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Fig. 2. Illustration of the forward problem. The upper panels show how the original galaxy
image is sheared, blurred, pixelised and made noisy. The lower panels show the equivalent
process for (point-like) stars. We only have access to the right hand images.

Stars are far enough away from us to appear point-like. They therefore
provide noisy and pixelised images of the convolution kernel (lower panels of
Figure 2). The convolution kernel is typically of a similar size to the galaxies

Fig. 3. Illustration of the inverse problem. We begin on the right with a set of galaxy and
star images. The full inverse problem would be to derive both the shears and the intrinsic
galaxy shapes. However shear is the quantity of interest for cosmologists.

How do we get g from a 
galaxy image?
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2 Viola et al.

and a novel one which employs a third-order relation. We inves-
tigate the validity of the PSF-correction approach in Sect. 4 and
comment on the possibility of an improved correction for PSF el-
lipticities. We conclude in Sect. 5.

2 WEAK LENSING BASICS

This section summarises the basic weak-lensing concepts that
will be used later. For a complete overview we refer to
Bartelmann & Schneider (2001). An isolated lens with surface
mass density Σ(θ) has the lensing potential

Ψ(θ) =
4G
c2

DlDs

Dls

∫

d2θ′Σ(θ′) ln |θ − θ′|, (1)

where G and c are the usual constants and Dl,s,ls are the angular-
diameter distances between the observer and the lens, the observer
and the source, and the lens and the source, respectively.

To sufficient accuracy, light rays are deflected by the angle

α(θ) = ∇Ψ(θ) , (2)

which relates the angular positions of the source β and the image
θ on the sky by the lens equation

β = θ −α(θ) . (3)

If the lens mapping changes little across the solid angle of a source,
the lens mapping can be locally linearised to describe the image
distortion the Jacobian matrix

A ≡
∂β
∂θ

=

(

δij −
∂2Ψ(θ)
∂θi∂θj

)

=

(

1− κ− γ1 −γ2
−γ2 1− κ+ γ1

)

,

(4)
with the convergence

κ(θ) =
1
2
(Ψ11 +Ψ22) (5)

and the two components

γ1 =
1
2
(Ψ11 −Ψ22) , γ2 = Ψ12 (6)

of the complex shear γ = γ1 + iγ2. Image distortions measure the
reduced shear

g =
γ

1− κ
(7)

instead of the shear γ itself. To linear order, θ and β are related by

βi = Aijθ
j . (8)

2.1 Shear estimation

The shape of an extended source can be descibed by angular mo-
ments of its surface brightness distribution I(θ),

Qij...k =

∫

I(θ)θiθj ...θkd
2θ . (9)

Q is the total flux,Qi defines the centroid of the image, and higher-
order moments provide information on the image’s morphology.
Combinations of second moments are used to quantify the image’s
ellipticity, which we introduce as

χ =
(Q11 −Q22) + 2iQ12

Q11 +Q22
. (10)

The complex ellipticity χ is related to the reduced shear g by

χs =
χ− 2g + g2χ∗

1 + |g|2 − 2ℜ(gχ∗)
, (11)

(Schneider & Seitz 1995), where χs is the unlensed (intrinsic) el-
lipticity. This relation holds as long as the lens mapping can be
locally linearised. Information on the intrinsic ellipticity of a single
object is not accessible. Reasonable shear estimates thus require av-
eraging over many galaxies in a region where g can be considered
constant, assuming that the average of χs vanishes,

0 = ⟨χs⟩ =

〈

χ− 2g + g2χ∗

1 + |g|2 − 2ℜ(gχ∗)

〉

. (12)

If the coordinate frame is rotated such that only one shear compo-
nent does not vanish, Eq. (12) is solved by

g ≃
⟨χ⟩

2(1− σ2
χ)

+
⟨χ⟩3

8

1− 5σ2
χ

(1− σ2
χ)4

+O(⟨χ⟩5) (13)

where σχ is the standard deviation of the intrinsic ellipticity distri-
bution. In the derivation of the equation above we neglected higher
order moments of the intrinsic ellipticity distribution. Note that the
average ellipticity appears in this equation, and that the relation be-
tween the average ellipticity and the shear is generally non-linear.
We recall here that other ellipticity estimators can be defined in ad-
dition to the one presented in Eq. (10). Another common estimator
is

ϵ =
(Q11 −Q22) + 2iQ12

Q11 +Q22 + 2(Q11Q22 −Q2
12)

1/2
, (14)

which has a perfect response to shear, i.e. the shear responsivity is
1 (Seitz & Schneider 1997). However this estimator is considered
more noisy and therefore not commonly used in weak-lensing mea-
surements, and in particular it is not used by KSB. For this reason
we will employ χ as ellipticity estimator rather than ϵ throughout
this work.

3 SHEARMEASUREMENTS

In practice, shear estimates are obtained from small and noisy back-
ground galaxies. The observed shape of any object is the result of a
convolution of its intrinsic surface brightness I0(θ) with the point
spread function P (θ). The convolution tends to make the object
more circular or to imprint a spurious ellipticity on it if the PSF is
not isotropic. Moreover, any measurement of moments has to incor-
porate a weight function in order to suppress the pixel noise dom-
inating at large spatial scales. Convolution and weighting change
the surface brightness to

Iobs(θ) = W (θ)

∫

I0(θ′)P (θ − θ′)d2θ′. (15)

Since we are interested in the object’s unconvolved and unweighted
shape, we need to correct these two effects. In this Section, we first
assume P (θ − θ′) → δ(θ − θ′), i.e. we neglect the PSF convolu-
tion, and postpone the PSF correction to the following Section.

3.1 Standard KSB

We review in this section the standard KSB formalism, neglecting
PSF convolution. In this situation the only complication is given
by the presence of the weighting function for the computation of
moments, which modifies the relation between shear and ellipticity
given by Eq. (11). Weighting changes Eq. (10) to

χα =
1

Tr(Q)

∫

d2θIobs(θ)ηαW

(

|θ|2

σ2

)

, (16)
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Kaiser, Squires, Broadhurst (1995)

Metacalibration 5

Figure 1. Left: Normalized distribution of metacalibration shear responsivities from regaussianization, on the Control-Ground-Constant
branch of the GREAT3 simulations. Right: Distribution of metacalibration PSF ellipticity responsivities from regaussianization, on the
Control-Ground-Constant branch of the GREAT3 simulations. A vertical red dashed line is drawn for reference at the expected responsivity
for perfectly round objects, R = 2, in the left panel.

simulations (e.g., Mandelbaum et al. 2005, 2012, 2013,
2015).
The outputs of the re-Gaussianization algorithm are

PSF-corrected “distortions”, which for an object with
purely elliptical isophotes with minor-to-major axis ratio
q and position angle ✓ with respect to the x axis in pixel
coordinates are defined as

(e
1

, e

2

) =
1 � q

2

1 + q

2

(cos 2✓, sin 2✓) . (9)

As discussed in Bernstein & Jarvis (2002), the response
of a distribution of galaxies with some intrinsic distribu-
tion of distortions p(e) to a shear depends on the p(e)
itself. Conceptually, we can think of an ensemble shear
estimator using re-Gaussianization outputs as

ĝ

j

=
he

j

i
dhe

j

i/dg
j

(10)

where the denominator gives the response of the ensem-
ble average distortion to a shear (often called the respon-
sivity). Estimators of this shear responsivity use the
observed galaxy p(e) and its moments, and for typical
p(e), the denominator is around 1.7–1.8 ⇡ 2(1 � e

2

RMS

)
in terms of the per-component RMS distortion. As this
implementation was meant to be a simple and fast ex-
ample, its intrinsic calibration correction is a simple one
that does not include all known systematics.

