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What’s the problem with 
Covariances…?

• Analytic: flexible (scales redshifts), noise free, very stable 
even in multi-probe (Gaussian), straightfwd extension, “fast” 
to compute, unclear if sufficiently precise for LSST Y10 

• Numerical sims: Potentially more precise than analytic, 
computationally expensive (prohibitively), somewhat 
inflexible (scales redshifts), hard to extend to other probes, 
noisy inversion -> expensive 

• Data: Computationally inexpensive, “have all the effects 
included automatically”, not enough realizations, variance of 
smaller patches don’t resemble the full survey, noisy 
inversion



Covariances for LSST-DESC SRD
Cosmic Shear



Galaxy-galaxy lensing
Covariances for LSST-DESC SRD



Galaxy Clustering
Covariances for LSST-DESC SRD



Cluster Number Counts
Covariances for LSST-DESC SRD



Cluster Weak Lensing
Covariances for LSST-DESC SRD
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• Some aspects to be 

improved: 
• linear bias 
• Baryon mitigation via scale 

cuts 
• Gaussian photo-z



Also had some other covs for LSST (many)… 
This was Take 1

details: Krause&TE ‘17
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DES Covariances… Real Space
DES Multi-Probe Pipelines:

Covariance Validation [Step 1]

ongoing work by
Eric Baxter, Chihway Chang, Oliver Friedrich, EK, Nicklas Kokron, EK, Yuuki Omori

covariance from Gaussian realizations
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in the analysis, 6) run the MCMC, and 7) examine biases in cosmological parameter space
and compare them to the overall (statistics + systematics) error budget of a given survey.

These simulated analyses allow us to identify optimal combinations of observables and
their scales and redshifts and study the impact of systematic e↵ects on realistic cosmology
analyses as they will be implemented in WFIRST, Euclid, and LSST.

CMB(`) wgCMB(✓, zl) ⇠�CMB(✓, zs) wgg(✓, zl) �t(✓, zl, zs) ⇠�(✓, zsi , zsj) ⇠+(✓, zsi , zsj)

2.2 DES - Proposed Research

Figure 3: Visualization of the inference process and associated

problems that need to be addressed for a successful DES Year

3 and Year 5 analysis.

The di↵erent LSS probes are
a↵ected by common system-
atic errors, such as uncertain-
ties in photometric redshifts,
shear calibration biases and as-
trophysical contaminants, e.g.
halo triaxiality, scatter in the
mass-observable relation, bary-
onic e↵ects, and intrinsic align-
ment. In order to derive mean-
ingful cosmological constraints
from systematics limited obser-
vations, these e↵ects need to be
modeled and marginalized over

consistently for all observables. This marginalization over nuisance parameters (i.e. param-
eters that are not of interest for the analyst) requires significant increases in computational
e�ciency: these parameters increase the dimensionality of the parameter space from or-
der ten (cosmological parameters) to of order hundred. While such models perform well in
Fisher-matrix based studies, sampling such high-dimensional parameter spaces poses severe
computational challenges in likelihood analyses. In ? we ran realistic likelihood analysis with
48 nuisance parameters. Refining systematics models while keeping the number of nuisance
parameters low is key to a successful analysis framework and the guiding principle of this
task.

Task 1: Improve Halo Model Accuracy. The halo model and halo-occupation distri-
bution (HOD) modeling are frequently used to interpret the small-scale clustering of matter
and galaxies, though the accuracy of standard implementations is well known to be limited
to 10%. Recent work achieved promising improvements in modeling accuracy by calibrating
the halo model building blocks against simulations: van den Bosch et al. (2013) calibrated
the halo model + HOD description of the intermediate regime between small- and large-scale
galaxy clustering for LCDM cosmologies, and Mead et al. (2015, 2016) calibrated e↵ective
fitting functions to include baryonic feedback e↵ects on the matter power spectrum for a
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bution (HOD) modeling are frequently used to interpret the small-scale clustering of matter
and galaxies, though the accuracy of standard implementations is well known to be limited
to 10%. Recent work achieved promising improvements in modeling accuracy by calibrating
the halo model building blocks against simulations: van den Bosch et al. (2013) calibrated
the halo model + HOD description of the intermediate regime between small- and large-scale
galaxy clustering for LCDM cosmologies, and Mead et al. (2015, 2016) calibrated e↵ective
fitting functions to include baryonic feedback e↵ects on the matter power spectrum for a
variety of cosmological models. However, in order to meet the modeling accuracy require-
ments of future data sets, several elements of the halo model need improved accuracy and
need to be calibrated over expanded parameter space. We are currently using the suites of
simulations described in Table 1 to improve the modeling of galaxy clustering statistics and
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in the analysis, 6) run the MCMC, and 7) examine biases in cosmological parameter space
and compare them to the overall (statistics + systematics) error budget of a given survey.

These simulated analyses allow us to identify optimal combinations of observables and
their scales and redshifts and study the impact of systematic e↵ects on realistic cosmology
analyses as they will be implemented in WFIRST, Euclid, and LSST.
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intrinsic alignment models into CosmoLike focusing on red galaxies, where IA has been
detected. As part of this proposal we will extend these models to blue galaxies, implement
them in the context of the DES Y3 CosmoLike modules and use this enhanced modeling
for the DES Y3 analysis.

Task 5: Adapt models for shear calibration and photo-z uncertainty. The DES
Y1 analysis parametrized shear calibration uncertainties using one multiplicative parameter
per tomographic source bin. The redshift uncertainties for both the source and lens bins
were parameterized through shift parameters of the best fit redshift distribution. Several
changes will be necessary for the Y3 analysis: 1) We propose to test if more complex models
for shear calibration are necessary when extending the analysis to smaller scales; 2) The
redshift uncertainty will be parameterized through an ensemble of redshift distribution that
span the range of uncertainty as identified by the photo-z algorithms and testing suite. We
propose to implement a corresponding module in CosmoLike that randomly selects redshift
distributions from the ensemble and marginalizes e�ciently over the range of uncertainty.

2.2.2 Work Package 2: Covariance Extensions for DES Year 3 and Year 5
analyses

CosmoLike is unique in terms of modeling covariance matrices and critical to enable DES
likelihood analyses.

DES Multi-Probe Pipelines:
Covariance Validation [Step 1]

ongoing work by
Eric Baxter, Chihway Chang, Oliver Friedrich, EK, Nicklas Kokron, EK, Yuuki Omori

covariance from Gaussian realizations
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their scales and redshifts and study the impact of systematic e↵ects on realistic cosmology
analyses as they will be implemented in WFIRST, Euclid, and LSST.
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in the analysis, 6) run the MCMC, and 7) examine biases in cosmological parameter space
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in the analysis, 6) run the MCMC, and 7) examine biases in cosmological parameter space
and compare them to the overall (statistics + systematics) error budget of a given survey.

These simulated analyses allow us to identify optimal combinations of observables and
their scales and redshifts and study the impact of systematic e↵ects on realistic cosmology
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variety of cosmological models. However, in order to meet the modeling accuracy require-
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Figure 3: Illustration of proposed covariance work package, en-

abling a 6x2pt analysis for DES. Left of the matrix we denote the

corresponding parts of the data vector. Please note that code for 7

matrices needs to be designed, implemented, and validated in order

to include the 6
th

two-point statistics in this analysis.

The covariance code needs to
be extended however in order
to model errors on small-scales
(matching the extensions on
baryons and galaxy bias model-
ing in the previous work pack-
age) and in addition we pro-
pose to extend it in order to
perform a full 6x2pt analysis.
In the 5x2pt analysis of Abbott
et al. (2018b) we explicitly ex-
cluded the auto-correlation of
CMB lensing, i.e. the correla-
tion of CMB CMB. The main
reason for this was that the cor-
responding auto-correlation is
measured in Fourier space, i.e.
it enters the data vector as the
power spectrum CCMB(`) and
computing the cross-covariance
terms of this power spectrum
with the other probes in the
data vector, which were all mea-
sured in real or configuration
space, was not feasible given the

6

DOE Comparative Review The Cosmic Frontier

intrinsic alignment models into CosmoLike focusing on red galaxies, where IA has been
detected. As part of this proposal we will extend these models to blue galaxies, implement
them in the context of the DES Y3 CosmoLike modules and use this enhanced modeling
for the DES Y3 analysis.

Task 5: Adapt models for shear calibration and photo-z uncertainty. The DES
Y1 analysis parametrized shear calibration uncertainties using one multiplicative parameter
per tomographic source bin. The redshift uncertainties for both the source and lens bins
were parameterized through shift parameters of the best fit redshift distribution. Several
changes will be necessary for the Y3 analysis: 1) We propose to test if more complex models
for shear calibration are necessary when extending the analysis to smaller scales; 2) The
redshift uncertainty will be parameterized through an ensemble of redshift distribution that
span the range of uncertainty as identified by the photo-z algorithms and testing suite. We
propose to implement a corresponding module in CosmoLike that randomly selects redshift
distributions from the ensemble and marginalizes e�ciently over the range of uncertainty.

2.2.2 Work Package 2: Covariance Extensions for DES Year 3 and Year 5
analyses

CosmoLike is unique in terms of modeling covariance matrices and critical to enable DES
likelihood analyses.

DES Multi-Probe Pipelines:
Covariance Validation [Step 1]

ongoing work by
Eric Baxter, Chihway Chang, Oliver Friedrich, EK, Nicklas Kokron, EK, Yuuki Omori

covariance from Gaussian realizations

1234567
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These simulated analyses allow us to identify optimal combinations of observables and
their scales and redshifts and study the impact of systematic e↵ects on realistic cosmology
analyses as they will be implemented in WFIRST, Euclid, and LSST.
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Figure 3: Illustration of proposed covariance work package, en-

abling a 6x2pt analysis for DES. Left of the matrix we denote the

corresponding parts of the data vector. Please note that code for 7

matrices needs to be designed, implemented, and validated in order

to include the 6
th

two-point statistics in this analysis.

The covariance code needs to
be extended however in order
to model errors on small-scales
(matching the extensions on
baryons and galaxy bias model-
ing in the previous work pack-
age) and in addition we pro-
pose to extend it in order to
perform a full 6x2pt analysis.
In the 5x2pt analysis of Abbott
et al. (2018b) we explicitly ex-
cluded the auto-correlation of
CMB lensing, i.e. the correla-
tion of CMB CMB. The main
reason for this was that the cor-
responding auto-correlation is
measured in Fourier space, i.e.
it enters the data vector as the
power spectrum CCMB(`) and
computing the cross-covariance
terms of this power spectrum
with the other probes in the
data vector, which were all mea-
sured in real or configuration
space, was not feasible given the

6

data sets that restrict the Hubble parameter to reasonable
values are introduced. The Bayes factor for combination of
Planck (no lensing) with the low-z suite of DESþ BAOþ
SNe in the wCDM model is R ¼ 89 substantially more
supportive of the combination of experiments than the case
for Planck and DES alone. The DESþ Planckþ BAOþ
SNe solution shows good consistency in the Ωm–w–S8
subspace and yields our final constraint on the dark energy
equation of state:

w ¼ −1.00þ0.05
−0.04 : ð7:5Þ

DES Y1 reduces the width of the allowed 68% region by
10%. The evidence ratio Rw ¼ 0.1 for this full combination
of data sets, disfavoring the introduction of w as a free
parameter.

