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Galaxy mass

What we know already:

RodriguezPueblal7; z = 0.4
Tinkerl7; 0.4 <z < 0.7
Mosterl8; z = 0.5
Kravtsovl®; z = 0.1

This work : (M,),,

This work : (M)
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Dark matter halo mass

(highly incomplete list, many other key papers on this topic)



Galaxy mass

What we know already:

RodriguezPueblal7; z = 0.4 (b)
Tinkerl7; 0.4 <z < 0.7

Mosterl&; z = 0.5

Kravtsovl8; z = 0.1
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Huang et al. in prep
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Dark matter halo mass

does the way
Mmass Is
distributed
correlate with
halo mass?



HSC survey
Wide + Deep + Lensing
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Rare objects Dark Matter Halos

Faint outskirts



A Large Sample of Super Massive (Galaxies

3000 galaxies with M«>10!!.6 Mg 0.2 < redshift < 0.5

| D surface brightness profile
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Stellar Profiles of Super Massive (Galaxies

50 UURTIUsd Profiles detected to
100 kpc

for individual galaxies
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no stacking!
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|. Massive Galaxies
are not self similar
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2. Large scatter in the
outskirts (can be
measured in HSC!)

3. Diversity of massive
galaxy outskirts
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Is the scatter amongst profiles
(diversity of stellar envelopes)
connected to dark matter halo mass?

Assembly of outer galaxy & assembly

of dark matter halo?



Mlokpc and Mlookpc M&SSGS
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Average Profiles of
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M iokpe and Miookpe Masses
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Mlokpc aﬂd Mlookpc MELSS@S
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Diversity of Stellar Envelopes
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Diversity of Stellar Envelopes

o0 100 150 kpc
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[Larger Einvelopes = Larger Dark Matter Halo

(Halo mass dependence of the mass-size relation)
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Mass within 100 kpc

Huang et al. 2018c in prep Also see Charlton et al. 2017



Scatter in Stellar to Halo Mass
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Splashback

radius with
lensing

Dwarf

Enia Xhakaj

Apples to apples & Lre
comparison § TN
between HSC | .
and predlctlons , ¢
from hydro "
simulations
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Sunm Mary

HSC detects lights of super massive galaxies to 100
kpc

Super massive galaxies are not self similar - diversity of
stellar envelopes

Weak lensing = tight scaling relation between

amplitudes/slopes of light profiles and dark matter
halo mass

References:

Huang et al. 2018a arXiv:1707.01904
Huang et al. 2018b arXiv:1803.02824
Huang et al. 2019

DESI is starting soon! Lensing of DESI galaxies!

Christopher Bradshaw: scatter in M* - Mhalo
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Kavli Summer Program In Astrophysics 2019:

Machine Learning in the era of large astronomical surveys

UC Santa Cruz, July &th - August 16th, 2019

The pastdecade has ushered in tre era of Big Data in zstronomy -- multiple surveys thzt image large areas of
the night sky, spectrasenpic pragrams that comple millions of spectra sach comprised of thousands of data-
pcints, and large-scale numerical simulations capable o generating Teratbytes of outputs in a single run. This
torrent of data is forcing the astronomical community to evolve away from traditional approaches to data analy-
sis. Even algorithms and techniques developed for modzast datasets are being overwhelmed or lack sufficiznt

Galaxy-Galaxy Lensing in HSC: Validation Tests and the
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