariate Gaussian likelihood function
(Eq. 11). Additionally, we also use the non-Gaussian Edgeworth
function, which is an asymptotic expansion of the probability dis-
tribution function around a Gaussian function, to model the 1-D
distributions of the principal components after the transformation.
Basically, the Edgeworth function is a Gaussian function multiplied
with correction terms constructed by its cumulants. In this paper,
we adopt Petrov’s formula of the Edgeworth expansion (Blinnikov
& Moessner 1998; Petrov 1962). In the case where the standard
deviation �=1, the first four terms in the expansion are
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where Hn(x) are Hermite polynomials, �x = x � µ and n

are cumulants. Moments and cumulants are two different sets of
quantities that can summarize a distribution. Cumulants arise nat-

urally from Fourier transformation. In the Fourier transformation,
the probability density function f(x) is transformed into

f̃(k) =
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1
e
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f(x)dx. (15)

The cumulants are then defined as the coefficients of the power
series expansion
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Since the Edgeworth function is not guaranteed to be positive
and could have oscillatory behavior, one should be careful with
anomalies (negative probability or wavy curves) and avoid it in
strongly non-Gaussian cases. We show in Fig. 3 an example of the
marginal one-dimensional distributions of ⇠+ and the parametric
models. In addition to Edgeworth, we also consider nonparametric
likelihood models based on k-nearest-neighbors (Lincheng & Zhi-
jun 1985) and Spectral Series estimators (Izbicki et al. 2014), to
build likelihood functions in the PCA coordinates.

To summarize, we investigate the following likelihood models
for the PCA coordinates in this paper:

• Gaussian function
• non-Gaussian Edgeworth function
• k-nearest neighbors
• Spectral Series

The performance and results of the models are covered in
more details in Section 4 and 5.

3.6 Skewness and Kurtosis

In order to quantify the non-Gaussianity of the observable quanti-
ties in simulations, we calculate higher moments of distributions:
skewness and kurtosis. The skewness can be quantified as

Skew[X] =

⌦
(X � µ)3
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The skewness measures the asymmetry of the distribution.
Gaussian functions are symmetric, and the skewness is therefore
zero. The distribution of shear correlation functions however is
not perfectly symmetric. In Appendix A1 we derive general ex-
pressions for the third moment of the shear correlation functions,
from which the skewness can be predicted. Besides cosmic vari-
ance, the effect of shape noise can also be included in this frame-
work. We show that for the scales much smaller than the survey
size, the third moment decreases with the survey size as f

�2
sky and

hence the skewness as defined in Eq. (17) decreases as fsky
�1/2

(since � / fsky
�1/2). As the scale ✓ approaches the survey win-

dow size, the third moment rises faster than the �
3 and thus the

skewness will increase. This trend is consistent with expectations
from the Central Limit Theorem that the skewness will decrease as
we have more realization of modes of a given scale within the sur-
vey. Besides the skewness, the asymmetry in the distribution is also
captured by the mean-mode difference. In Appendix B, we limit
the possible range of the mean-mode difference by assuming a uni-
modal distribution. For larger surveys, the mean-mode difference in
terms of � also follows the same scaling relation as the skewness,
(⇠̃ � ⇠)/� / fsky

�1/2.
On the other hand, kurtosis,

Kurt[X] =

⌦
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↵
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• The plots show the statistically significant non-zero 
skewness and kurtosis in marginal likelihoods of ξ.  
 
Note that these marginal 1D likelihoods of ξ± 
values do not fully represent the level of non- 
Gaussianity in the multivariate observable space.  

• Data with vs. without shape noise 

• The results of selected tomographic bins show the 
redshift evolution of skewness and kurtosis. Non-
Gaussian features decrease as redshift increase.



• Difficulty: 
High Dimensionality of the data vectors ~ 770  
Number of LOS ~ 932 

• PCA is a transformation that transforms data 
points into linearly uncorrelated coordinates. 

• Apply Principal Component Analysis (PCA) to 
approximate the joint distribution as multiple 1-d 
distributions. 

• Model the 1-d distribution with parametric 
models:  Gaussian, Edgeworth

• non-parametric multivariate models: kNN, 
spectral series

PCA and MV non-Gaussian likelihood



Conclusions
• We found strong non-Gaussianity in marginal distributions of ξ. 

• We build non-Gaussian multivariate likelihood distributions via 
PCA. But we do not detect a difference between a Gaussian model 
and more complicated models. 

• We do not detect strong biases in Ωm and s8 in the Maximum 
Likelihood Fitting method or MCMC chains. 

• Sims:100 deg2   /   LSST: 18k deg2 
 
Since the mean-mode difference scales with the survey area  
as                             , the biases would be even smaller for LSST. 

• Our results suggest that neglecting the non-Gaussianity of the 
likelihood for shear-shear correlations is not a significant source of 
bias for ongoing surveys or even future ones such as LSST.

Non-Gaussian likelihood 5

Figure 2. Information content versus number of principal components used
in data analysis: the square root of the determinant of the inverse parameter
covariance, i.e. the Fisher information matrix, quantifies the amount of re-
tained information in terms of constraining power. In the plot, the metric is
normalized by the total information content (770 components). By keeping
the first 150 components, we retain 77% of information with 20% of data
points.

with univariate distributions. We then continue to use two para-
metric functions, Gaussian function and Edgeworth function, to de-
scribe the one-dimensional distributions of principal components.
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measures the outliers of the distribution. Since the fourth moment
of the standard normal distribution equals to three, the kurtosis (or
more precisely, the excess kurtosis) is defined as the normalized
fourth moment subtracted by 3.

4 MODEL ASSESSMENT AND DATA COMPRESSION

The goal of this section is to introduce the statistical tools that we
use to construct and assess the one-dimensional and multidimen-
sional likelihood models in PCA coordinates. To properly compare
different likelihood models and avoid overfitting, we use 10-fold
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