D. Neutrino mass

The lower power observed in DES (relative to Planck)
has implications for the constraint on the sum of the
neutrino masses, as shown in Fig. 15. The current most
stringent constraint comes from the cosmic microwave
background and Lyman-alpha forest [149]. The experi-
ments considered here (DES, JLA, and BAO) represent an
independent set and so offer an alternative method for
measuring the clustering of matter as a function of scale and
redshift, which is one of the key drivers of the neutrino
constraints. The 95% C.L. upper limit on the sum of the
neutrino masses in ΛCDM becomes less constraining:

X
mν < 0.26 eV: ð7:6Þ

Adding in DES Y1 loosens the constraint by close to 20%
(from 0.22 eV). This is consistent with our finding that the
clustering amplitude in DES Y1 is slightly lower than
expected in ΛCDM informed by Planck. The three ways of
reducing the clustering amplitude are to reduce Ωm, reduce
σ8, or increase the sum of the neutrino masses. The best-fit
cosmology moves all three of these parameters slightly in
the direction of less clustering in the present-day Universe.
We may, conversely, be concerned about the effect of

priors on Ωνh2 on the cosmological inferences in this paper.
The results for DES Y1 and Planck depicted in Fig. 10 in
ΛCDM were obtained when varying the sum of the neutrino
masses. Neutrinos have mass [150], and the sum of
the masses of the three light neutrinos is indeed unknown,
so this parameter does need to be varied. However, many
previous analyses have either set the sum to zero or to the
minimum value allowed by oscillation experiments
(
P

mν ¼ 0.06 eV), so it is of interest to see if fixing
neutrino mass alters any of our conclusions. In particular,
does this alter the level of agreement between low- and high-
redshift probes inΛCDM? Figure 16 shows the extreme case
of fixing the neutrino masses to the lowest value allowed by
oscillation data: both the DES and Planck constraints in the
Ωm-S8 plane change. The Planck contours shrink toward the
low-Ωm side of their contours, while the DES constraints
shift slightly to lowerΩm and higherS8. The Bayes factor for
the combination of DES and Planck in the ΛCDM space
changes from R ¼ 6.6 to R ¼ 3.4 when the minimal
neutrino mass is enforced. DES and Planck therefore

FIG. 15. ΛCDM constraints on the sum of the neutrino masses
from DES and other experiments. The lower power observed in
DES can be accommodated either by lowering Ω or σ8 or by
increasing the sum of the neutrino masses.

FIG. 16. ΛCDM constraints on Ωm and σ8 from Planck without
lensing and all three probes in DES. In contrast to all other plots in
this paper, the dark contours here show the results when the sum of
the neutrino masses was held fixed at its minimum allowed value
of 0.06 eV.
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in the analysis, 6) run the MCMC, and 7) examine biases in cosmological parameter space
and compare them to the overall (statistics + systematics) error budget of a given survey.

These simulated analyses allow us to identify optimal combinations of observables and
their scales and redshifts and study the impact of systematic e↵ects on realistic cosmology
analyses as they will be implemented in WFIRST, Euclid, and LSST.
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Figure 3: Visualization of the inference process and associated

problems that need to be addressed for a successful DES Year

3 and Year 5 analysis.

The di↵erent LSS probes are
a↵ected by common system-
atic errors, such as uncertain-
ties in photometric redshifts,
shear calibration biases and as-
trophysical contaminants, e.g.
halo triaxiality, scatter in the
mass-observable relation, bary-
onic e↵ects, and intrinsic align-
ment. In order to derive mean-
ingful cosmological constraints
from systematics limited obser-
vations, these e↵ects need to be
modeled and marginalized over

consistently for all observables. This marginalization over nuisance parameters (i.e. param-
eters that are not of interest for the analyst) requires significant increases in computational
e�ciency: these parameters increase the dimensionality of the parameter space from or-
der ten (cosmological parameters) to of order hundred. While such models perform well in
Fisher-matrix based studies, sampling such high-dimensional parameter spaces poses severe
computational challenges in likelihood analyses. In ? we ran realistic likelihood analysis with
48 nuisance parameters. Refining systematics models while keeping the number of nuisance
parameters low is key to a successful analysis framework and the guiding principle of this
task.

Task 1: Improve Halo Model Accuracy. The halo model and halo-occupation distri-
bution (HOD) modeling are frequently used to interpret the small-scale clustering of matter
and galaxies, though the accuracy of standard implementations is well known to be limited
to 10%. Recent work achieved promising improvements in modeling accuracy by calibrating
the halo model building blocks against simulations: van den Bosch et al. (2013) calibrated
the halo model + HOD description of the intermediate regime between small- and large-scale
galaxy clustering for LCDM cosmologies, and Mead et al. (2015, 2016) calibrated e↵ective
fitting functions to include baryonic feedback e↵ects on the matter power spectrum for a
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and galaxies, though the accuracy of standard implementations is well known to be limited
to 10%. Recent work achieved promising improvements in modeling accuracy by calibrating
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fitting functions to include baryonic feedback e↵ects on the matter power spectrum for a
variety of cosmological models. However, in order to meet the modeling accuracy require-
ments of future data sets, several elements of the halo model need improved accuracy and
need to be calibrated over expanded parameter space. We are currently using the suites of
simulations described in Table 1 to improve the modeling of galaxy clustering statistics and

4

DOE Comparative Review The Cosmic Frontier

in the analysis, 6) run the MCMC, and 7) examine biases in cosmological parameter space
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intrinsic alignment models into CosmoLike focusing on red galaxies, where IA has been
detected. As part of this proposal we will extend these models to blue galaxies, implement
them in the context of the DES Y3 CosmoLike modules and use this enhanced modeling
for the DES Y3 analysis.

Task 5: Adapt models for shear calibration and photo-z uncertainty. The DES
Y1 analysis parametrized shear calibration uncertainties using one multiplicative parameter
per tomographic source bin. The redshift uncertainties for both the source and lens bins
were parameterized through shift parameters of the best fit redshift distribution. Several
changes will be necessary for the Y3 analysis: 1) We propose to test if more complex models
for shear calibration are necessary when extending the analysis to smaller scales; 2) The
redshift uncertainty will be parameterized through an ensemble of redshift distribution that
span the range of uncertainty as identified by the photo-z algorithms and testing suite. We
propose to implement a corresponding module in CosmoLike that randomly selects redshift
distributions from the ensemble and marginalizes e�ciently over the range of uncertainty.

2.2.2 Work Package 2: Covariance Extensions for DES Year 3 and Year 5
analyses

CosmoLike is unique in terms of modeling covariance matrices and critical to enable DES
likelihood analyses.

DES Multi-Probe Pipelines:
Covariance Validation [Step 1]

ongoing work by
Eric Baxter, Chihway Chang, Oliver Friedrich, EK, Nicklas Kokron, EK, Yuuki Omori

covariance from Gaussian realizations
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analyses as they will be implemented in WFIRST, Euclid, and LSST.
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in the analysis, 6) run the MCMC, and 7) examine biases in cosmological parameter space
and compare them to the overall (statistics + systematics) error budget of a given survey.

These simulated analyses allow us to identify optimal combinations of observables and
their scales and redshifts and study the impact of systematic e↵ects on realistic cosmology
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need to be calibrated over expanded parameter space. We are currently using the suites of
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Figure 3: Illustration of proposed covariance work package, en-

abling a 6x2pt analysis for DES. Left of the matrix we denote the

corresponding parts of the data vector. Please note that code for 7
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to include the 6
th

two-point statistics in this analysis.

The covariance code needs to
be extended however in order
to model errors on small-scales
(matching the extensions on
baryons and galaxy bias model-
ing in the previous work pack-
age) and in addition we pro-
pose to extend it in order to
perform a full 6x2pt analysis.
In the 5x2pt analysis of Abbott
et al. (2018b) we explicitly ex-
cluded the auto-correlation of
CMB lensing, i.e. the correla-
tion of CMB CMB. The main
reason for this was that the cor-
responding auto-correlation is
measured in Fourier space, i.e.
it enters the data vector as the
power spectrum CCMB(`) and
computing the cross-covariance
terms of this power spectrum
with the other probes in the
data vector, which were all mea-
sured in real or configuration
space, was not feasible given the
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intrinsic alignment models into CosmoLike focusing on red galaxies, where IA has been
detected. As part of this proposal we will extend these models to blue galaxies, implement
them in the context of the DES Y3 CosmoLike modules and use this enhanced modeling
for the DES Y3 analysis.

Task 5: Adapt models for shear calibration and photo-z uncertainty. The DES
Y1 analysis parametrized shear calibration uncertainties using one multiplicative parameter
per tomographic source bin. The redshift uncertainties for both the source and lens bins
were parameterized through shift parameters of the best fit redshift distribution. Several
changes will be necessary for the Y3 analysis: 1) We propose to test if more complex models
for shear calibration are necessary when extending the analysis to smaller scales; 2) The
redshift uncertainty will be parameterized through an ensemble of redshift distribution that
span the range of uncertainty as identified by the photo-z algorithms and testing suite. We
propose to implement a corresponding module in CosmoLike that randomly selects redshift
distributions from the ensemble and marginalizes e�ciently over the range of uncertainty.

2.2.2 Work Package 2: Covariance Extensions for DES Year 3 and Year 5
analyses

CosmoLike is unique in terms of modeling covariance matrices and critical to enable DES
likelihood analyses.

DES Multi-Probe Pipelines:
Covariance Validation [Step 1]

ongoing work by
Eric Baxter, Chihway Chang, Oliver Friedrich, EK, Nicklas Kokron, EK, Yuuki Omori

covariance from Gaussian realizations

1234567
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and compare them to the overall (statistics + systematics) error budget of a given survey.

These simulated analyses allow us to identify optimal combinations of observables and
their scales and redshifts and study the impact of systematic e↵ects on realistic cosmology
analyses as they will be implemented in WFIRST, Euclid, and LSST.
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Figure 3: Illustration of proposed covariance work package, en-

abling a 6x2pt analysis for DES. Left of the matrix we denote the

corresponding parts of the data vector. Please note that code for 7

matrices needs to be designed, implemented, and validated in order

to include the 6
th

two-point statistics in this analysis.

The covariance code needs to
be extended however in order
to model errors on small-scales
(matching the extensions on
baryons and galaxy bias model-
ing in the previous work pack-
age) and in addition we pro-
pose to extend it in order to
perform a full 6x2pt analysis.
In the 5x2pt analysis of Abbott
et al. (2018b) we explicitly ex-
cluded the auto-correlation of
CMB lensing, i.e. the correla-
tion of CMB CMB. The main
reason for this was that the cor-
responding auto-correlation is
measured in Fourier space, i.e.
it enters the data vector as the
power spectrum CCMB(`) and
computing the cross-covariance
terms of this power spectrum
with the other probes in the
data vector, which were all mea-
sured in real or configuration
space, was not feasible given the
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FIG. 3. Marginalized constraints on ⌦m and S 8 ⌘ �8(⌦m/0.3)0.5

for the 3⇥2pt (gray) and 5⇥2pt (gold) combinations of correlation
functions in the context of ⇤CDM+⌫ cosmology when priors on
multiplicative shear bias are relaxed (filled contours). In this case,
the cosmological constraints obtained from the 5⇥2pt data vector are
significantly tighter than those resulting from the 3⇥2pt data vector.
The dashed contours show the constraints when the fiducial priors on
multiplicative shear bias (see Table I) are applied.

Sample 3⇥2pt bi 5⇥2pt bi

0.15 < z < 0.30 1.42+0.13
�0.08 1.41+0.11

�0.11

0.30 < z < 0.45 1.65+0.08
�0.12 1.60+0.11

�0.09

0.45 < z < 0.60 1.60+0.11
�0.08 1.60+0.09

�0.10

0.60 < z < 1.75 1.93+0.14
�0.10 1.91+0.11

�0.11

0.75 < z < 1.90 2.01+0.13
�0.14 1.96+0.15

�0.11

TABLE II. Constraints on the linear galaxy bias parameters, bi, from
the 3⇥2pt and 5⇥2pt data vectors for the five redshift samples.

and multiplicative shear bias. For the fiducial DES-Y1 priors
on multiplicative shear bias from DES-Y1-3x2, the degener-
acy breaking is weak since multiplicative shear bias is already
tightly constrained using data and simulation based methods,
as described in [42]. However, if these priors are relaxed, the
5⇥2pt analysis can obtain significantly tighter cosmological
constraints than the 3⇥2pt analysis. In essence, the cosmo-
logical constraints can be made more robust to the e↵ects of
multiplicative shear bias.

The 3⇥2pt and 5⇥2pt constraints on⌦m and S 8 when priors
on multiplicative shear bias are relaxed to mi 2 [�1, 1] are
shown in Fig. 3. In contrast to Fig. 2, the 5⇥2pt constraints
are significantly improved over 3⇥2pt when the multiplicative
shear bias constraints are relaxed.