3.2.2. KSB

The KSB method (Kaiser et al. 1995) parametrises
galaxies and stars according to their weighted quadrupole
moments. The main assumption of the KSB method is
that the PSF can be described as a small but highly
anisotropic distortion convolved with a large circularly
symmetric function. With that assumption, the shear
can be recovered to first-order from the observed ellip-
ticity of each galaxy via

g = P

�1

g

✓
e

obs � P

sm

P

sm⇤ e
⇤
◆
, (11)

where asterisks indicate quantities that should be mea-
sured from the PSF model at that galaxy position, P sm

is the smear polarisability (see Heymans et al. 2006 for
definitions) and P

g

is the correction to the shear polar-
isability that includes the smearing with the isotropic
component of the PSF. The ellipticities are constructed
from weighted quadrupole moments, and the other quan-
tities involve higher order moments. A circular Gaus-
sian weight of scale length r

g

is used, where r

g

is galaxy
size, as determined by the second moment of the surface-
brightness profile.
The KSB method returns a per-object estimate of the

shears (ĝ
1

, ĝ

2

). We can use metacalibration to remove
multiplicative and additive biases that come from aver-
aging the per-object KSB shear estimates.

3.2.3. Linear Moments

As mentioned previously, the third method we use does
not involve PSF-corrected galaxy shapes. Instead, we use
linear combinations of the second moments of galaxy im-
ages. The motivation behind this choice is as follows.
One way to estimate the distortion (e

1

, e

2

) is via combi-
nations of the second moments of the light profile,

hx
i

i =
R
x

i

w(x)I(x)d2xR
w(x)I(x)d2x

(12)

for i = 1, 2,

M

ij

=

R
(x

i

� hx
i

i)(x
j

� hx
j

i)w(x)I(x)d2xR
w(x)I(x)d2x

(13)

for i, j = 1, 2, and finally

e

1

=
M

11

� M

22

M

11

+M

22

, e

2

=
2M

12

M

11

+M

22

. (14)

One source of noise (and noise bias) in traditional
moments-based methods is the division of two noisy
quantities in Eq. 14, typically followed by further division
by other noisy quantities to remove the dilution of the
galaxy shape by the PSF. Thus, as a final example of a
statistic that we will attempt to use as a calibrated shear
estimator with metacalibration, we define the following
linear combinations of moments:

M̂

i

= (M
11

� M

22

, 2M
12

). (15)

1. Compute second moments. 
2. Calculate the responses to shear (Pg) and 

PSF ellipticity (Psm). 
3. Correct for PSF ellipticity (e*).

This doesn’t seem that bad.
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Figure 17. Multiplicative and additive biases for constant-shear branches in the control (left) and realistic galaxy (right) experiments,
for ground (top) and space (bottom) branches. For each branch, we show the averaged (over components) multiplicative bias ⟨m⟩ vs.
c+, the additive bias term defined in the coordinate system defined by the PSF anisotropy. The axes are linear within the target region
(|m| < 2× 10−3 and |c| < 2× 10−4, shaded grey) and logarithmic outside that region.

Figure 16. Comparison between the Qv predicted from the
constant-shear branch results (CGC), and the actual Qv results
for variable shear (CGV).

sitive than Qv. The results for Amalgam@IAP and CEA-
EPFL are good in many branches, but exhibit significant
fluctuations due to partial cancellations of biases. The re-
sults for Fourier_Quad with a realistic weighting scheme
are quite good, but degraded compared to the results with
the unrealistic weighting schemes.

The errorbars in Fig. 15 show that for lower Q values,
the uncertainty in Q is very small. However, near the tar-
get Q values, small uncertainties in m and c become large
uncertainties in Q. These errorbars are quite non-Gaussian,
so for example the difference between Q = 500 and 1000 for
control space branches is significantly more than the 2σ sug-
gested by the plot. It is apparent that in many branches, 2–3
teams performed well enough that the differences between
their Q values (and between the target of ∼ 1000) are not
statistically significant.

One basic question is whether the results in the constant
and variable shear branches are consistent. We cannot di-
rectly compare Qc and Qv, because they respond to system-
atic errors in different ways. However, for a given constant-
shear submission, we can use the recovered m and c values
to predict Qv by simulating variable shear submissions with
those m and c, and then checking their Qv. Comparing the

c⃝ 0000 RAS, MNRAS 000, 000–000

Broad dissensus in blind 
community challenges

Mandelbaum et al. 2014
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EPFL are good in many branches, but exhibit significant
fluctuations due to partial cancellations of biases. The re-
sults for Fourier_Quad with a realistic weighting scheme
are quite good, but degraded compared to the results with
the unrealistic weighting schemes.

The errorbars in Fig. 15 show that for lower Q values,
the uncertainty in Q is very small. However, near the tar-
get Q values, small uncertainties in m and c become large
uncertainties in Q. These errorbars are quite non-Gaussian,
so for example the difference between Q = 500 and 1000 for
control space branches is significantly more than the 2σ sug-
gested by the plot. It is apparent that in many branches, 2–3
teams performed well enough that the differences between
their Q values (and between the target of ∼ 1000) are not
statistically significant.

One basic question is whether the results in the constant
and variable shear branches are consistent. We cannot di-
rectly compare Qc and Qv, because they respond to system-
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probability of selection after a positive or negative shear
is applied, respectively.

3.1. Response for the Mean Shear

Suppose we which to use the mean ellipticity as an
estimator for the mean shear. The mean ellipticity over
a large ensemble can be written as

⟨e⟩ =

∫
P (e) e de, (7)

where P (e) is the probability distribution of e. We
choose to work with continuous functions so that all
derivatives are well defined, in particular the derivative
of the selection function that we introduce below.
Assuming each galaxy experiences a small shear, and

that galaxy orientations are random in the absence of
shear, the mean ellipticity can be rewritten, to leading
order, as

⟨e⟩ ≈

∫
de

∂P (e)e

∂γ

∣∣∣∣
γ=0

γ de = ⟨Rγγ⟩, (8)

where we have ignored the perturbation of the normal-
ization

∫
deP (e), because it leads to terms that are sec-

ond order or higher in the shear. The mean shear is thus
weighted by a response matrix Rγ . This is the same 2×2
response matrix discussed in §2; we have added the sub-
script γ to differentiate this response from the selection
response discussed below. If the Rγ are known, we can
form a weighted average estimator for the mean shear:

⟨γ⟩ ≈ ⟨Rγ⟩
−1 ⟨e⟩ ≈ ⟨Rγ⟩

−1 ⟨Rγγ⟩ . (9)

We can calculate this mean response ⟨Rγ⟩ using quan-
tities measured on artifically sheared images, as discussed
in §2. We will approximate the derivatives using finite
differences in the shear, such that

⟨Rγ⟩ =

∫
∂P (e)e

∂γ

∣∣∣∣
γ=0

de ≈

∫
de

(
P+e+i − P−e−i

∆γj

)
de

=
⟨e+i ⟩ − ⟨e−i ⟩

∆γj
, (10)

where we switched to component notation, such that i, j
denotes derivative of the i-th ellipticity component with
respect to the j-th shear component. In practice, this av-
eraging is performed over an ensemble of measurements
for discrete objects. It is equivalent to averaging the re-
sponses as measured for each object.

