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Messages

Accurate, efficient, and general method to analytically quantify the
disconnected (“Gaussian”) covariance of LSS 2-point functions, taking into

account the window effect.

e Accurate and efficient: tested against mocks; taking minutes on a single core
e Generality: cross correlation, joint probe, 2D & 3D, configuration & Fourier
e Analytical: noiseless (easy to invert), and can use best-fit cosmology/model

Code available at https://github.com/eelregit/mcfit and https://github.com/eelreqit/covdisc



https://github.com/eelregit/mcfit
https://github.com/eelregit/covdisc

What is “disconnected” covariance?

e “Gaussian’ # “Disconnected” because tracers are discrete

e Two ways to decompose your covariance
o Statistically, by cumulant expansion: disconnected (nearly diagonal / full-rank) vs connected
(smooth and low-rank, Harnois-Déraps & Pen 12)

Conn. cov. kicks in; Disc. cov. dominates;
Window is negligible Window is important
small scale large scale

o Theoretically, as a doubly stochastic process: point process (Poisson, ...) sampling a
continuous one (Gaussian and higher-order stats)

e The conventional terminology “Gaussian covariance” can be confusing, e.g.
both disc. and conn. have Gauss+Poisson contributions



Approaches

Internal (from data, e.g. External (from mocks)

subsample, jackknife, bootstrap)

e Pros
e Pros o  Canin principle include the
o Has everything (right right physics and
cosmology, physic, systematics
systematics) e Cons
e Cons o  But difficult in practice, and

o Lose large-scale modes
o  Noisy, need to inflate the
errors on parameters

need a fixed fiducial
cosmology

Noisy, need to inflate the
errors on parameters
Costly

Analytic

e Pros
o  Noiseless
o  Can be based on the
best-fit cosmology
e Cons
o Intractable, especially in the
connected part, to
accurately model the
nonlinear mode coupling,
super-sample covariance,
baryonic effects, etc.

e Talks by Tim & Alexandre



Our approach

Hybrid approach

Internal (in progress)

Conn. cov. kicks in;
Window is negligible

Analytical (this work)

Disc. cov. dominates;
Window is important

small scale

large scale




Disconnected Covariance: Modeling the Window

Flat-sky limit = Formalism

Drop power and
window coupling Window function

(curved sky)

= Disc. cov

Best-fit power
spectrum model




Disconnected Covariance: Modeling the Window

Usual analytic cov. ignores the shape of the window, by using a diagonal
covariance, that only captures the size of the window
We model the window effect in the flat-sky limit (FKP94)

Numerical integration to predict disc. cov. given power spectrum and window

o power spectrum constrained by the data given a model
o curved-sky window measured from a random catalog

So both power and window inputs are curved-sky entities

Will show later validation against mocks on power spectrum multipoles
Corollaries: correlation function, wedge, angular, projected, projected x
multipole



Q Windows (you need three of them)
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Diagonal Limit
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After binning in k, they become three different effective number of modes



Double Bessel Quadrature

After integrating out the angular part of the integrals analytically, we are left with
some radial integrals that we have to do numerically. The tricky ones look like the

following

which we solved with a novel algorithm using Hankel transform (integral involving
only a single Bessel function) implemented with mcfit

Other application includes exact 3D-to-angular projection without Limber approx.


https://github.com/eelregit/mcfit

Test case: 3D galaxy clustering
e The 2-point functions are the power spectrum multipoles
e Validation against Patchy mocks (BOSS DR12)

e Formalism is general. See the paper for corollaries: correlation function,
wedge, angular, projected, projected x multipole, etc.



Two Inputs: power and window
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Compare Covariance Matrix Slices
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different and only nonzero on
top of “peaks”



Compare Covariance Matrix

Slices
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Compare SNR, Analytical vs Diagonal

e Binning affects the direct S s i
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Summary

Accurate, efficient, and general method to analytically quantify the
disconnected (“Gaussian”) covariance of LSS 2-point functions, taking into
account the window effect.

e Accurate and efficient: tested against mocks; taking minutes on a single core
e Generality: cross correlation, joint probe, 2D & 3D, configuration & Fourier
e Analytical: noiseless (easy to invert), and can use best-fit cosmology/model

Code available at https://github.com/eelregit/mcfit and https://github.com/eelreqit/covdisc



https://github.com/eelregit/mcfit
https://github.com/eelregit/covdisc

(Backup) Just the Disconnected Part
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(Backup) Why you need Three Q Wlndows

Both curves are analytic, so
the unbinned covariance is
shown for clarity. The
prediction using only one
window (that of the P? term)
becomes inaccurate where
P IS iImportant
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