For these relaxed priors, the data alone calibrate the multi-

Sample 3⇥2pt mi 5⇥2pt mi

0.20 < z < 0.43 �0.03+0.34
�0.16 0.03+0.25

�0.15

0.43 < z < 0.63 �0.02+0.27
�0.14 0.07+0.19

�0.11

0.63 < z < 0.90 �0.04+0.20
�0.15 �0.01+0.13

�0.09

0.90 < z < 1.30 �0.02+0.18
�0.17 �0.08+0.14

�0.08

TABLE III. Constraints on the shear calibration parameters, mi, from
the 3⇥2pt and 5⇥2pt data vectors when priors on mi are relaxed. In
all cases, the posteriors obtained on the mi from the 5⇥2pt analysis
are consistent with the priors adopted in the 3⇥2pt analysis of [9].

plicative shear bias. The resultant constraints on the shear cal-
ibration parameters are shown in Table III. These constraints
are consistent with the fiducial shear calibration priors shown
in Table I. In other words, we find no evidence for unac-
counted systematics in DES measurements of galaxy shear.

We have also performed similar tests for other nuisance
parameters such as photo-z bias and IA. However, the ef-
fect of self-calibration for these other parameters tends to be
smaller than for shear calibration. As shown in B18, this
is because shear calibration, galaxy bias, and As are part of
a three-parameter degeneracy. Consequently, the 3⇥2pt data
vector cannot tightly constrain these parameters without exter-
nal priors on shear calibration. For the other systematics pa-
rameters, however, such strong degeneracies are not present,
and significant self-calibration can occur. Consequently, for
these parameters, adding the additional correlations with CMB
does not add significant constraining power beyond that of the
3⇥2pt data vector.

E. Consistency with Planck measurements of the CMB lensing

autospectrum

While the 5⇥2pt data vector includes cross-correlations of
galaxies and galaxy shears with CMB lensing, it does not in-
clude the CMB lensing auto-spectrum. Both the 5⇥2pt data
vector and CMB lensing auto-spectrum are sensitive to the
same physics, although the CMB lensing auto-spectrum is
sensitive to higher redshifts as a result of the CMB lensing
weight peaking at z ⇠ 2. Consistency between these two
datasets is therefore a powerful test of the data and the as-
sumptions of the cosmological model.

Measurements of the CMB lensing autospectrum over the
2500 deg2 patch covered by the SPT-SZ survey have been ob-
tained from a combination of SPT and Planck data by [25],
and this power spectrum has been used to generate cosmolog-
ical constraints by [68]. Because of lower noise and higher
resolution of the SPT maps relative to Planck, the cosmolog-
ical constraints obtained in [68] are comparable to those of
the full sky measurements of the CMB lensing autospectrum
presented in [21], despite the large di↵erence in sky coverage.

In this analysis, we choose to test for consistency between
the 5⇥2pt data vector and the Planck-only measurement of the
CMB lensing autospectrum. The primary motivation for this
choice is that it significantly simplifies the analysis because it
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in the analysis, 6) run the MCMC, and 7) examine biases in cosmological parameter space
and compare them to the overall (statistics + systematics) error budget of a given survey.

These simulated analyses allow us to identify optimal combinations of observables and
their scales and redshifts and study the impact of systematic e↵ects on realistic cosmology
analyses as they will be implemented in WFIRST, Euclid, and LSST.

CMB(`) wgCMB(✓, zl) ⇠�CMB(✓, zs) wgg(✓, zl) �t(✓, zl, zs) ⇠�(✓, zsi , zsj) ⇠+(✓, zsi , zsj)
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Figure 3: Visualization of the inference process and associated

problems that need to be addressed for a successful DES Year

3 and Year 5 analysis.

The di↵erent LSS probes are
a↵ected by common system-
atic errors, such as uncertain-
ties in photometric redshifts,
shear calibration biases and as-
trophysical contaminants, e.g.
halo triaxiality, scatter in the
mass-observable relation, bary-
onic e↵ects, and intrinsic align-
ment. In order to derive mean-
ingful cosmological constraints
from systematics limited obser-
vations, these e↵ects need to be
modeled and marginalized over

consistently for all observables. This marginalization over nuisance parameters (i.e. param-
eters that are not of interest for the analyst) requires significant increases in computational
e�ciency: these parameters increase the dimensionality of the parameter space from or-
der ten (cosmological parameters) to of order hundred. While such models perform well in
Fisher-matrix based studies, sampling such high-dimensional parameter spaces poses severe
computational challenges in likelihood analyses. In ? we ran realistic likelihood analysis with
48 nuisance parameters. Refining systematics models while keeping the number of nuisance
parameters low is key to a successful analysis framework and the guiding principle of this
task.

Task 1: Improve Halo Model Accuracy. The halo model and halo-occupation distri-
bution (HOD) modeling are frequently used to interpret the small-scale clustering of matter
and galaxies, though the accuracy of standard implementations is well known to be limited
to 10%. Recent work achieved promising improvements in modeling accuracy by calibrating
the halo model building blocks against simulations: van den Bosch et al. (2013) calibrated
the halo model + HOD description of the intermediate regime between small- and large-scale
galaxy clustering for LCDM cosmologies, and Mead et al. (2015, 2016) calibrated e↵ective
fitting functions to include baryonic feedback e↵ects on the matter power spectrum for a

4

DOE Comparative Review The Cosmic Frontier

in the analysis, 6) run the MCMC, and 7) examine biases in cosmological parameter space
and compare them to the overall (statistics + systematics) error budget of a given survey.

These simulated analyses allow us to identify optimal combinations of observables and
their scales and redshifts and study the impact of systematic e↵ects on realistic cosmology
analyses as they will be implemented in WFIRST, Euclid, and LSST.

CMB(`) wgCMB(✓, zl) ⇠�CMB(✓, zs) wgg(✓, zl) �t(✓, zl, zs) ⇠�(✓, zsi , zsj) ⇠+(✓, zsi , zsj)

2.2 DES - Proposed Research

Figure 3: Visualization of the inference process and associated

problems that need to be addressed for a successful DES Year

3 and Year 5 analysis.

The di↵erent LSS probes are
a↵ected by common system-
atic errors, such as uncertain-
ties in photometric redshifts,
shear calibration biases and as-
trophysical contaminants, e.g.
halo triaxiality, scatter in the
mass-observable relation, bary-
onic e↵ects, and intrinsic align-
ment. In order to derive mean-
ingful cosmological constraints
from systematics limited obser-
vations, these e↵ects need to be
modeled and marginalized over

consistently for all observables. This marginalization over nuisance parameters (i.e. param-
eters that are not of interest for the analyst) requires significant increases in computational
e�ciency: these parameters increase the dimensionality of the parameter space from or-
der ten (cosmological parameters) to of order hundred. While such models perform well in
Fisher-matrix based studies, sampling such high-dimensional parameter spaces poses severe
computational challenges in likelihood analyses. In ? we ran realistic likelihood analysis with
48 nuisance parameters. Refining systematics models while keeping the number of nuisance
parameters low is key to a successful analysis framework and the guiding principle of this
task.

Task 1: Improve Halo Model Accuracy. The halo model and halo-occupation distri-
bution (HOD) modeling are frequently used to interpret the small-scale clustering of matter
and galaxies, though the accuracy of standard implementations is well known to be limited
to 10%. Recent work achieved promising improvements in modeling accuracy by calibrating
the halo model building blocks against simulations: van den Bosch et al. (2013) calibrated
the halo model + HOD description of the intermediate regime between small- and large-scale
galaxy clustering for LCDM cosmologies, and Mead et al. (2015, 2016) calibrated e↵ective
fitting functions to include baryonic feedback e↵ects on the matter power spectrum for a

4

DOE Comparative Review The Cosmic Frontier

in the analysis, 6) run the MCMC, and 7) examine biases in cosmological parameter space
and compare them to the overall (statistics + systematics) error budget of a given survey.

These simulated analyses allow us to identify optimal combinations of observables and
their scales and redshifts and study the impact of systematic e↵ects on realistic cosmology
analyses as they will be implemented in WFIRST, Euclid, and LSST.

CMB(`) wgCMB(✓, zl) ⇠�CMB(✓, zs) wgg(✓, zl) �t(✓, zl, zs) ⇠�(✓, zsi , zsj) ⇠+(✓, zsi , zsj)

2.2 DES - Proposed Research

Figure 3: Visualization of the inference process and associated

problems that need to be addressed for a successful DES Year

3 and Year 5 analysis.

The di↵erent LSS probes are
a↵ected by common system-
atic errors, such as uncertain-
ties in photometric redshifts,
shear calibration biases and as-
trophysical contaminants, e.g.
halo triaxiality, scatter in the
mass-observable relation, bary-
onic e↵ects, and intrinsic align-
ment. In order to derive mean-
ingful cosmological constraints
from systematics limited obser-
vations, these e↵ects need to be
modeled and marginalized over

consistently for all observables. This marginalization over nuisance parameters (i.e. param-
eters that are not of interest for the analyst) requires significant increases in computational
e�ciency: these parameters increase the dimensionality of the parameter space from or-
der ten (cosmological parameters) to of order hundred. While such models perform well in
Fisher-matrix based studies, sampling such high-dimensional parameter spaces poses severe
computational challenges in likelihood analyses. In ? we ran realistic likelihood analysis with
48 nuisance parameters. Refining systematics models while keeping the number of nuisance
parameters low is key to a successful analysis framework and the guiding principle of this
task.

Task 1: Improve Halo Model Accuracy. The halo model and halo-occupation distri-
bution (HOD) modeling are frequently used to interpret the small-scale clustering of matter
and galaxies, though the accuracy of standard implementations is well known to be limited
to 10%. Recent work achieved promising improvements in modeling accuracy by calibrating
the halo model building blocks against simulations: van den Bosch et al. (2013) calibrated
the halo model + HOD description of the intermediate regime between small- and large-scale
galaxy clustering for LCDM cosmologies, and Mead et al. (2015, 2016) calibrated e↵ective
fitting functions to include baryonic feedback e↵ects on the matter power spectrum for a

4

DOE Comparative Review The Cosmic Frontier

in the analysis, 6) run the MCMC, and 7) examine biases in cosmological parameter space
and compare them to the overall (statistics + systematics) error budget of a given survey.

These simulated analyses allow us to identify optimal combinations of observables and
their scales and redshifts and study the impact of systematic e↵ects on realistic cosmology
analyses as they will be implemented in WFIRST, Euclid, and LSST.

CMB(`) wgCMB(✓, zl) ⇠�CMB(✓, zs) wgg(✓, zl) �t(✓, zl, zs) ⇠�(✓, zsi , zsj) ⇠+(✓, zsi , zsj)

2.2 DES - Proposed Research

Figure 3: Visualization of the inference process and associated

problems that need to be addressed for a successful DES Year

3 and Year 5 analysis.

The di↵erent LSS probes are
a↵ected by common system-
atic errors, such as uncertain-
ties in photometric redshifts,
shear calibration biases and as-
trophysical contaminants, e.g.
halo triaxiality, scatter in the
mass-observable relation, bary-
onic e↵ects, and intrinsic align-
ment. In order to derive mean-
ingful cosmological constraints
from systematics limited obser-
vations, these e↵ects need to be
modeled and marginalized over

consistently for all observables. This marginalization over nuisance parameters (i.e. param-
eters that are not of interest for the analyst) requires significant increases in computational
e�ciency: these parameters increase the dimensionality of the parameter space from or-
der ten (cosmological parameters) to of order hundred. While such models perform well in
Fisher-matrix based studies, sampling such high-dimensional parameter spaces poses severe
computational challenges in likelihood analyses. In ? we ran realistic likelihood analysis with
48 nuisance parameters. Refining systematics models while keeping the number of nuisance
parameters low is key to a successful analysis framework and the guiding principle of this
task.

Task 1: Improve Halo Model Accuracy. The halo model and halo-occupation distri-
bution (HOD) modeling are frequently used to interpret the small-scale clustering of matter
and galaxies, though the accuracy of standard implementations is well known to be limited
to 10%. Recent work achieved promising improvements in modeling accuracy by calibrating
the halo model building blocks against simulations: van den Bosch et al. (2013) calibrated
the halo model + HOD description of the intermediate regime between small- and large-scale
galaxy clustering for LCDM cosmologies, and Mead et al. (2015, 2016) calibrated e↵ective
fitting functions to include baryonic feedback e↵ects on the matter power spectrum for a

4

DOE Comparative Review The Cosmic Frontier

in the analysis, 6) run the MCMC, and 7) examine biases in cosmological parameter space
and compare them to the overall (statistics + systematics) error budget of a given survey.