3.1.1. Selection Effects for the Mean Shear

Now consider a selection that modifies the distribution
of the measurement e. We will write this selection func-
tion as S(e), the probability of selecting an object with
ellipticity e, although the selection may be indirect, for
example a cut on S/N . This selection function could also
represent some kind of weighting scheme that indirectly
weights by ellipticity.
After introducing a selection, the mean becomes

⟨e⟩S =

∫
S(e) P (e) e de. (11)

We will assume the
∫
deP (e)S(e) = 1, and continue to

ignore the higher order effect from changes in the normal-
ization under shear. Again, assuming a small shear, and
that galaxy orientations are random in the absence of
shear, the mean ellipticity after selection can be rewrit-
ten, to leading order, as

⟨e⟩ ≈

∫
de

∂S(e)P (e)e

∂γ

∣∣∣∣
γ=0

γ de = ⟨Rγ⟩, (12)

Thus, the mean shear in the presence of selections is
also weighted by a response term R, and this response
now includes the shear response as well as the effects of
the selections. The probability that an object is selected
changes after it is sheared.
This response with selections can be calculated using

quantities measured on artifically sheared images. It is
useful to examine separately the response of the estima-
tor e to a shear, and the response of selection effects to
a shear:

⟨R⟩ =

∫
∂S(e)P (e)e

∂γ

∣∣∣∣
γ=0

de

=

∫ [

S(e)
∂P (e)e

∂γ

∣∣∣∣
γ=0

+ P (e)e
∂S(e)

∂γ

∣∣∣∣
γ=0

]

de

(13)

Note the first term is identical to the response in equation
8, but now with selections applied. As we will see, the
second term represents the response of selection effects
to a shear.
We will again approximate the derivatives using finite

differences in the shear. Using the notation for mea-
surements on sheared images, introduced in §3, we can
rewrite the response as

⟨R⟩ ≈

∫
de

[
S

(
P+e+i − P−e−i

∆γj

)
+ Pei

(
S+ − S−

∆γ

)]
de

=
⟨e+i ⟩

S − ⟨e−i ⟩
S

∆γj
+

⟨ei⟩S+ − ⟨ei⟩S−

∆γj
≡ ⟨Rγ⟩+ ⟨RS⟩, (14)

where ⟨e+⟩S represents the mean of the sheared ellip-
ticity, with selections based on the unsheared parame-
ters, ⟨e⟩S+ represents the mean of the unsheared ellip-
ticities, with selection based on the sheared parameters.
Thus the first term ⟨Rγ⟩ in equation 14 is the average
of the shear responses measured for individual galaxies,
the same as shown in equation 10, but now with selec-
tions applied based on the unsheared object parameters.
The second term ⟨RS⟩ calculates how the mean ellip-
ticity changes due to selections when measurements are
performed on sheared images, in other words how the
selection effects change under a shear. We say ⟨RS⟩ rep-
resents the response of the selection effects to a shear.
In order to calculate the desired weighted mean shear,

one measures the following:

1. The mean ellipticity measured from unsheared im-
ages, selecting on measurements from unsheared im-
ages. This is the mean shear estimator we wish to
calibrate.

4 Sheldon and Huff

probability of selection after a positive or negative shear
is applied, respectively.

3.1. Response for the Mean Shear

Suppose we which to use the mean ellipticity as an
estimator for the mean shear. The mean ellipticity over
a large ensemble can be written as

⟨e⟩ =

∫
P (e) e de, (7)

where P (e) is the probability distribution of e. We
choose to work with continuous functions so that all
derivatives are well defined, in particular the derivative
of the selection function that we introduce below.
Assuming each galaxy experiences a small shear, and

that galaxy orientations are random in the absence of
shear, the mean ellipticity can be rewritten, to leading
order, as

⟨e⟩ ≈

∫
de

∂P (e)e

∂γ

∣∣∣∣
γ=0

γ de = ⟨Rγγ⟩, (8)

where we have ignored the perturbation of the normal-
ization

∫
deP (e), because it leads to terms that are sec-

ond order or higher in the shear. The mean shear is thus
weighted by a response matrix Rγ . This is the same 2×2
response matrix discussed in §2; we have added the sub-
script γ to differentiate this response from the selection
response discussed below. If the Rγ are known, we can
form a weighted average estimator for the mean shear:

⟨γ⟩ ≈ ⟨Rγ⟩
−1 ⟨e⟩ ≈ ⟨Rγ⟩

−1 ⟨Rγγ⟩ . (9)

We can calculate this mean response ⟨Rγ⟩ using quan-
tities measured on artifically sheared images, as discussed
in §2. We will approximate the derivatives using finite
differences in the shear, such that

⟨Rγ⟩ =

∫
∂P (e)e

∂γ

∣∣∣∣
γ=0

de ≈

∫
de

(
P+e+i − P−e−i

∆γj

)
de

=
⟨e+i ⟩ − ⟨e−i ⟩

∆γj
, (10)

where we switched to component notation, such that i, j
denotes derivative of the i-th ellipticity component with
respect to the j-th shear component. In practice, this av-
eraging is performed over an ensemble of measurements
for discrete objects. It is equivalent to averaging the re-
sponses as measured for each object.

3.1.1. Selection Effects for the Mean Shear

Now consider a selection that modifies the distribution
of the measurement e. We will write this selection func-
tion as S(e), the probability of selecting an object with
ellipticity e, although the selection may be indirect, for
example a cut on S/N . This selection function could also
represent some kind of weighting scheme that indirectly
weights by ellipticity.
After introducing a selection, the mean becomes

⟨e⟩S =

∫
S(e) P (e) e de. (11)

We will assume the
∫
deP (e)S(e) = 1, and continue to

ignore the higher order effect from changes in the normal-
ization under shear. Again, assuming a small shear, and
that galaxy orientations are random in the absence of
shear, the mean ellipticity after selection can be rewrit-
ten, to leading order, as

⟨e⟩ ≈

∫
de

∂S(e)P (e)e

∂γ

∣∣∣∣
γ=0

γ de = ⟨Rγ⟩, (12)

Thus, the mean shear in the presence of selections is
also weighted by a response term R, and this response
now includes the shear response as well as the effects of
the selections. The probability that an object is selected
changes after it is sheared.
This response with selections can be calculated using

quantities measured on artifically sheared images. It is
useful to examine separately the response of the estima-
tor e to a shear, and the response of selection effects to
a shear:

⟨R⟩ =

∫
∂S(e)P (e)e

∂γ

∣∣∣∣
γ=0

de

=

∫ [

S(e)
∂P (e)e

∂γ

∣∣∣∣
γ=0

+ P (e)e
∂S(e)

∂γ

∣∣∣∣
γ=0

]

de

(13)

Note the first term is identical to the response in equation
8, but now with selections applied. As we will see, the
second term represents the response of selection effects
to a shear.
We will again approximate the derivatives using finite

differences in the shear. Using the notation for mea-
surements on sheared images, introduced in §3, we can
rewrite the response as

⟨R⟩ ≈

∫
de

[
S

(
P+e+i − P−e−i

∆γj

)
+ Pei

(
S+ − S−

∆γ

)]
de

=
⟨e+i ⟩

S − ⟨e−i ⟩
S

∆γj
+

⟨ei⟩S+ − ⟨ei⟩S−

∆γj
≡ ⟨Rγ⟩+ ⟨RS⟩, (14)

where ⟨e+⟩S represents the mean of the sheared ellip-
ticity, with selections based on the unsheared parame-
ters, ⟨e⟩S+ represents the mean of the unsheared ellip-
ticities, with selection based on the sheared parameters.
Thus the first term ⟨Rγ⟩ in equation 14 is the average
of the shear responses measured for individual galaxies,
the same as shown in equation 10, but now with selec-
tions applied based on the unsheared object parameters.
The second term ⟨RS⟩ calculates how the mean ellip-
ticity changes due to selections when measurements are
performed on sheared images, in other words how the
selection effects change under a shear. We say ⟨RS⟩ rep-
resents the response of the selection effects to a shear.
In order to calculate the desired weighted mean shear,

one measures the following:

1. The mean ellipticity measured from unsheared im-
ages, selecting on measurements from unsheared im-
ages. This is the mean shear estimator we wish to
calibrate.

Shear selection biases:  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calibration estimates for shear responsivity. For the cases
we describe below, an optimal strategy for ensemble av-
eraging produces significant gains over more straightfor-
ward averaging schemes.