These simulated analyses allow us to identify optimal combinations of observables and
their scales and redshifts and study the impact of systematic e↵ects on realistic cosmology
analyses as they will be implemented in WFIRST, Euclid, and LSST.

CMB(`) wgCMB(✓, zl) ⇠�CMB(✓, zs) wgg(✓, zl) �t(✓, zl, zs) ⇠�(✓, zsi , zsj) ⇠+(✓, zsi , zsj)

2.2 DES - Proposed Research

Figure 3: Visualization of the inference process and associated

problems that need to be addressed for a successful DES Year

3 and Year 5 analysis.

The di↵erent LSS probes are
a↵ected by common system-
atic errors, such as uncertain-
ties in photometric redshifts,
shear calibration biases and as-
trophysical contaminants, e.g.
halo triaxiality, scatter in the
mass-observable relation, bary-
onic e↵ects, and intrinsic align-
ment. In order to derive mean-
ingful cosmological constraints
from systematics limited obser-
vations, these e↵ects need to be
modeled and marginalized over

consistently for all observables. This marginalization over nuisance parameters (i.e. param-
eters that are not of interest for the analyst) requires significant increases in computational
e�ciency: these parameters increase the dimensionality of the parameter space from or-
der ten (cosmological parameters) to of order hundred. While such models perform well in
Fisher-matrix based studies, sampling such high-dimensional parameter spaces poses severe
computational challenges in likelihood analyses. In ? we ran realistic likelihood analysis with
48 nuisance parameters. Refining systematics models while keeping the number of nuisance
parameters low is key to a successful analysis framework and the guiding principle of this
task.

Task 1: Improve Halo Model Accuracy. The halo model and halo-occupation distri-
bution (HOD) modeling are frequently used to interpret the small-scale clustering of matter
and galaxies, though the accuracy of standard implementations is well known to be limited
to 10%. Recent work achieved promising improvements in modeling accuracy by calibrating
the halo model building blocks against simulations: van den Bosch et al. (2013) calibrated
the halo model + HOD description of the intermediate regime between small- and large-scale
galaxy clustering for LCDM cosmologies, and Mead et al. (2015, 2016) calibrated e↵ective
fitting functions to include baryonic feedback e↵ects on the matter power spectrum for a

4

DOE Comparative Review The Cosmic Frontier

in the analysis, 6) run the MCMC, and 7) examine biases in cosmological parameter space
and compare them to the overall (statistics + systematics) error budget of a given survey.

These simulated analyses allow us to identify optimal combinations of observables and
their scales and redshifts and study the impact of systematic e↵ects on realistic cosmology
analyses as they will be implemented in WFIRST, Euclid, and LSST.

CMB(`) wgCMB(✓, zl) ⇠�CMB(✓, zs) wgg(✓, zl) �t(✓, zl, zs) ⇠�(✓, zsi , zsj) ⇠+(✓, zsi , zsj)

2.2 DES - Proposed Research

Figure 3: Visualization of the inference process and associated

problems that need to be addressed for a successful DES Year

3 and Year 5 analysis.

The di↵erent LSS probes are
a↵ected by common system-
atic errors, such as uncertain-
ties in photometric redshifts,
shear calibration biases and as-
trophysical contaminants, e.g.
halo triaxiality, scatter in the
mass-observable relation, bary-
onic e↵ects, and intrinsic align-
ment. In order to derive mean-
ingful cosmological constraints
from systematics limited obser-
vations, these e↵ects need to be
modeled and marginalized over

consistently for all observables. This marginalization over nuisance parameters (i.e. param-
eters that are not of interest for the analyst) requires significant increases in computational
e�ciency: these parameters increase the dimensionality of the parameter space from or-
der ten (cosmological parameters) to of order hundred. While such models perform well in
Fisher-matrix based studies, sampling such high-dimensional parameter spaces poses severe
computational challenges in likelihood analyses. In ? we ran realistic likelihood analysis with
48 nuisance parameters. Refining systematics models while keeping the number of nuisance
parameters low is key to a successful analysis framework and the guiding principle of this
task.

Task 1: Improve Halo Model Accuracy. The halo model and halo-occupation distri-
bution (HOD) modeling are frequently used to interpret the small-scale clustering of matter
and galaxies, though the accuracy of standard implementations is well known to be limited
to 10%. Recent work achieved promising improvements in modeling accuracy by calibrating
the halo model building blocks against simulations: van den Bosch et al. (2013) calibrated
the halo model + HOD description of the intermediate regime between small- and large-scale
galaxy clustering for LCDM cosmologies, and Mead et al. (2015, 2016) calibrated e↵ective
fitting functions to include baryonic feedback e↵ects on the matter power spectrum for a

4

DOE Comparative Review The Cosmic Frontier

in the analysis, 6) run the MCMC, and 7) examine biases in cosmological parameter space
and compare them to the overall (statistics + systematics) error budget of a given survey.

These simulated analyses allow us to identify optimal combinations of observables and
their scales and redshifts and study the impact of systematic e↵ects on realistic cosmology
analyses as they will be implemented in WFIRST, Euclid, and LSST.

CMB wgCMB ⇠�CMB wgg �t ⇠� ⇠+

2.2 DES - Proposed Research

Figure 3: Visualization of the inference process and associated

problems that need to be addressed for a successful DES Year

3 and Year 5 analysis.

The di↵erent LSS probes are
a↵ected by common system-
atic errors, such as uncertain-
ties in photometric redshifts,
shear calibration biases and as-
trophysical contaminants, e.g.
halo triaxiality, scatter in the
mass-observable relation, bary-
onic e↵ects, and intrinsic align-
ment. In order to derive mean-
ingful cosmological constraints
from systematics limited obser-
vations, these e↵ects need to be
modeled and marginalized over

consistently for all observables. This marginalization over nuisance parameters (i.e. param-
eters that are not of interest for the analyst) requires significant increases in computational
e�ciency: these parameters increase the dimensionality of the parameter space from or-
der ten (cosmological parameters) to of order hundred. While such models perform well in
Fisher-matrix based studies, sampling such high-dimensional parameter spaces poses severe
computational challenges in likelihood analyses. In ? we ran realistic likelihood analysis with
48 nuisance parameters. Refining systematics models while keeping the number of nuisance
parameters low is key to a successful analysis framework and the guiding principle of this
task.

Task 1: Improve Halo Model Accuracy. The halo model and halo-occupation distri-
bution (HOD) modeling are frequently used to interpret the small-scale clustering of matter
and galaxies, though the accuracy of standard implementations is well known to be limited
to 10%. Recent work achieved promising improvements in modeling accuracy by calibrating
the halo model building blocks against simulations: van den Bosch et al. (2013) calibrated
the halo model + HOD description of the intermediate regime between small- and large-scale
galaxy clustering for LCDM cosmologies, and Mead et al. (2015, 2016) calibrated e↵ective
fitting functions to include baryonic feedback e↵ects on the matter power spectrum for a
variety of cosmological models. However, in order to meet the modeling accuracy require-
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in the analysis, 6) run the MCMC, and 7) examine biases in cosmological parameter space
and compare them to the overall (statistics + systematics) error budget of a given survey.
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intrinsic alignment models into CosmoLike focusing on red galaxies, where IA has been
detected. As part of this proposal we will extend these models to blue galaxies, implement
them in the context of the DES Y3 CosmoLike modules and use this enhanced modeling
for the DES Y3 analysis.

Task 5: Adapt models for shear calibration and photo-z uncertainty. The DES
Y1 analysis parametrized shear calibration uncertainties using one multiplicative parameter
per tomographic source bin. The redshift uncertainties for both the source and lens bins
were parameterized through shift parameters of the best fit redshift distribution. Several
changes will be necessary for the Y3 analysis: 1) We propose to test if more complex models
for shear calibration are necessary when extending the analysis to smaller scales; 2) The
redshift uncertainty will be parameterized through an ensemble of redshift distribution that
span the range of uncertainty as identified by the photo-z algorithms and testing suite. We
propose to implement a corresponding module in CosmoLike that randomly selects redshift
distributions from the ensemble and marginalizes e�ciently over the range of uncertainty.

2.2.2 Work Package 2: Covariance Extensions for DES Year 3 and Year 5
analyses

CosmoLike is unique in terms of modeling covariance matrices and critical to enable DES
likelihood analyses.

DES Multi-Probe Pipelines:
Covariance Validation [Step 1]

ongoing work by
Eric Baxter, Chihway Chang, Oliver Friedrich, EK, Nicklas Kokron, EK, Yuuki Omori

covariance from Gaussian realizations
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and compare them to the overall (statistics + systematics) error budget of a given survey.

These simulated analyses allow us to identify optimal combinations of observables and
their scales and redshifts and study the impact of systematic e↵ects on realistic cosmology
analyses as they will be implemented in WFIRST, Euclid, and LSST.
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their scales and redshifts and study the impact of systematic e↵ects on realistic cosmology
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and compare them to the overall (statistics + systematics) error budget of a given survey.

These simulated analyses allow us to identify optimal combinations of observables and
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der ten (cosmological parameters) to of order hundred. While such models perform well in
Fisher-matrix based studies, sampling such high-dimensional parameter spaces poses severe
computational challenges in likelihood analyses. In ? we ran realistic likelihood analysis with
48 nuisance parameters. Refining systematics models while keeping the number of nuisance
parameters low is key to a successful analysis framework and the guiding principle of this
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Task 1: Improve Halo Model Accuracy. The halo model and halo-occupation distri-
bution (HOD) modeling are frequently used to interpret the small-scale clustering of matter
and galaxies, though the accuracy of standard implementations is well known to be limited
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the halo model building blocks against simulations: van den Bosch et al. (2013) calibrated
the halo model + HOD description of the intermediate regime between small- and large-scale
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fitting functions to include baryonic feedback e↵ects on the matter power spectrum for a
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in the analysis, 6) run the MCMC, and 7) examine biases in cosmological parameter space
and compare them to the overall (statistics + systematics) error budget of a given survey.

These simulated analyses allow us to identify optimal combinations of observables and
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Figure 3: Illustration of proposed covariance work package, en-

abling a 6x2pt analysis for DES. Left of the matrix we denote the

corresponding parts of the data vector. Please note that code for 7

matrices needs to be designed, implemented, and validated in order

to include the 6
th

two-point statistics in this analysis.

The covariance code needs to
be extended however in order
to model errors on small-scales
(matching the extensions on
baryons and galaxy bias model-
ing in the previous work pack-
age) and in addition we pro-
pose to extend it in order to
perform a full 6x2pt analysis.
In the 5x2pt analysis of Abbott
et al. (2018b) we explicitly ex-
cluded the auto-correlation of
CMB lensing, i.e. the correla-
tion of CMB CMB. The main
reason for this was that the cor-
responding auto-correlation is
measured in Fourier space, i.e.
it enters the data vector as the
power spectrum CCMB(`) and
computing the cross-covariance
terms of this power spectrum
with the other probes in the
data vector, which were all mea-
sured in real or configuration
space, was not feasible given the
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intrinsic alignment models into CosmoLike focusing on red galaxies, where IA has been
detected. As part of this proposal we will extend these models to blue galaxies, implement
them in the context of the DES Y3 CosmoLike modules and use this enhanced modeling
for the DES Y3 analysis.

Task 5: Adapt models for shear calibration and photo-z uncertainty. The DES
Y1 analysis parametrized shear calibration uncertainties using one multiplicative parameter
per tomographic source bin. The redshift uncertainties for both the source and lens bins
were parameterized through shift parameters of the best fit redshift distribution. Several
changes will be necessary for the Y3 analysis: 1) We propose to test if more complex models
for shear calibration are necessary when extending the analysis to smaller scales; 2) The
redshift uncertainty will be parameterized through an ensemble of redshift distribution that
span the range of uncertainty as identified by the photo-z algorithms and testing suite. We
propose to implement a corresponding module in CosmoLike that randomly selects redshift
distributions from the ensemble and marginalizes e�ciently over the range of uncertainty.

2.2.2 Work Package 2: Covariance Extensions for DES Year 3 and Year 5
analyses

CosmoLike is unique in terms of modeling covariance matrices and critical to enable DES
likelihood analyses.

DES Multi-Probe Pipelines:
Covariance Validation [Step 1]

ongoing work by
Eric Baxter, Chihway Chang, Oliver Friedrich, EK, Nicklas Kokron, EK, Yuuki Omori

covariance from Gaussian realizations

1234567
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in the analysis, 6) run the MCMC, and 7) examine biases in cosmological parameter space
and compare them to the overall (statistics + systematics) error budget of a given survey.

These simulated analyses allow us to identify optimal combinations of observables and
their scales and redshifts and study the impact of systematic e↵ects on realistic cosmology
analyses as they will be implemented in WFIRST, Euclid, and LSST.
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FIG. 3. Correlation coe�cient matrix for the full set of observables DLSST & CMB S4 (i.e. clustering, galaxy-CMB lensing,
galaxy-galaxy lensing, CMB lensing auto, CMB lensing-galaxy lensing, shear tomography). The matrix is 2450 ⇥ 2450 and
includes galaxy clustering, galaxy-galaxy lensing, shear tomography, as well as CMB lensing, galaxy-CMB lensing, and galaxy
lensing-CMB lensing. The details of the calculation are presented in the Appendix A of [63]. Please zoom in to identify
individual matrix elements.

LSST & CMB S4 SNR

Individual probes

clustering (gg) 377

galaxy-galaxy lensing: ggal 276

galaxy-CMB lensing: gCMB 154 (56% of ggal)

shear tomography: galgal 532

CMB lensing auto: CMBCMB 401 (75% of galgal)

galaxy lensing-CMB lensing: galCMB 370

Combinations

LSST: gg, ggal,galgal 620

Combination 1: CMBCMB,CMBgal,galgal 647

Combination 2: gg, gCMB, ggal 403

Full: gg, gCMB, ggal,CMBCMB,CMBgal,galgal 718 (16% more than LSST alone)

TABLE II. Individual and combined signal-to-noise ratios (SNR), giving insight on the statistical weight of each probe included
in the joint analysis. All probes will be measured at high significance with LSST and CMB S4. The SNR in cosmic shear is
higher than in galaxy-galaxy lensing and clustering, which is due to our very conservative choice of tracer sample. CMB lensing
from CMB S4 adds a small contribution to the total statistical significance, but will be important in breaking degeneracies and
calibrating the shear multiplicative bias. The SNR gives an idea of the relative statistical weight of the various observables.
However, it doesn’t take into account the presence of nuisance parameters and their priors. As we show later, CMB lensing
from S4 basically replaces a prior on the shear multiplicative biases.

 details: Schaan, Krause, TE et al 2017
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FIG. 5. Left panel: 68% confidence constraints on the shear biases mi for LSST, when self-calibrating them with LSST
cosmic shear alone (blue), LSST full (i.e. clustering, galaxy-galaxy lensing and cosmic shear; green), combination 1 (orange),
combination 2 (yellow) and the full LSST & CMB S4 lensing (red). The self-calibration works down to the level of LSST
requirements (dashed lines) for the highest redshift bins, where shear calibration is otherwise most di�cult. We stress that all
the solid lines correspond to self-calibration from the data alone, without relying on image simulations. Calibration from image
simulations is expected to meet the LSST requirements, and CMB lensing will thus provide a valuable consistency check for
building confidence in the results from LSST.
Right panel: Impact of unaccounted intrinsic alignments (see Sec. IID). The lines show the bias in the self-calibrated value
of mi, and the colored bands show the 68% confidence constraints, corresponding to the curves in the left panel. Intrinsic
alignments produce a bias in the shear calibration, but not beyond the 68% confidence region.

of sensitivity in temperature (assumed
p

2 times smaller than in polarization; left panel), beam FWHM (central panel)
and maximum multipole included in the analysis `max T,P (parameterizing the e↵ectiveness of component separation;
right panel). When one parameter is varied, the others remain fixed to their fiducial values from Fig. 1. Note that in
all cases, the survey area is kept fixed at 18, 000 deg2 (fsky = 44%). The bottom row of Fig. 7 shows the corresponding
constraints on shear biases mi for each configuration.

The shear calibration improves slowly with sensitivity, by a factor of ⇠ 2 when the noise varies from 10 to 0.5µK
0.

This is understandable since the CMB lensing signal falls o↵ quickly at high `, and therefore a significant reduction
in reconstruction noise is needed to image higher ` lensing modes. For the same reason, we expect iterative lensing
reconstruction methods [61, 62] to only improve shear calibration by a few tens of percent.

For our choice of fiducial `-limits (`max = 3000 for T; `max = 5000 for E,B), set by foreground cleaning, varying the
beam FWHM between 0.50 and 30 has basically no impact on the shear calibration: a higher resolution experiment
can image higher `-modes, but we are discarding these small scales to avoid foreground contamination.

More realistically, a higher resolution experiment might perform better at component separation and allow to use
higher temperature and polarization multipoles. However, for our fiducial parameters, we find that varying `max T, P

between 2, 000 and 10, 000 only changes the shear calibration by about 25%.
This is encouraging and shows that upcoming third generation experiments such as Advanced ACT (AdvACT, 1.40

resolution, ⇠ 10µK
0 sensitivity on half of the sky) [98] and SPT-3G (10 resolution, 2.5µK

0 sensitivity on 2, 500 deg2)
[99] can already calibrate the shear from LSST. This calibration will be less precise than from CMB S4, but already
at a useful level. The amount of overlap of AdvACT and SPT-3G with LSST may evolve in the future, and will a↵ect
the shear calibration.

B. Sensitivity to photometric redshift uncertainties

In Sec. III B, we showed that CMB S4 lensing can calibrate the shear from LSST, assuming that the photometric
redshift uncertainties are under control. In this subsection, we ask how crucial this assumption is. We therefore vary
the priors on source and lens photo-z uncertainties and re-run our forecast. The left panel of Fig. 8 shows that the
shear calibration is mildly dependent on the source photo-z uncertainties. The dependence is higher at low redshift,
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Figure 3. Same as Fig. 2 but for the LSST-like weak lensing data vec-
tor. Ns = 400 simulations where assumed for the estimation of the PME
while Ns = Nd + 400 = 2600 simulations where assumed for the standard
estimator.

Ns = Nd + 200 = 650 simulations for the standard estimator. For
each realization of the LSST data vector we assumed Ns = 400
simulations for the PME and Ns = Nd + 400 = 2600 simulations
for the standard estimator.

Even though we allowed in each case many more simulations
for the standard estimator than for the PME, the PME yields con-
tours that are significantly closer to the ones obtained from the true
precision matrix of our experiment, C−1. In particular we find that
deviations between the contours derived from !̂2nd and those de-
rived from C−1 are much smaller than the corresponding 1σ and 2σ

uncertainties of the parameters.
Next we generalize the findings in Figs 2 and 3. We generate

1000 Wishart realizations of the matrices Ĉ and B̂ for different as-
sumptions on the number of available N-body simulations Ns. For
each of the 1000 sets of matrices we also generate 10 realizations ξ̂

of our fiducial data vector (i.e. overall 10 000 different realizations
ξ̂ ). Hence for each type of precision matrix estimate we perform
overall 10 000 likelihood analyses. In each analysis we determine
the best-fitting parameters π̂ML and check whether our fiducial cos-
mology is outside the 68.3 per cent confidence contour around these
parameters. In order to make this computationally feasible, we are
now linearly approximating the calculations of COSMOLIKE around
our fiducial cosmology π0, i.e. we use

ξ simple[π] = ξ exact[π0] +
Np∑

i=1

(πi − π0,i)
∂ξ exact

∂πi

∣∣∣∣
π0

. (18)

Since our mock data vectors ξ̂ are Gaussian, the best-fitting pa-
rameters π̂ML of this linearized model will also have a multivariate
Gaussian distribution where the inverse of the parameter covariance
F = C−1

param is given by

Fij

[
C−1] = ∂ξT

exact

∂πi

∣∣∣∣∣
π0

C−1 ∂ξ exact

∂πi

∣∣∣∣
π0

. (19)

In this simplified situation Fij [C−1] is identical to the Fisher ma-
trix and we will interchangeably call it Fisher matrix or inverse
parameter covariance. We can also use the precision matrix esti-
mates #̂ and #̂2nd to estimate the inverse parameter covariance
as Fij [#̂] and Fij [#̂2nd]. This allows us to analytically determine
the maximum likelihood parameters and the 68.3 per cent confi-
dence contours that would be obtained from each precision ma-
trix estimate and each random realization of our data vector, ξ̂ .
Note that we only need these approximations to make our anal-
ysis computationally feasible. An additional benefit is though
that the results of DS13 hold exactly in this simplified situa-
tion, allowing us to cross-check our results with their analytical
findings.

We define F> 1σ as the fraction of times that our fiducial cosmol-
ogy is outside of the 68.3 per cent confidence contour around the
best-fitting parameters and we use it as a metric for comparing the
different precision matrix estimators. In Fig. 4 we show this fraction
for all different types of precision matrices introduced before. The
solid, dashed and dotted lines show the fractions achieved when
using the noise-less matrices C−1, M−1 and !2nd. Especially, the
noise-less matrix !2nd would be the PME estimator in the limit of
infinitely many simulations and C−1 would be the standard esti-
mator in the same limit. The red and blue dots show the fraction
achieved when using the noisy precision matrix estimates !̂ and
!̂2nd.

As expected, F> 1σ is very close to 32 per cent when using the true
covariance of our experiment, C, in the likelihood analyses. For the
deformed halo model covariance M we assumed the two cases

MNRAS 473, 4150–4163 (2018)Downloaded from https://academic.oup.com/mnras/article-abstract/473/3/4150/4349754
by Jet Propulsion Laboratory user
on 30 May 2018

Precision matrix expansion 4155

Figure 3. Same as Fig. 2 but for the LSST-like weak lensing data vec-
tor. Ns = 400 simulations where assumed for the estimation of the PME
while Ns = Nd + 400 = 2600 simulations where assumed for the standard
estimator.

Ns = Nd + 200 = 650 simulations for the standard estimator. For
each realization of the LSST data vector we assumed Ns = 400
simulations for the PME and Ns = Nd + 400 = 2600 simulations
for the standard estimator.

Even though we allowed in each case many more simulations
for the standard estimator than for the PME, the PME yields con-
tours that are significantly closer to the ones obtained from the true
precision matrix of our experiment, C−1. In particular we find that
deviations between the contours derived from !̂2nd and those de-
rived from C−1 are much smaller than the corresponding 1σ and 2σ

uncertainties of the parameters.
Next we generalize the findings in Figs 2 and 3. We generate

1000 Wishart realizations of the matrices Ĉ and B̂ for different as-
sumptions on the number of available N-body simulations Ns. For
each of the 1000 sets of matrices we also generate 10 realizations ξ̂

of our fiducial data vector (i.e. overall 10 000 different realizations
ξ̂ ). Hence for each type of precision matrix estimate we perform
overall 10 000 likelihood analyses. In each analysis we determine
the best-fitting parameters π̂ML and check whether our fiducial cos-
mology is outside the 68.3 per cent confidence contour around these
parameters. In order to make this computationally feasible, we are
now linearly approximating the calculations of COSMOLIKE around
our fiducial cosmology π0, i.e. we use

ξ simple[π] = ξ exact[π0] +
Np∑

i=1

(πi − π0,i)
∂ξ exact
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∣∣∣∣
π0
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Since our mock data vectors ξ̂ are Gaussian, the best-fitting pa-
rameters π̂ML of this linearized model will also have a multivariate
Gaussian distribution where the inverse of the parameter covariance
F = C−1
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In this simplified situation Fij [C−1] is identical to the Fisher ma-
trix and we will interchangeably call it Fisher matrix or inverse
parameter covariance. We can also use the precision matrix esti-
mates #̂ and #̂2nd to estimate the inverse parameter covariance
as Fij [#̂] and Fij [#̂2nd]. This allows us to analytically determine
the maximum likelihood parameters and the 68.3 per cent confi-
dence contours that would be obtained from each precision ma-
trix estimate and each random realization of our data vector, ξ̂ .
Note that we only need these approximations to make our anal-
ysis computationally feasible. An additional benefit is though
that the results of DS13 hold exactly in this simplified situa-
tion, allowing us to cross-check our results with their analytical
findings.