2.1. Generating a Counterfactual Image

Fortunately, for the weak shears under consideration
in most cosmological survey applications, the relation-
ship between the shear and the galaxy shapes (or related
observables) is very close to linear, so accurate shear cal-
ibration requires only the first derivative of the galaxy
properties with respect to the shear. What follows is a
method for estimating this derivative directly from the
images. Throughout we will assume that the observed
image I(x) is equal to the unsmeared galaxy image G(x)
convolved with some point-spread function (including the
atmospheric seeing, the optical PSF, and the pixel re-
sponse function) P (x).
In an ideal world, we would calibrate our measurement

algorithm by making measurements while varying the
gravitational shear experienced by the pre-seeing image,
constructing the counterfactual image I

0(x|g):
I

0(x|g) = P ⇤ (ŝgG) (4)

where ŝg is the shear operator that produces the reduced
shear g, as in e.g. Bernstein & Jarvis (2002). The shear
sensitivity of the image would then be a straightforward
numerical derivative of I 0 with respect to g, and the shear
sensitivity of an ellipticity measure e can be calculated
from measurements on multiple counterfactual images.
We can even write down a formal procedure for produc-
ing I

0 from I if we know P :

I

0(x|g) = P ⇤
⇥
ŝg

�
P

�1 ⇤ I

�⇤
. (5)

The convolutions become products in Fourier space,
where we can write

˜
I

0(k|g) = P̃

⇤(k) ŝg

 
Ĩ(k)

P̃

⇤(k)

!
(6)

Noise in the original image Ĩ generally has power at
Fourier modes where P̃ is small or vanishing. The power
in these modes will thus be formally large or infinite.
Because of the shear operation, this power is not sub-
sequently cancelled by multiplication by P̃ . We must
choose a new PSF � for the final convolution step to
suppress this deconvolution-amplified noise.
If ||P̃ (k)|| is monotonically decreasing with k, this con-

dition can be achieved without introducing additional
PSF anisotropy by choosing

�(x) = P ((1 + 2|�|)x) . (7)

This does not always work, however. If ||P̃ (k)|| crosses
zero (as in cases with a strongly under-sampled PSF)
the ratio of �̃(k) and the sheared, deconvolved image will
still be formally large or infinite, as power from k�values
beyond the zero crossing will be dragged by the shear
operation into the region where the dilated PSF does
not vanish.
Other, implementation-specific considerations may be

important when choosing �. When choosing a target
PSF, it may prove convenient to design one which is

well-suited to the shear estimator in hand. We defer
exploration of this topic to future work.
Our chosen procedure for producing a sheared coun-

terfactual image is

I

0(x|g) = � ⇤
⇥
ŝg

�
P

�1 ⇤ I

�⇤
. (8)

This procedure clearly requires a good model for P , but
so do all shear measurements. PSF model errors enter at
the same order in measurements on the resulting image
that they would in an unmodified image.
Once the counterfactual image I

0(x|g) with kgk ⌧ 1
has been created, the galaxy detection and shear mea-
surement pipeline should be rerun. This provides a mea-
sure of the shear sensitivity – not for the original image,
but for an image with the PSF �. This requires that the
full measurement – not just the sensitivity analysis – be
run on an additional counterfactual image I

0(x|g = 0),
so that the numerical derivative @I

0

@g is well-defined.
This procedure introduces anisotropic correlated noise,

which can produce a systematic multiplicative shear bias.
If the noise properties of the initial image are known, the
noise anistropy can be removed with the addition of fur-
ther anisotropic correlated noise (with power spectrum
carefully chosen). As we describe below, we have not
found noise isotropization to be a necessary step for the
images that we used for testing. These have an e↵ective
S/N limit of ⇠ 12, and the mode of the distribution is
⇠ 20. Concurrent work (Sheldon & Hu↵ 2017) inves-
tigates the e↵ects of the anisotropic correlated noise at
lower signal-to-noise ratios, and describe e↵ective miti-
gation procedures.
Metacalibration can be used to mitigate other system-

atics as well. Even those measurement methods with the
highest scores in the GREAT3 lensing challenge were un-
able to completely remove the e↵ects of PSF ellipticity
on the inferred shear. We can introduce an artifical PSF
anisotropy by replace � with a PSF containing the de-
sired synthetic distortion. We show below that recon-
structing images with added PSF ellipticity, rather than
added shear, allows us to de-trend some of the bias due
to PSF anisotropy. A similar approach could be used
to measure additive or multiplicative calibration biases
arising from any e↵ect – signal or systematic error – that
can be simulated by perturbing the images as above.

2.2. Shape Measurement Algorithms

Accurate ensemble shears can only be derived through
measurement of the counterfactual images described
above if the shape measurement algorithm is su�ciently
well-behaved. Here, that entails the requirement that
the quantity reported by the shape measurement algo-
rithm be su�ciently linear in the underlying shear in the
regime relevant for the measurement that the ensemble
response is truly linear.
We test a variety of shape algorithms below that make

use of di↵ering definitions of ellipticity. As we are at-
tempting to construct a shear calibration procedure that
is agnostic about the choice of per-object shape measure-
ment algorithm, and which only requires that we use a
measured galaxy property with approximately linear sen-
sitivity to shear (called a shape measure), we will use e

below to signify all of the shape measures discussed in
this paper, regardless of their precise definition.

Construct counterfactual images
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calibration estimates for shear responsivity. For the cases
we describe below, an optimal strategy for ensemble av-
eraging produces significant gains over more straightfor-
ward averaging schemes.

2.1. Generating a Counterfactual Image

Fortunately, for the weak shears under consideration
in most cosmological survey applications, the relation-
ship between the shear and the galaxy shapes (or related
observables) is very close to linear, so accurate shear cal-
ibration requires only the first derivative of the galaxy
properties with respect to the shear. What follows is a
method for estimating this derivative directly from the
images. Throughout we will assume that the observed
image I(x) is equal to the unsmeared galaxy image G(x)
convolved with some point-spread function (including the
atmospheric seeing, the optical PSF, and the pixel re-
sponse function) P (x).
In an ideal world, we would calibrate our measurement

algorithm by making measurements while varying the
gravitational shear experienced by the pre-seeing image,
constructing the counterfactual image I

0(x|g):
I

0(x|g) = P ⇤ (ŝgG) (4)

where ŝg is the shear operator that produces the reduced
shear g, as in e.g. Bernstein & Jarvis (2002). The shear
sensitivity of the image would then be a straightforward
numerical derivative of I 0 with respect to g, and the shear
sensitivity of an ellipticity measure e can be calculated
from measurements on multiple counterfactual images.
We can even write down a formal procedure for produc-
ing I

0 from I if we know P :

I

0(x|g) = P ⇤
⇥
ŝg

�
P

�1 ⇤ I

�⇤
. (5)

The convolutions become products in Fourier space,
where we can write

˜
I

0(k|g) = P̃

⇤(k) ŝg

 
Ĩ(k)

P̃

⇤(k)

!
(6)

Noise in the original image Ĩ generally has power at
Fourier modes where P̃ is small or vanishing. The power
in these modes will thus be formally large or infinite.
Because of the shear operation, this power is not sub-
sequently cancelled by multiplication by P̃ . We must
choose a new PSF � for the final convolution step to
suppress this deconvolution-amplified noise.
If ||P̃ (k)|| is monotonically decreasing with k, this con-

dition can be achieved without introducing additional
PSF anisotropy by choosing

�(x) = P ((1 + 2|�|)x) . (7)

This does not always work, however. If ||P̃ (k)|| crosses
zero (as in cases with a strongly under-sampled PSF)
the ratio of �̃(k) and the sheared, deconvolved image will
still be formally large or infinite, as power from k�values
beyond the zero crossing will be dragged by the shear
operation into the region where the dilated PSF does
not vanish.
Other, implementation-specific considerations may be

important when choosing �. When choosing a target
PSF, it may prove convenient to design one which is

well-suited to the shear estimator in hand. We defer
exploration of this topic to future work.
Our chosen procedure for producing a sheared coun-

terfactual image is

I

0(x|g) = � ⇤
⇥
ŝg

�
P

�1 ⇤ I

�⇤
. (8)