We define F> 1σ as the fraction of times that our fiducial cosmol-
ogy is outside of the 68.3 per cent confidence contour around the
best-fitting parameters and we use it as a metric for comparing the
different precision matrix estimators. In Fig. 4 we show this fraction
for all different types of precision matrices introduced before. The
solid, dashed and dotted lines show the fractions achieved when
using the noise-less matrices C−1, M−1 and !2nd. Especially, the
noise-less matrix !2nd would be the PME estimator in the limit of
infinitely many simulations and C−1 would be the standard esti-
mator in the same limit. The red and blue dots show the fraction
achieved when using the noisy precision matrix estimates !̂ and
!̂2nd.

As expected, F> 1σ is very close to 32 per cent when using the true
covariance of our experiment, C, in the likelihood analyses. For the
deformed halo model covariance M we assumed the two cases
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Figure 3. Same as Fig. 2 but for the LSST-like weak lensing data vec-
tor. Ns = 400 simulations where assumed for the estimation of the PME
while Ns = Nd + 400 = 2600 simulations where assumed for the standard
estimator.

Ns = Nd + 200 = 650 simulations for the standard estimator. For
each realization of the LSST data vector we assumed Ns = 400
simulations for the PME and Ns = Nd + 400 = 2600 simulations
for the standard estimator.

Even though we allowed in each case many more simulations
for the standard estimator than for the PME, the PME yields con-
tours that are significantly closer to the ones obtained from the true
precision matrix of our experiment, C−1. In particular we find that
deviations between the contours derived from !̂2nd and those de-
rived from C−1 are much smaller than the corresponding 1σ and 2σ

uncertainties of the parameters.
Next we generalize the findings in Figs 2 and 3. We generate

1000 Wishart realizations of the matrices Ĉ and B̂ for different as-
sumptions on the number of available N-body simulations Ns. For
each of the 1000 sets of matrices we also generate 10 realizations ξ̂

of our fiducial data vector (i.e. overall 10 000 different realizations
ξ̂ ). Hence for each type of precision matrix estimate we perform
overall 10 000 likelihood analyses. In each analysis we determine
the best-fitting parameters π̂ML and check whether our fiducial cos-
mology is outside the 68.3 per cent confidence contour around these
parameters. In order to make this computationally feasible, we are
now linearly approximating the calculations of COSMOLIKE around
our fiducial cosmology π0, i.e. we use

ξ simple[π] = ξ exact[π0] +
Np∑

i=1

(πi − π0,i)
∂ξ exact

∂πi
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. (18)

Since our mock data vectors ξ̂ are Gaussian, the best-fitting pa-
rameters π̂ML of this linearized model will also have a multivariate
Gaussian distribution where the inverse of the parameter covariance
F = C−1

param is given by
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In this simplified situation Fij [C−1] is identical to the Fisher ma-
trix and we will interchangeably call it Fisher matrix or inverse
parameter covariance. We can also use the precision matrix esti-
mates #̂ and #̂2nd to estimate the inverse parameter covariance
as Fij [#̂] and Fij [#̂2nd]. This allows us to analytically determine
the maximum likelihood parameters and the 68.3 per cent confi-
dence contours that would be obtained from each precision ma-
trix estimate and each random realization of our data vector, ξ̂ .
Note that we only need these approximations to make our anal-
ysis computationally feasible. An additional benefit is though
that the results of DS13 hold exactly in this simplified situa-
tion, allowing us to cross-check our results with their analytical
findings.

We define F> 1σ as the fraction of times that our fiducial cosmol-
ogy is outside of the 68.3 per cent confidence contour around the
best-fitting parameters and we use it as a metric for comparing the
different precision matrix estimators. In Fig. 4 we show this fraction
for all different types of precision matrices introduced before. The
solid, dashed and dotted lines show the fractions achieved when
using the noise-less matrices C−1, M−1 and !2nd. Especially, the
noise-less matrix !2nd would be the PME estimator in the limit of
infinitely many simulations and C−1 would be the standard esti-
mator in the same limit. The red and blue dots show the fraction
achieved when using the noisy precision matrix estimates !̂ and
!̂2nd.

As expected, F> 1σ is very close to 32 per cent when using the true
covariance of our experiment, C, in the likelihood analyses. For the
deformed halo model covariance M we assumed the two cases
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Figure 3. Same as Fig. 2 but for the LSST-like weak lensing data vec-
tor. Ns = 400 simulations where assumed for the estimation of the PME
while Ns = Nd + 400 = 2600 simulations where assumed for the standard
estimator.

Ns = Nd + 200 = 650 simulations for the standard estimator. For
each realization of the LSST data vector we assumed Ns = 400
simulations for the PME and Ns = Nd + 400 = 2600 simulations
for the standard estimator.

Even though we allowed in each case many more simulations
for the standard estimator than for the PME, the PME yields con-
tours that are significantly closer to the ones obtained from the true
precision matrix of our experiment, C−1. In particular we find that
deviations between the contours derived from !̂2nd and those de-
rived from C−1 are much smaller than the corresponding 1σ and 2σ

uncertainties of the parameters.
Next we generalize the findings in Figs 2 and 3. We generate

1000 Wishart realizations of the matrices Ĉ and B̂ for different as-
sumptions on the number of available N-body simulations Ns. For
each of the 1000 sets of matrices we also generate 10 realizations ξ̂

of our fiducial data vector (i.e. overall 10 000 different realizations
ξ̂ ). Hence for each type of precision matrix estimate we perform
overall 10 000 likelihood analyses. In each analysis we determine
the best-fitting parameters π̂ML and check whether our fiducial cos-
mology is outside the 68.3 per cent confidence contour around these
parameters. In order to make this computationally feasible, we are
now linearly approximating the calculations of COSMOLIKE around
our fiducial cosmology π0, i.e. we use

ξ simple[π] = ξ exact[π0] +
Np∑

i=1

(πi − π0,i)
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Since our mock data vectors ξ̂ are Gaussian, the best-fitting pa-
rameters π̂ML of this linearized model will also have a multivariate
Gaussian distribution where the inverse of the parameter covariance
F = C−1
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In this simplified situation Fij [C−1] is identical to the Fisher ma-
trix and we will interchangeably call it Fisher matrix or inverse
parameter covariance. We can also use the precision matrix esti-
mates #̂ and #̂2nd to estimate the inverse parameter covariance
as Fij [#̂] and Fij [#̂2nd]. This allows us to analytically determine
the maximum likelihood parameters and the 68.3 per cent confi-
dence contours that would be obtained from each precision ma-
trix estimate and each random realization of our data vector, ξ̂ .
Note that we only need these approximations to make our anal-
ysis computationally feasible. An additional benefit is though
that the results of DS13 hold exactly in this simplified situa-
tion, allowing us to cross-check our results with their analytical
findings.

We define F> 1σ as the fraction of times that our fiducial cosmol-
ogy is outside of the 68.3 per cent confidence contour around the
best-fitting parameters and we use it as a metric for comparing the
different precision matrix estimators. In Fig. 4 we show this fraction
for all different types of precision matrices introduced before. The
solid, dashed and dotted lines show the fractions achieved when
using the noise-less matrices C−1, M−1 and !2nd. Especially, the
noise-less matrix !2nd would be the PME estimator in the limit of
infinitely many simulations and C−1 would be the standard esti-
mator in the same limit. The red and blue dots show the fraction
achieved when using the noisy precision matrix estimates !̂ and
!̂2nd.

As expected, F> 1σ is very close to 32 per cent when using the true
covariance of our experiment, C, in the likelihood analyses. For the
deformed halo model covariance M we assumed the two cases
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while Ns = Nd + 400 = 2600 simulations where assumed for the standard
estimator.

Ns = Nd + 200 = 650 simulations for the standard estimator. For
each realization of the LSST data vector we assumed Ns = 400
simulations for the PME and Ns = Nd + 400 = 2600 simulations
for the standard estimator.

Even though we allowed in each case many more simulations
for the standard estimator than for the PME, the PME yields con-
tours that are significantly closer to the ones obtained from the true
precision matrix of our experiment, C−1. In particular we find that
deviations between the contours derived from !̂2nd and those de-
rived from C−1 are much smaller than the corresponding 1σ and 2σ

uncertainties of the parameters.
Next we generalize the findings in Figs 2 and 3. We generate

1000 Wishart realizations of the matrices Ĉ and B̂ for different as-
sumptions on the number of available N-body simulations Ns. For
each of the 1000 sets of matrices we also generate 10 realizations ξ̂

of our fiducial data vector (i.e. overall 10 000 different realizations
ξ̂ ). Hence for each type of precision matrix estimate we perform
overall 10 000 likelihood analyses. In each analysis we determine
the best-fitting parameters π̂ML and check whether our fiducial cos-
mology is outside the 68.3 per cent confidence contour around these
parameters. In order to make this computationally feasible, we are
now linearly approximating the calculations of COSMOLIKE around
our fiducial cosmology π0, i.e. we use
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In this simplified situation Fij [C−1] is identical to the Fisher ma-
trix and we will interchangeably call it Fisher matrix or inverse
parameter covariance. We can also use the precision matrix esti-
mates #̂ and #̂2nd to estimate the inverse parameter covariance
as Fij [#̂] and Fij [#̂2nd]. This allows us to analytically determine
the maximum likelihood parameters and the 68.3 per cent confi-
dence contours that would be obtained from each precision ma-
trix estimate and each random realization of our data vector, ξ̂ .
Note that we only need these approximations to make our anal-
ysis computationally feasible. An additional benefit is though
that the results of DS13 hold exactly in this simplified situa-
tion, allowing us to cross-check our results with their analytical
findings.

We define F> 1σ as the fraction of times that our fiducial cosmol-
ogy is outside of the 68.3 per cent confidence contour around the
best-fitting parameters and we use it as a metric for comparing the
different precision matrix estimators. In Fig. 4 we show this fraction
for all different types of precision matrices introduced before. The
solid, dashed and dotted lines show the fractions achieved when
using the noise-less matrices C−1, M−1 and !2nd. Especially, the
noise-less matrix !2nd would be the PME estimator in the limit of
infinitely many simulations and C−1 would be the standard esti-
mator in the same limit. The red and blue dots show the fraction
achieved when using the noisy precision matrix estimates !̂ and
!̂2nd.

As expected, F> 1σ is very close to 32 per cent when using the true
covariance of our experiment, C, in the likelihood analyses. For the
deformed halo model covariance M we assumed the two cases
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2 Friedrich, Eifler

covariance estimates. A fully non-Gaussian treatment of the e↵ects
discussed in Dodelson & Schneider (2013, hereafter DS13) is how-
ever still missing.

Prior knowledge on the sparsity of the covariance matrix and
the precision matrix was used by Paz & Sánchez (2015) and Pad-
manabhan et al. (2015) to improve estimates of the precision ma-
trix from few simulations. Pope & Szapudi (2008) investigated
shrinkage estimators of the covariance, i.e. a mixing of estimated
and modelled covariance matrices. This however raises the task
of finding an equivalent to the Kaufman-Hartlap correction for
such a mixture of estimated and analytic matrices. More recently,
Joachimi (2017) describes a non-linear extension of that estimator
which combines covariance estimates from two sets of independent
data vector realisations and hence does not require a covariance
model.

In this paper we describe a way to expand the true precision
matrix around a covariance model as a power series in the devia-
tion between model and true covariance. Assuming a Wishart re-
alisation for the true covariance and using the results on invariant
moments of the Wishart distribution by Letac & Massam (2004)
we derive an unbiased estimator for the up to second order expan-
sion of the true precision matrix. This becomes especially powerful
if parts of the covariance matrix that are well understood analyt-
ically can be turned o↵ in simulations in order to yield a direct
estimate of the remaining covariance parts. In Sect. 3 we recap
the main problems of estimating parameter constraints from noisy
covariance estimates and present our method of "Precision Matrix
Expansion" (PME). In Sect. 4 we perform numerical experiments
that mimic data from the Dark Energy Survey (DES) and the Large
Synoptic Survey Telecope (LSST) likelihood analyses to test the
performance of our idea. Sect. 5 concludes with a discussion of our
results.