This procedure clearly requires a good model for P , but
so do all shear measurements. PSF model errors enter at
the same order in measurements on the resulting image
that they would in an unmodified image.
Once the counterfactual image I

0(x|g) with kgk ⌧ 1
has been created, the galaxy detection and shear mea-
surement pipeline should be rerun. This provides a mea-
sure of the shear sensitivity – not for the original image,
but for an image with the PSF �. This requires that the
full measurement – not just the sensitivity analysis – be
run on an additional counterfactual image I

0(x|g = 0),
so that the numerical derivative @I

0

@g is well-defined.
This procedure introduces anisotropic correlated noise,

which can produce a systematic multiplicative shear bias.
If the noise properties of the initial image are known, the
noise anistropy can be removed with the addition of fur-
ther anisotropic correlated noise (with power spectrum
carefully chosen). As we describe below, we have not
found noise isotropization to be a necessary step for the
images that we used for testing. These have an e↵ective
S/N limit of ⇠ 12, and the mode of the distribution is
⇠ 20. Concurrent work (Sheldon & Hu↵ 2017) inves-
tigates the e↵ects of the anisotropic correlated noise at
lower signal-to-noise ratios, and describe e↵ective miti-
gation procedures.
Metacalibration can be used to mitigate other system-

atics as well. Even those measurement methods with the
highest scores in the GREAT3 lensing challenge were un-
able to completely remove the e↵ects of PSF ellipticity
on the inferred shear. We can introduce an artifical PSF
anisotropy by replace � with a PSF containing the de-
sired synthetic distortion. We show below that recon-
structing images with added PSF ellipticity, rather than
added shear, allows us to de-trend some of the bias due
to PSF anisotropy. A similar approach could be used
to measure additive or multiplicative calibration biases
arising from any e↵ect – signal or systematic error – that
can be simulated by perturbing the images as above.

2.2. Shape Measurement Algorithms

Accurate ensemble shears can only be derived through
measurement of the counterfactual images described
above if the shape measurement algorithm is su�ciently
well-behaved. Here, that entails the requirement that
the quantity reported by the shape measurement algo-
rithm be su�ciently linear in the underlying shear in the
regime relevant for the measurement that the ensemble
response is truly linear.
We test a variety of shape algorithms below that make

use of di↵ering definitions of ellipticity. As we are at-
tempting to construct a shear calibration procedure that
is agnostic about the choice of per-object shape measure-
ment algorithm, and which only requires that we use a
measured galaxy property with approximately linear sen-
sitivity to shear (called a shape measure), we will use e

below to signify all of the shape measures discussed in
this paper, regardless of their precise definition.

I

0(x|g) = � ⇤
⇥
ŝg(P

�1 ⇤ I)
⇤

remove the PSF, shear, and add a new PSF

Construct counterfactual images
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calibration estimates for shear responsivity. For the cases
we describe below, an optimal strategy for ensemble av-
eraging produces significant gains over more straightfor-
ward averaging schemes.

2.1. Generating a Counterfactual Image

Fortunately, for the weak shears under consideration
in most cosmological survey applications, the relation-
ship between the shear and the galaxy shapes (or related
observables) is very close to linear, so accurate shear cal-
ibration requires only the first derivative of the galaxy
properties with respect to the shear. What follows is a
method for estimating this derivative directly from the
images. Throughout we will assume that the observed
image I(x) is equal to the unsmeared galaxy image G(x)
convolved with some point-spread function (including the
atmospheric seeing, the optical PSF, and the pixel re-
sponse function) P (x).
In an ideal world, we would calibrate our measurement

algorithm by making measurements while varying the
gravitational shear experienced by the pre-seeing image,
constructing the counterfactual image I

0(x|g):
I

0(x|g) = P ⇤ (ŝgG) (4)

where ŝg is the shear operator that produces the reduced
shear g, as in e.g. Bernstein & Jarvis (2002). The shear
sensitivity of the image would then be a straightforward
numerical derivative of I 0 with respect to g, and the shear
sensitivity of an ellipticity measure e can be calculated
from measurements on multiple counterfactual images.
We can even write down a formal procedure for produc-
ing I

0 from I if we know P :

I

0(x|g) = P ⇤
⇥
ŝg

�
P

�1 ⇤ I

�⇤
. (5)

The convolutions become products in Fourier space,
where we can write

˜
I

0(k|g) = P̃

⇤(k) ŝg

 
Ĩ(k)

P̃

⇤(k)

!
(6)

Noise in the original image Ĩ generally has power at
Fourier modes where P̃ is small or vanishing. The power
in these modes will thus be formally large or infinite.
Because of the shear operation, this power is not sub-
sequently cancelled by multiplication by P̃ . We must
choose a new PSF � for the final convolution step to
suppress this deconvolution-amplified noise.
If ||P̃ (k)|| is monotonically decreasing with k, this con-

dition can be achieved without introducing additional
PSF anisotropy by choosing

�(x) = P ((1 + 2|�|)x) . (7)

This does not always work, however. If ||P̃ (k)|| crosses
zero (as in cases with a strongly under-sampled PSF)
the ratio of �̃(k) and the sheared, deconvolved image will
still be formally large or infinite, as power from k�values
beyond the zero crossing will be dragged by the shear
operation into the region where the dilated PSF does
not vanish.
Other, implementation-specific considerations may be

important when choosing �. When choosing a target
PSF, it may prove convenient to design one which is

well-suited to the shear estimator in hand. We defer
exploration of this topic to future work.
Our chosen procedure for producing a sheared coun-

terfactual image is

I

0(x|g) = � ⇤
⇥
ŝg

�
P

�1 ⇤ I

�⇤
. (8)

This procedure clearly requires a good model for P , but
so do all shear measurements. PSF model errors enter at
the same order in measurements on the resulting image
that they would in an unmodified image.
Once the counterfactual image I

0(x|g) with kgk ⌧ 1
has been created, the galaxy detection and shear mea-
surement pipeline should be rerun. This provides a mea-
sure of the shear sensitivity – not for the original image,
but for an image with the PSF �. This requires that the
full measurement – not just the sensitivity analysis – be
run on an additional counterfactual image I

0(x|g = 0),
so that the numerical derivative @I

0

@g is well-defined.
This procedure introduces anisotropic correlated noise,

which can produce a systematic multiplicative shear bias.
If the noise properties of the initial image are known, the
noise anistropy can be removed with the addition of fur-
ther anisotropic correlated noise (with power spectrum
carefully chosen). As we describe below, we have not
found noise isotropization to be a necessary step for the
images that we used for testing. These have an e↵ective
S/N limit of ⇠ 12, and the mode of the distribution is
⇠ 20. Concurrent work (Sheldon & Hu↵ 2017) inves-
tigates the e↵ects of the anisotropic correlated noise at
lower signal-to-noise ratios, and describe e↵ective miti-
gation procedures.
Metacalibration can be used to mitigate other system-

atics as well. Even those measurement methods with the
highest scores in the GREAT3 lensing challenge were un-
able to completely remove the e↵ects of PSF ellipticity
on the inferred shear. We can introduce an artifical PSF
anisotropy by replace � with a PSF containing the de-
sired synthetic distortion. We show below that recon-
structing images with added PSF ellipticity, rather than
added shear, allows us to de-trend some of the bias due
to PSF anisotropy. A similar approach could be used
to measure additive or multiplicative calibration biases
arising from any e↵ect – signal or systematic error – that
can be simulated by perturbing the images as above.

2.2. Shape Measurement Algorithms

Accurate ensemble shears can only be derived through
measurement of the counterfactual images described
above if the shape measurement algorithm is su�ciently
well-behaved. Here, that entails the requirement that
the quantity reported by the shape measurement algo-
rithm be su�ciently linear in the underlying shear in the
regime relevant for the measurement that the ensemble
response is truly linear.
We test a variety of shape algorithms below that make

use of di↵ering definitions of ellipticity. As we are at-
tempting to construct a shear calibration procedure that
is agnostic about the choice of per-object shape measure-
ment algorithm, and which only requires that we use a
measured galaxy property with approximately linear sen-
sitivity to shear (called a shape measure), we will use e

below to signify all of the shape measures discussed in
this paper, regardless of their precise definition.

I

0(x|g) = � ⇤
⇥
ŝg(P

�1 ⇤ I)
⇤

we get to choose our final PSF

Construct counterfactual images
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calibration estimates for shear responsivity. For the cases
we describe below, an optimal strategy for ensemble av-
eraging produces significant gains over more straightfor-
ward averaging schemes.

2.1. Generating a Counterfactual Image

Fortunately, for the weak shears under consideration
in most cosmological survey applications, the relation-
ship between the shear and the galaxy shapes (or related
observables) is very close to linear, so accurate shear cal-
ibration requires only the first derivative of the galaxy
properties with respect to the shear. What follows is a
method for estimating this derivative directly from the
images. Throughout we will assume that the observed
image I(x) is equal to the unsmeared galaxy image G(x)
convolved with some point-spread function (including the
atmospheric seeing, the optical PSF, and the pixel re-
sponse function) P (x).
In an ideal world, we would calibrate our measurement

algorithm by making measurements while varying the
gravitational shear experienced by the pre-seeing image,
constructing the counterfactual image I

0(x|g):
I

0(x|g) = P ⇤ (ŝgG) (4)

where ŝg is the shear operator that produces the reduced
shear g, as in e.g. Bernstein & Jarvis (2002). The shear
sensitivity of the image would then be a straightforward
numerical derivative of I 0 with respect to g, and the shear
sensitivity of an ellipticity measure e can be calculated
from measurements on multiple counterfactual images.
We can even write down a formal procedure for produc-
ing I

0 from I if we know P :

I

0(x|g) = P ⇤
⇥
ŝg

�
P

�1 ⇤ I

�⇤
. (5)

The convolutions become products in Fourier space,
where we can write

˜
I

0(k|g) = P̃

⇤(k) ŝg

 
Ĩ(k)

P̃

⇤(k)

!
(6)

Noise in the original image Ĩ generally has power at
Fourier modes where P̃ is small or vanishing. The power
in these modes will thus be formally large or infinite.
Because of the shear operation, this power is not sub-
sequently cancelled by multiplication by P̃ . We must
choose a new PSF � for the final convolution step to
suppress this deconvolution-amplified noise.
If ||P̃ (k)|| is monotonically decreasing with k, this con-

dition can be achieved without introducing additional
PSF anisotropy by choosing

�(x) = P ((1 + 2|�|)x) . (7)

This does not always work, however. If ||P̃ (k)|| crosses
zero (as in cases with a strongly under-sampled PSF)
the ratio of �̃(k) and the sheared, deconvolved image will
still be formally large or infinite, as power from k�values
beyond the zero crossing will be dragged by the shear
operation into the region where the dilated PSF does
not vanish.
Other, implementation-specific considerations may be

important when choosing �. When choosing a target
PSF, it may prove convenient to design one which is

well-suited to the shear estimator in hand. We defer
exploration of this topic to future work.
Our chosen procedure for producing a sheared coun-

terfactual image is

I

0(x|g) = � ⇤
⇥
ŝg

�
P

�1 ⇤ I

�⇤
. (8)

This procedure clearly requires a good model for P , but
so do all shear measurements. PSF model errors enter at
the same order in measurements on the resulting image
that they would in an unmodified image.
Once the counterfactual image I

0(x|g) with kgk ⌧ 1
has been created, the galaxy detection and shear mea-
surement pipeline should be rerun. This provides a mea-
sure of the shear sensitivity – not for the original image,
but for an image with the PSF �. This requires that the
full measurement – not just the sensitivity analysis – be
run on an additional counterfactual image I

0(x|g = 0),
so that the numerical derivative @I

0

@g is well-defined.
This procedure introduces anisotropic correlated noise,

which can produce a systematic multiplicative shear bias.
If the noise properties of the initial image are known, the
noise anistropy can be removed with the addition of fur-
ther anisotropic correlated noise (with power spectrum
carefully chosen). As we describe below, we have not
found noise isotropization to be a necessary step for the
images that we used for testing. These have an e↵ective
S/N limit of ⇠ 12, and the mode of the distribution is
⇠ 20. Concurrent work (Sheldon & Hu↵ 2017) inves-
tigates the e↵ects of the anisotropic correlated noise at
lower signal-to-noise ratios, and describe e↵ective miti-
gation procedures.
Metacalibration can be used to mitigate other system-

atics as well. Even those measurement methods with the
highest scores in the GREAT3 lensing challenge were un-
able to completely remove the e↵ects of PSF ellipticity
on the inferred shear. We can introduce an artifical PSF
anisotropy by replace � with a PSF containing the de-
sired synthetic distortion. We show below that recon-
structing images with added PSF ellipticity, rather than
added shear, allows us to de-trend some of the bias due
to PSF anisotropy. A similar approach could be used
to measure additive or multiplicative calibration biases
arising from any e↵ect – signal or systematic error – that
can be simulated by perturbing the images as above.

2.2. Shape Measurement Algorithms

Accurate ensemble shears can only be derived through
measurement of the counterfactual images described
above if the shape measurement algorithm is su�ciently
well-behaved. Here, that entails the requirement that
the quantity reported by the shape measurement algo-
rithm be su�ciently linear in the underlying shear in the
regime relevant for the measurement that the ensemble
response is truly linear.
We test a variety of shape algorithms below that make

use of di↵ering definitions of ellipticity. As we are at-
tempting to construct a shear calibration procedure that
is agnostic about the choice of per-object shape measure-
ment algorithm, and which only requires that we use a
measured galaxy property with approximately linear sen-
sitivity to shear (called a shape measure), we will use e

below to signify all of the shape measures discussed in
this paper, regardless of their precise definition.

e+ = Ê
�
I 0(x|g+)

 
I

0(x|g) = � ⇤
⇥
ŝg(P

�1 ⇤ I)
⇤

any ~linear measurement algorithm

Construct counterfactual images
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calibration estimates for shear responsivity. For the cases
we describe below, an optimal strategy for ensemble av-
eraging produces significant gains over more straightfor-
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PSF, it may prove convenient to design one which is

well-suited to the shear estimator in hand. We defer
exploration of this topic to future work.
Our chosen procedure for producing a sheared coun-

terfactual image is

I

0(x|g) = � ⇤
⇥
ŝg
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so do all shear measurements. PSF model errors enter at
the same order in measurements on the resulting image
that they would in an unmodified image.
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has been created, the galaxy detection and shear mea-
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sure of the shear sensitivity – not for the original image,
but for an image with the PSF �. This requires that the
full measurement – not just the sensitivity analysis – be
run on an additional counterfactual image I
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so that the numerical derivative @I

0

@g is well-defined.
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which can produce a systematic multiplicative shear bias.
If the noise properties of the initial image are known, the
noise anistropy can be removed with the addition of fur-
ther anisotropic correlated noise (with power spectrum
carefully chosen). As we describe below, we have not
found noise isotropization to be a necessary step for the
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S/N limit of ⇠ 12, and the mode of the distribution is
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on the inferred shear. We can introduce an artifical PSF
anisotropy by replace � with a PSF containing the de-
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structing images with added PSF ellipticity, rather than
added shear, allows us to de-trend some of the bias due
to PSF anisotropy. A similar approach could be used
to measure additive or multiplicative calibration biases
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can be simulated by perturbing the images as above.