2 Parameter constraints from noisy covariance estimates

We begin by outlining the main task of this paper. Let ⇠̂⇠⇠ be a vector
of Nd data points measured from observational data and let ⇠⇠⇠[⇡⇡⇡]
be a model for this data vector that depends on a vector of Np pa-
rameters ⇡⇡⇡. If C is the covariance matrix of ⇠̂⇠⇠ then a standard way
to constrain the parameters ⇡⇡⇡ is to assign a posterior distribution
p(⇡⇡⇡|⇠̂⇠⇠) to them as

p(⇡⇡⇡|⇠̂⇠⇠) ⇠ exp
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and p(⇡⇡⇡) being a prior density incorporating apriori knowledge or
assumptions on ⇡⇡⇡. These expressions in fact ignore that C also can
be depedent on ⇡⇡⇡. We will do this throughout this paper and re-
fer the reader to Eifler et al. (2009) who investigated the impact of
cosmology dependent covariance matrices on cosmic shear likeli-
hood analyses. Another assumption that goes into Eq. 1 is that the
measured data vector ⇠̂⇠⇠ is drawn from a multi-variate Gaussian dis-
tribution. In wide area surveys this is justified in the limit where
one can consider the survey to consist of many independent sub-
regions, such that the measurements in those regions add up to a
Gaussian data vector by means of the central limit theorem.

If the covariance matrix C is not exactly known, it can e.g. be
estimated from N-body simulations. If ⇠̂⇠⇠i, i = 1...Ns, are a number

of independent measurements of ⇠⇠⇠ in simulations then an unbiased
estimate of C is given by

Ĉ :=
1
⌫

NsX

i=1

⇣
⇠̂⇠⇠i � ⇠̄⇠⇠

⌘ ⇣
⇠̂⇠⇠i � ⇠̄⇠⇠

⌘T
, (3)

where ⌫ = Ns � 1 and ⇠̄⇠⇠ is the sample mean of the ⇠̂⇠⇠i. We will as-
sume Ĉ to have a Wishart distribution with ⌫ degrees of freedom
which follows from our assumption that ⇠̂⇠⇠ and the ⇠̂⇠⇠i are Gaussian
distributed (cf. Taylor et al. 2013).

To compute the likelihood in Eq. 1 we need to know the preci-
sion matrix, i.e. is the inverse covariance matrix  = C�1. Accord-
ing to Kaufman (1967, see also Hartlap et al. 2007; Taylor et al.
2013) an unbiased estimator for  can be constructed from Ĉ as

 ̂ =
⌫�Nd �1
⌫

Ĉ�1 (4)

and we will call the factor of (⌫�Nd �1)/⌫ the Kaufman-Hartlap-
correction.

Given a measurement ⇠̂⇠⇠ of the data vector one can derive the
posterior density of the model parameters p(⇡⇡⇡|⇠̂⇠⇠) by means of equa-
tions 1 and 2. A noisy precision matrix estimate influences this in-
ference in two ways:

• it adds noise to the width of likelihood contours derived from
inserting the precision matrix estimate into the figure of merit �2

(Eq. 2).
• it adds noise to the location of likelihood contours. E.g. the maxi-
mum likelihood estimator for the parameters ⇡⇡⇡ would be

⇡̂⇡⇡ML =min
⇡⇡⇡

⇢⇣
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When using a noisy precision matrix the uncertainties of ⇡̂⇡⇡ML have
contributions from both the noise in ⇠̂⇠⇠ and the noise in  ̂.

The astro-statistics literature has so far focused on the first
e↵ect, i.e. on the uncertainties on contour width due to noise in
the estimate  ̂ (Taylor et al. 2013; Taylor & Joachimi 2014; Sel-
lentin & Heavens 2016a,b). Sellentin & Heavens (2016b) provide
the most complete demonstration that  ̂ yields a good estimate of
the width of the posterior contours as long as Ns �Nd � Np.

The more critical e↵ect however is the additional noise of
⇡̂⇡⇡ML. DS13 (also see appendix A) showed that the uncertainty on
the position of likelihood contours from noise in  ̂ is only negligi-
ble if Ns �Nd � Nd �Np which is a much more demanding crite-
rion for current cosmological data vectors. We demonstrate this in
the left-hand panel of Fig. 1, where we show 100 randomly drawn
realisations of a DES-like weak lensing data vector with Nd = 450
and a halo model covariance matrix (see Sec. 4 for further details).
For each of the 100 data vectors we have also generated Wishart
realisations of our covariance matrix corresponding to an estimate
from Ns = 650 simulations. Using either the true covariance or the
estimated one, we then determine the best fitting parameters ⌦m
and �8 (after marginalizing over equation-of-state parameters of
dark energy, w0 and wa). The best-fits obtained from a noisy co-
variance (green points) clearly display a much larger scatter than
those obtained from the true covariance (red points). Also shown
are the best fits obtained by precision matrix expansion (PME, blue
points) which we are going to introduce in the next section. Here
we assumed that only Ns = 200 simulations are available to estimate
the PME, which gives best fit values that are significantly closer to
the ones obtained when knowing the true covariance matrix.

When reconstructing p(⇡⇡⇡|⇠̂⇠⇠) (e.g. from a Monte-Carlo-
Markov-Chain) this can lead to significant o↵sets between likeli-
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covariance estimates. A fully non-Gaussian treatment of the e↵ects
discussed in Dodelson & Schneider (2013, hereafter DS13) is how-
ever still missing.

Prior knowledge on the sparsity of the covariance matrix and
the precision matrix was used by Paz & Sánchez (2015) and Pad-
manabhan et al. (2015) to improve estimates of the precision ma-
trix from few simulations. Pope & Szapudi (2008) investigated
shrinkage estimators of the covariance, i.e. a mixing of estimated
and modelled covariance matrices. This however raises the task
of finding an equivalent to the Kaufman-Hartlap correction for
such a mixture of estimated and analytic matrices. More recently,
Joachimi (2017) describes a non-linear extension of that estimator
which combines covariance estimates from two sets of independent
data vector realisations and hence does not require a covariance
model.

In this paper we describe a way to expand the true precision
matrix around a covariance model as a power series in the devia-
tion between model and true covariance. Assuming a Wishart re-
alisation for the true covariance and using the results on invariant
moments of the Wishart distribution by Letac & Massam (2004)
we derive an unbiased estimator for the up to second order expan-
sion of the true precision matrix. This becomes especially powerful
if parts of the covariance matrix that are well understood analyt-
ically can be turned o↵ in simulations in order to yield a direct
estimate of the remaining covariance parts. In Sect. 3 we recap
the main problems of estimating parameter constraints from noisy
covariance estimates and present our method of "Precision Matrix
Expansion" (PME). In Sect. 4 we perform numerical experiments
that mimic data from the Dark Energy Survey (DES) and the Large
Synoptic Survey Telecope (LSST) likelihood analyses to test the
performance of our idea. Sect. 5 concludes with a discussion of our
results.

2 Parameter constraints from noisy covariance estimates

We begin by outlining the main task of this paper. Let ⇠̂⇠⇠ be a vector
of Nd data points measured from observational data and let ⇠⇠⇠[⇡⇡⇡]
be a model for this data vector that depends on a vector of Np pa-
rameters ⇡⇡⇡. If C is the covariance matrix of ⇠̂⇠⇠ then a standard way
to constrain the parameters ⇡⇡⇡ is to assign a posterior distribution
p(⇡⇡⇡|⇠̂⇠⇠) to them as

p(⇡⇡⇡|⇠̂⇠⇠) ⇠ exp
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and p(⇡⇡⇡) being a prior density incorporating apriori knowledge or
assumptions on ⇡⇡⇡. These expressions in fact ignore that C also can
be depedent on ⇡⇡⇡. We will do this throughout this paper and re-
fer the reader to Eifler et al. (2009) who investigated the impact of
cosmology dependent covariance matrices on cosmic shear likeli-
hood analyses. Another assumption that goes into Eq. 1 is that the
measured data vector ⇠̂⇠⇠ is drawn from a multi-variate Gaussian dis-
tribution. In wide area surveys this is justified in the limit where
one can consider the survey to consist of many independent sub-
regions, such that the measurements in those regions add up to a
Gaussian data vector by means of the central limit theorem.

If the covariance matrix C is not exactly known, it can e.g. be
estimated from N-body simulations. If ⇠̂⇠⇠i, i = 1...Ns, are a number

of independent measurements of ⇠⇠⇠ in simulations then an unbiased
estimate of C is given by
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where ⌫ = Ns � 1 and ⇠̄⇠⇠ is the sample mean of the ⇠̂⇠⇠i. We will as-
sume Ĉ to have a Wishart distribution with ⌫ degrees of freedom
which follows from our assumption that ⇠̂⇠⇠ and the ⇠̂⇠⇠i are Gaussian
distributed (cf. Taylor et al. 2013).

To compute the likelihood in Eq. 1 we need to know the preci-
sion matrix, i.e. is the inverse covariance matrix  = C�1. Accord-
ing to Kaufman (1967, see also Hartlap et al. 2007; Taylor et al.
2013) an unbiased estimator for  can be constructed from Ĉ as

 ̂ =
⌫�Nd �1
⌫

Ĉ�1 (4)

and we will call the factor of (⌫�Nd �1)/⌫ the Kaufman-Hartlap-
correction.

Given a measurement ⇠̂⇠⇠ of the data vector one can derive the
posterior density of the model parameters p(⇡⇡⇡|⇠̂⇠⇠) by means of equa-
tions 1 and 2. A noisy precision matrix estimate influences this in-
ference in two ways:

• it adds noise to the width of likelihood contours derived from
inserting the precision matrix estimate into the figure of merit �2

(Eq. 2).
• it adds noise to the location of likelihood contours. E.g. the maxi-
mum likelihood estimator for the parameters ⇡⇡⇡ would be

⇡̂⇡⇡ML =min
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When using a noisy precision matrix the uncertainties of ⇡̂⇡⇡ML have
contributions from both the noise in ⇠̂⇠⇠ and the noise in  ̂.

The astro-statistics literature has so far focused on the first
e↵ect, i.e. on the uncertainties on contour width due to noise in
the estimate  ̂ (Taylor et al. 2013; Taylor & Joachimi 2014; Sel-
lentin & Heavens 2016a,b). Sellentin & Heavens (2016b) provide
the most complete demonstration that  ̂ yields a good estimate of
the width of the posterior contours as long as Ns �Nd � Np.

The more critical e↵ect however is the additional noise of
⇡̂⇡⇡ML. DS13 (also see appendix A) showed that the uncertainty on
the position of likelihood contours from noise in  ̂ is only negligi-
ble if Ns �Nd � Nd �Np which is a much more demanding crite-
rion for current cosmological data vectors. We demonstrate this in
the left-hand panel of Fig. 1, where we show 100 randomly drawn
realisations of a DES-like weak lensing data vector with Nd = 450
and a halo model covariance matrix (see Sec. 4 for further details).
For each of the 100 data vectors we have also generated Wishart
realisations of our covariance matrix corresponding to an estimate
from Ns = 650 simulations. Using either the true covariance or the
estimated one, we then determine the best fitting parameters ⌦m
and �8 (after marginalizing over equation-of-state parameters of
dark energy, w0 and wa). The best-fits obtained from a noisy co-
variance (green points) clearly display a much larger scatter than
those obtained from the true covariance (red points). Also shown
are the best fits obtained by precision matrix expansion (PME, blue
points) which we are going to introduce in the next section. Here
we assumed that only Ns = 200 simulations are available to estimate
the PME, which gives best fit values that are significantly closer to
the ones obtained when knowing the true covariance matrix.

When reconstructing p(⇡⇡⇡|⇠̂⇠⇠) (e.g. from a Monte-Carlo-
Markov-Chain) this can lead to significant o↵sets between likeli-
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covariance estimates. A fully non-Gaussian treatment of the e↵ects
discussed in Dodelson & Schneider (2013, hereafter DS13) is how-
ever still missing.