2.2. Shape Measurement Algorithms

Accurate ensemble shears can only be derived through
measurement of the counterfactual images described
above if the shape measurement algorithm is su�ciently
well-behaved. Here, that entails the requirement that
the quantity reported by the shape measurement algo-
rithm be su�ciently linear in the underlying shear in the
regime relevant for the measurement that the ensemble
response is truly linear.
We test a variety of shape algorithms below that make

use of di↵ering definitions of ellipticity. As we are at-
tempting to construct a shear calibration procedure that
is agnostic about the choice of per-object shape measure-
ment algorithm, and which only requires that we use a
measured galaxy property with approximately linear sen-
sitivity to shear (called a shape measure), we will use e

below to signify all of the shape measures discussed in
this paper, regardless of their precise definition.

e+ = Ê
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Correcting for selection effects:

4 Sheldon and Huff

probability of selection after a positive or negative shear
is applied, respectively.

3.1. Response for the Mean Shear

Suppose we which to use the mean ellipticity as an
estimator for the mean shear. The mean ellipticity over
a large ensemble can be written as

⟨e⟩ =

∫
P (e) e de, (7)

where P (e) is the probability distribution of e. We
choose to work with continuous functions so that all
derivatives are well defined, in particular the derivative
of the selection function that we introduce below.
Assuming each galaxy experiences a small shear, and

that galaxy orientations are random in the absence of
shear, the mean ellipticity can be rewritten, to leading
order, as

⟨e⟩ ≈

∫
de

∂P (e)e

∂γ

∣∣∣∣
γ=0

γ de = ⟨Rγγ⟩, (8)

where we have ignored the perturbation of the normal-
ization

∫
deP (e), because it leads to terms that are sec-

ond order or higher in the shear. The mean shear is thus
weighted by a response matrix Rγ . This is the same 2×2
response matrix discussed in §2; we have added the sub-
script γ to differentiate this response from the selection
response discussed below. If the Rγ are known, we can
form a weighted average estimator for the mean shear:

⟨γ⟩ ≈ ⟨Rγ⟩
−1 ⟨e⟩ ≈ ⟨Rγ⟩

−1 ⟨Rγγ⟩ . (9)

We can calculate this mean response ⟨Rγ⟩ using quan-
tities measured on artifically sheared images, as discussed
in §2. We will approximate the derivatives using finite
differences in the shear, such that

⟨Rγ⟩ =

∫
∂P (e)e

∂γ

∣∣∣∣
γ=0

de ≈

∫
de

(
P+e+i − P−e−i

∆γj

)
de

=
⟨e+i ⟩ − ⟨e−i ⟩

∆γj
, (10)

where we switched to component notation, such that i, j
denotes derivative of the i-th ellipticity component with
respect to the j-th shear component. In practice, this av-
eraging is performed over an ensemble of measurements
for discrete objects. It is equivalent to averaging the re-
sponses as measured for each object.

3.1.1. Selection Effects for the Mean Shear

Now consider a selection that modifies the distribution
of the measurement e. We will write this selection func-
tion as S(e), the probability of selecting an object with
ellipticity e, although the selection may be indirect, for
example a cut on S/N . This selection function could also
represent some kind of weighting scheme that indirectly
weights by ellipticity.
After introducing a selection, the mean becomes

⟨e⟩S =

∫
S(e) P (e) e de. (11)

We will assume the
∫
deP (e)S(e) = 1, and continue to

ignore the higher order effect from changes in the normal-
ization under shear. Again, assuming a small shear, and
that galaxy orientations are random in the absence of
shear, the mean ellipticity after selection can be rewrit-
ten, to leading order, as

⟨e⟩ ≈

∫
de

∂S(e)P (e)e

∂γ

∣∣∣∣
γ=0

γ de = ⟨Rγ⟩, (12)

Thus, the mean shear in the presence of selections is
also weighted by a response term R, and this response
now includes the shear response as well as the effects of
the selections. The probability that an object is selected
changes after it is sheared.
This response with selections can be calculated using

quantities measured on artifically sheared images. It is
useful to examine separately the response of the estima-
tor e to a shear, and the response of selection effects to
a shear:

⟨R⟩ =

∫
∂S(e)P (e)e

∂γ

∣∣∣∣
γ=0

de

=

∫ [

S(e)
∂P (e)e

∂γ

∣∣∣∣
γ=0

+ P (e)e
∂S(e)

∂γ

∣∣∣∣
γ=0

]

de

(13)

Note the first term is identical to the response in equation
8, but now with selections applied. As we will see, the
second term represents the response of selection effects
to a shear.
We will again approximate the derivatives using finite

differences in the shear. Using the notation for mea-
surements on sheared images, introduced in §3, we can
rewrite the response as

⟨R⟩ ≈

∫
de

[
S

(
P+e+i − P−e−i

∆γj

)
+ Pei

(
S+ − S−

∆γ

)]
de

=
⟨e+i ⟩

S − ⟨e−i ⟩
S

∆γj
+

⟨ei⟩S+ − ⟨ei⟩S−

∆γj
≡ ⟨Rγ⟩+ ⟨RS⟩, (14)

where ⟨e+⟩S represents the mean of the sheared ellip-
ticity, with selections based on the unsheared parame-
ters, ⟨e⟩S+ represents the mean of the unsheared ellip-
ticities, with selection based on the sheared parameters.
Thus the first term ⟨Rγ⟩ in equation 14 is the average
of the shear responses measured for individual galaxies,
the same as shown in equation 10, but now with selec-
tions applied based on the unsheared object parameters.
The second term ⟨RS⟩ calculates how the mean ellip-
ticity changes due to selections when measurements are
performed on sheared images, in other words how the
selection effects change under a shear. We say ⟨RS⟩ rep-
resents the response of the selection effects to a shear.
In order to calculate the desired weighted mean shear,

one measures the following:

1. The mean ellipticity measured from unsheared im-
ages, selecting on measurements from unsheared im-
ages. This is the mean shear estimator we wish to
calibrate.
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probability of selection after a positive or negative shear
is applied, respectively.

3.1. Response for the Mean Shear

Suppose we which to use the mean ellipticity as an
estimator for the mean shear. The mean ellipticity over
a large ensemble can be written as

⟨e⟩ =

∫
P (e) e de, (7)

where P (e) is the probability distribution of e. We
choose to work with continuous functions so that all
derivatives are well defined, in particular the derivative
of the selection function that we introduce below.
Assuming each galaxy experiences a small shear, and

that galaxy orientations are random in the absence of
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ond order or higher in the shear. The mean shear is thus
weighted by a response matrix Rγ . This is the same 2×2
response matrix discussed in §2; we have added the sub-
script γ to differentiate this response from the selection
response discussed below. If the Rγ are known, we can
form a weighted average estimator for the mean shear:
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denotes derivative of the i-th ellipticity component with
respect to the j-th shear component. In practice, this av-
eraging is performed over an ensemble of measurements
for discrete objects. It is equivalent to averaging the re-
sponses as measured for each object.
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Now consider a selection that modifies the distribution
of the measurement e. We will write this selection func-
tion as S(e), the probability of selecting an object with
ellipticity e, although the selection may be indirect, for
example a cut on S/N . This selection function could also
represent some kind of weighting scheme that indirectly
weights by ellipticity.
After introducing a selection, the mean becomes
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now includes the shear response as well as the effects of
the selections. The probability that an object is selected
changes after it is sheared.
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where we switched to component notation, such that i, j
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respect to the j-th shear component. In practice, this av-
eraging is performed over an ensemble of measurements
for discrete objects. It is equivalent to averaging the re-
sponses as measured for each object.

3.1.1. Selection Effects for the Mean Shear

Now consider a selection that modifies the distribution
of the measurement e. We will write this selection func-
tion as S(e), the probability of selecting an object with
ellipticity e, although the selection may be indirect, for
example a cut on S/N . This selection function could also
represent some kind of weighting scheme that indirectly
weights by ellipticity.
After introducing a selection, the mean becomes
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∫
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We will assume the
∫
deP (e)S(e) = 1, and continue to

ignore the higher order effect from changes in the normal-
ization under shear. Again, assuming a small shear, and
that galaxy orientations are random in the absence of
shear, the mean ellipticity after selection can be rewrit-
ten, to leading order, as

⟨e⟩ ≈

∫
de

∂S(e)P (e)e

∂γ

∣∣∣∣
γ=0

γ de = ⟨Rγ⟩, (12)
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also weighted by a response term R, and this response
now includes the shear response as well as the effects of
the selections. The probability that an object is selected
changes after it is sheared.
This response with selections can be calculated using
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Note the first term is identical to the response in equation
8, but now with selections applied. As we will see, the
second term represents the response of selection effects
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We will again approximate the derivatives using finite

differences in the shear. Using the notation for mea-
surements on sheared images, introduced in §3, we can
rewrite the response as

⟨R⟩ ≈

∫
de

[
S

(
P+e+i − P−e−i

∆γj

)
+ Pei

(
S+ − S−

∆γ

)]
de

=
⟨e+i ⟩

S − ⟨e−i ⟩
S

∆γj
+

⟨ei⟩S+ − ⟨ei⟩S−

∆γj
≡ ⟨Rγ⟩+ ⟨RS⟩, (14)

where ⟨e+⟩S represents the mean of the sheared ellip-
ticity, with selections based on the unsheared parame-
ters, ⟨e⟩S+ represents the mean of the unsheared ellip-
ticities, with selection based on the sheared parameters.
Thus the first term ⟨Rγ⟩ in equation 14 is the average
of the shear responses measured for individual galaxies,
the same as shown in equation 10, but now with selec-
tions applied based on the unsheared object parameters.
The second term ⟨RS⟩ calculates how the mean ellip-
ticity changes due to selections when measurements are
performed on sheared images, in other words how the
selection effects change under a shear. We say ⟨RS⟩ rep-
resents the response of the selection effects to a shear.
In order to calculate the desired weighted mean shear,

one measures the following:

1. The mean ellipticity measured from unsheared im-
ages, selecting on measurements from unsheared im-
ages. This is the mean shear estimator we wish to
calibrate.

Apply a shear. 
See how your measured shapes change.



National Aeronautics and  
Space Administration 

Jet Propulsion Laboratory 
California Institute of Technology 
Pasadena, California

!21

Practical Weak Lensing Shear Measurement with Metacalibration 11

Sim m c1 c2
[10−3] [10−5] [10−5]

RG 0.22± 0.58 2.6± 2.9 2.2± 2.9
BDK 0.03± 0.31 - −0.15± 0.62
BDK+Stars 0.01± 0.32 - −0.08± 0.63

Table 3

Metacalibration results for each image simulation
described in §6 and table 1. For each simulation, a cut was
placed at signal-to-noise ratio S/N> 10, and corrections
were applied for selection effects (see table 4 for more
results on selections). A single Gaussian was fit to the
observed object, with no PSF correction applied. No
multiplicative or additive bias was detected in any case.
Stellar contamination at the level of 10% increases the
noise in the recovered shear by ∼ 2− 3% but does not
introduce a significant bias.

8.2.1. Results with Selection Effects

In table 4, we show the results for different S/N thresh-
old cuts in the BDK simulations. We show the recovered
bias with and without corrections for selection effects.
These results are also shown graphically in figures 6 and
7. The cuts were all placed above the pre-selection at
S/N> 5, to guarantee the validity of the corrections.

Figure 6. Multiplicative (upper panel) and additive bias (lower
panel) in the BDK simulation after applying threshold selections in
S/N . The filled grey region represents the target accuracy.

We measured and corrected for a significant multiplica-
tive selection bias in each case. These biases are generally
well above our desired part in a thousand accuracy. After
correction, we found the multiplicative bias was less than
a part in a thousand in all cases. We did not find any
additive selection biases, which suggests our procedure
of reconvolving by a symmetrized PSF was sufficient for
these simulations.

8.2.2. Results with Stellar Contamination

Figure 7. Same as the top panel of figure 6, but now additionally
showing the multiplicative bias without corrections for selection
effects. The bias without correction for selection effects is repre-
sented as red diamonds. The bias after correction for selection
effects is represented as blue circles. The filled grey region repre-
sents the target accuracy.

Results including 10% stars in the BDK+Stars simula-
tion are shown in table 3. We did not detect any addi-
tional bias after including stars. The noise in the recov-
ered shear did, however, increase by ∼ 2− 3%.
Metacalibration is robust to stellar contamination

if the PSF is well characterized. Images consistent with
a PSF will not, in the mean, respond to the shear ap-
plied during the metacalibration process. Measure-
ment on stars also yields zero average shape, as long as
the PSF correction is sufficiently accurate: our use of
a symmetrized PSF (see §7) appears to be sufficient in
this case. In figure 5 we show the measured response R
for stars and galaxies. Indeed we see that, for stars, the
R is noisy but consistent with zero. Thus, in the mean,
stars contribute zero to both the estimator and response,
leaving equation 4 unbiased.
If the additional variance is tolerable, it may be useful

to include stars in a shear analysis if the PSF is suf-
ficiently well known. Attempting to remove faint stars
from a sample is a noisy procedure, likely to induce selec-
tion effects. These can be controlled using the corrections
derived in §3, but only if the selection is also repeated
based on quantities measured on sheared images, so the
corrections can be calculated. If the selection must be
performed outside of the metacalibration process, it
may be better to avoid it altogether.
For accurate interpretation of the signal, it is impor-

tant to weight by the metacalibration response terms
in order to get the correct redshift distribution( see §5
for more discussion of weighted means). It is also desir-
able that the redshift estimates for stars be close to zero,
so that the weighted redshift distribution is minimally
contaminated.

8.2.3. Effects of Missing Data

The Fourier transforms used to perform the meta-
calibration convolutions cannot accommodate missing
data. But in real data there are features in the image,
such as bad pixels and columns, and cosmic rays that
cannot be used for object measurement. This can be
dealt with easily when the galaxy model is fit simulta-
neously to postage stamps drawn from all available ob-
serving epochs and bands (e.g. Jarvis et al. 2016). If the

Selection effects are large,  
but now effectively mitigated.

There is no evidence  
for any remaining calibration bias.
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This space  
intentionally left blank.
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Blending Overview

�2
Image from HSC COSMOS dataset (courtesy Peter Melchior)

Basic Problem

Image courtesy of / stolen from 
Peter Melchior
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summary of blending effects:

1. Reducing overall number density 

2. Mixing shear across redshifts 

3. Photo-z mis-estimation 

4. Density-dependent selection
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Single blob, 
imperfectly deblended, 

2 or more galaxies

Then we can write 
effects on 2pt correlations

R1 =
@e

@�1
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Consider the effects of blending on 
shear
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Blending and shear
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Consider the effects of blending on 
clustering

Single blob, 
imperfectly deblended, 

2 or more galaxies

blending reduces completeness, 
preferentially in overdense regions 
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Model for the impact of the neighbor 

bias on the 2PCF:

n
obs

= ñ
t
(1+δ) W

s
(1-Γδ)

…

to first order in Γ

…

<n
o

n
o
’> / ñ

o

2 
– 1 =

[1 + 2Γ(<δ
2
>-1)]ξ - 2Γ< δδ’

2 
>

Θ
pix

= 2 arcmin Θ
pix

= 1 arcmin 

Impact on galaxy clustering
Lenses z=0.45-0.55, m

z
<22
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Impact on cosmic shear
Θpix = 2 arcmin Θpix = 1 arcmin 

Sources z=0.95-1.05, mz<24

Θ [arcmin] Θ [arcmin]
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Summary

• We developed a general framework to capture any systematic that 
depends on the local number density of galaxies.
• It is a single parameter model: θexcl

• All this is captured by Γ: E~Γ δ (Γ is related to θexcl)
• We have an analytic model for the impact on the 2PCF (it works!)
• Doing the same for all the 3x2pt.
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Gratuitous omphaloskepsis