Prior knowledge on the sparsity of the covariance matrix and
the precision matrix was used by Paz & Sánchez (2015) and Pad-
manabhan et al. (2015) to improve estimates of the precision ma-
trix from few simulations. Pope & Szapudi (2008) investigated
shrinkage estimators of the covariance, i.e. a mixing of estimated
and modelled covariance matrices. This however raises the task
of finding an equivalent to the Kaufman-Hartlap correction for
such a mixture of estimated and analytic matrices. More recently,
Joachimi (2017) describes a non-linear extension of that estimator
which combines covariance estimates from two sets of independent
data vector realisations and hence does not require a covariance
model.

In this paper we describe a way to expand the true precision
matrix around a covariance model as a power series in the devia-
tion between model and true covariance. Assuming a Wishart re-
alisation for the true covariance and using the results on invariant
moments of the Wishart distribution by Letac & Massam (2004)
we derive an unbiased estimator for the up to second order expan-
sion of the true precision matrix. This becomes especially powerful
if parts of the covariance matrix that are well understood analyt-
ically can be turned o↵ in simulations in order to yield a direct
estimate of the remaining covariance parts. In Sect. 3 we recap
the main problems of estimating parameter constraints from noisy
covariance estimates and present our method of "Precision Matrix
Expansion" (PME). In Sect. 4 we perform numerical experiments
that mimic data from the Dark Energy Survey (DES) and the Large
Synoptic Survey Telecope (LSST) likelihood analyses to test the
performance of our idea. Sect. 5 concludes with a discussion of our
results.

2 Parameter constraints from noisy covariance estimates

We begin by outlining the main task of this paper. Let ⇠̂⇠⇠ be a vector
of Nd data points measured from observational data and let ⇠⇠⇠[⇡⇡⇡]
be a model for this data vector that depends on a vector of Np pa-
rameters ⇡⇡⇡. If C is the covariance matrix of ⇠̂⇠⇠ then a standard way
to constrain the parameters ⇡⇡⇡ is to assign a posterior distribution
p(⇡⇡⇡|⇠̂⇠⇠) to them as

p(⇡⇡⇡|⇠̂⇠⇠) ⇠ exp
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and p(⇡⇡⇡) being a prior density incorporating apriori knowledge or
assumptions on ⇡⇡⇡. These expressions in fact ignore that C also can
be depedent on ⇡⇡⇡. We will do this throughout this paper and re-
fer the reader to Eifler et al. (2009) who investigated the impact of
cosmology dependent covariance matrices on cosmic shear likeli-
hood analyses. Another assumption that goes into Eq. 1 is that the
measured data vector ⇠̂⇠⇠ is drawn from a multi-variate Gaussian dis-
tribution. In wide area surveys this is justified in the limit where
one can consider the survey to consist of many independent sub-
regions, such that the measurements in those regions add up to a
Gaussian data vector by means of the central limit theorem.

If the covariance matrix C is not exactly known, it can e.g. be
estimated from N-body simulations. If ⇠̂⇠⇠i, i = 1...Ns, are a number

of independent measurements of ⇠⇠⇠ in simulations then an unbiased
estimate of C is given by

Ĉ :=
1
⌫
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where ⌫ = Ns � 1 and ⇠̄⇠⇠ is the sample mean of the ⇠̂⇠⇠i. We will as-
sume Ĉ to have a Wishart distribution with ⌫ degrees of freedom
which follows from our assumption that ⇠̂⇠⇠ and the ⇠̂⇠⇠i are Gaussian
distributed (cf. Taylor et al. 2013).

To compute the likelihood in Eq. 1 we need to know the preci-
sion matrix, i.e. is the inverse covariance matrix  = C�1. Accord-
ing to Kaufman (1967, see also Hartlap et al. 2007; Taylor et al.
2013) an unbiased estimator for  can be constructed from Ĉ as

 ̂ =
⌫�Nd �1
⌫

Ĉ�1 (4)

and we will call the factor of (⌫�Nd �1)/⌫ the Kaufman-Hartlap-
correction.

Given a measurement ⇠̂⇠⇠ of the data vector one can derive the
posterior density of the model parameters p(⇡⇡⇡|⇠̂⇠⇠) by means of equa-
tions 1 and 2. A noisy precision matrix estimate influences this in-
ference in two ways:

• it adds noise to the width of likelihood contours derived from
inserting the precision matrix estimate into the figure of merit �2

(Eq. 2).
• it adds noise to the location of likelihood contours. E.g. the maxi-
mum likelihood estimator for the parameters ⇡⇡⇡ would be

⇡̂⇡⇡ML =min
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When using a noisy precision matrix the uncertainties of ⇡̂⇡⇡ML have
contributions from both the noise in ⇠̂⇠⇠ and the noise in  ̂.

The astro-statistics literature has so far focused on the first
e↵ect, i.e. on the uncertainties on contour width due to noise in
the estimate  ̂ (Taylor et al. 2013; Taylor & Joachimi 2014; Sel-
lentin & Heavens 2016a,b). Sellentin & Heavens (2016b) provide
the most complete demonstration that  ̂ yields a good estimate of
the width of the posterior contours as long as Ns �Nd � Np.

The more critical e↵ect however is the additional noise of
⇡̂⇡⇡ML. DS13 (also see appendix A) showed that the uncertainty on
the position of likelihood contours from noise in  ̂ is only negligi-
ble if Ns �Nd � Nd �Np which is a much more demanding crite-
rion for current cosmological data vectors. We demonstrate this in
the left-hand panel of Fig. 1, where we show 100 randomly drawn
realisations of a DES-like weak lensing data vector with Nd = 450
and a halo model covariance matrix (see Sec. 4 for further details).
For each of the 100 data vectors we have also generated Wishart
realisations of our covariance matrix corresponding to an estimate
from Ns = 650 simulations. Using either the true covariance or the
estimated one, we then determine the best fitting parameters ⌦m
and �8 (after marginalizing over equation-of-state parameters of
dark energy, w0 and wa). The best-fits obtained from a noisy co-
variance (green points) clearly display a much larger scatter than
those obtained from the true covariance (red points). Also shown
are the best fits obtained by precision matrix expansion (PME, blue
points) which we are going to introduce in the next section. Here
we assumed that only Ns = 200 simulations are available to estimate
the PME, which gives best fit values that are significantly closer to
the ones obtained when knowing the true covariance matrix.

When reconstructing p(⇡⇡⇡|⇠̂⇠⇠) (e.g. from a Monte-Carlo-
Markov-Chain) this can lead to significant o↵sets between likeli-
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covariance estimates. A fully non-Gaussian treatment of the e↵ects
discussed in Dodelson & Schneider (2013, hereafter DS13) is how-
ever still missing.

Prior knowledge on the sparsity of the covariance matrix and
the precision matrix was used by Paz & Sánchez (2015) and Pad-
manabhan et al. (2015) to improve estimates of the precision ma-
trix from few simulations. Pope & Szapudi (2008) investigated
shrinkage estimators of the covariance, i.e. a mixing of estimated
and modelled covariance matrices. This however raises the task
of finding an equivalent to the Kaufman-Hartlap correction for
such a mixture of estimated and analytic matrices. More recently,
Joachimi (2017) describes a non-linear extension of that estimator
which combines covariance estimates from two sets of independent
data vector realisations and hence does not require a covariance
model.

In this paper we describe a way to expand the true precision
matrix around a covariance model as a power series in the devia-
tion between model and true covariance. Assuming a Wishart re-
alisation for the true covariance and using the results on invariant
moments of the Wishart distribution by Letac & Massam (2004)
we derive an unbiased estimator for the up to second order expan-
sion of the true precision matrix. This becomes especially powerful
if parts of the covariance matrix that are well understood analyt-
ically can be turned o↵ in simulations in order to yield a direct
estimate of the remaining covariance parts. In Sect. 3 we recap
the main problems of estimating parameter constraints from noisy
covariance estimates and present our method of "Precision Matrix
Expansion" (PME). In Sect. 4 we perform numerical experiments
that mimic data from the Dark Energy Survey (DES) and the Large
Synoptic Survey Telecope (LSST) likelihood analyses to test the
performance of our idea. Sect. 5 concludes with a discussion of our
results.

2 Parameter constraints from noisy covariance estimates

We begin by outlining the main task of this paper. Let ⇠̂⇠⇠ be a vector
of Nd data points measured from observational data and let ⇠⇠⇠[⇡⇡⇡]
be a model for this data vector that depends on a vector of Np pa-
rameters ⇡⇡⇡. If C is the covariance matrix of ⇠̂⇠⇠ then a standard way
to constrain the parameters ⇡⇡⇡ is to assign a posterior distribution
p(⇡⇡⇡|⇠̂⇠⇠) to them as

p(⇡⇡⇡|⇠̂⇠⇠) ⇠ exp
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and p(⇡⇡⇡) being a prior density incorporating apriori knowledge or
assumptions on ⇡⇡⇡. These expressions in fact ignore that C also can
be depedent on ⇡⇡⇡. We will do this throughout this paper and re-
fer the reader to Eifler et al. (2009) who investigated the impact of
cosmology dependent covariance matrices on cosmic shear likeli-
hood analyses. Another assumption that goes into Eq. 1 is that the
measured data vector ⇠̂⇠⇠ is drawn from a multi-variate Gaussian dis-
tribution. In wide area surveys this is justified in the limit where
one can consider the survey to consist of many independent sub-
regions, such that the measurements in those regions add up to a
Gaussian data vector by means of the central limit theorem.

If the covariance matrix C is not exactly known, it can e.g. be
estimated from N-body simulations. If ⇠̂⇠⇠i, i = 1...Ns, are a number

of independent measurements of ⇠⇠⇠ in simulations then an unbiased
estimate of C is given by

Ĉ :=
1
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where ⌫ = Ns � 1 and ⇠̄⇠⇠ is the sample mean of the ⇠̂⇠⇠i. We will as-
sume Ĉ to have a Wishart distribution with ⌫ degrees of freedom
which follows from our assumption that ⇠̂⇠⇠ and the ⇠̂⇠⇠i are Gaussian
distributed (cf. Taylor et al. 2013).

To compute the likelihood in Eq. 1 we need to know the preci-
sion matrix, i.e. is the inverse covariance matrix  = C�1. Accord-
ing to Kaufman (1967, see also Hartlap et al. 2007; Taylor et al.
2013) an unbiased estimator for  can be constructed from Ĉ as

 ̂ =
⌫�Nd �1
⌫

Ĉ�1 (4)

and we will call the factor of (⌫�Nd �1)/⌫ the Kaufman-Hartlap-
correction.

Given a measurement ⇠̂⇠⇠ of the data vector one can derive the
posterior density of the model parameters p(⇡⇡⇡|⇠̂⇠⇠) by means of equa-
tions 1 and 2. A noisy precision matrix estimate influences this in-
ference in two ways:

• it adds noise to the width of likelihood contours derived from
inserting the precision matrix estimate into the figure of merit �2

(Eq. 2).
• it adds noise to the location of likelihood contours. E.g. the maxi-
mum likelihood estimator for the parameters ⇡⇡⇡ would be
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When using a noisy precision matrix the uncertainties of ⇡̂⇡⇡ML have
contributions from both the noise in ⇠̂⇠⇠ and the noise in  ̂.

The astro-statistics literature has so far focused on the first
e↵ect, i.e. on the uncertainties on contour width due to noise in
the estimate  ̂ (Taylor et al. 2013; Taylor & Joachimi 2014; Sel-
lentin & Heavens 2016a,b). Sellentin & Heavens (2016b) provide
the most complete demonstration that  ̂ yields a good estimate of
the width of the posterior contours as long as Ns �Nd � Np.

The more critical e↵ect however is the additional noise of
⇡̂⇡⇡ML. DS13 (also see appendix A) showed that the uncertainty on
the position of likelihood contours from noise in  ̂ is only negligi-
ble if Ns �Nd � Nd �Np which is a much more demanding crite-
rion for current cosmological data vectors. We demonstrate this in
the left-hand panel of Fig. 1, where we show 100 randomly drawn
realisations of a DES-like weak lensing data vector with Nd = 450
and a halo model covariance matrix (see Sec. 4 for further details).
For each of the 100 data vectors we have also generated Wishart
realisations of our covariance matrix corresponding to an estimate
from Ns = 650 simulations. Using either the true covariance or the
estimated one, we then determine the best fitting parameters ⌦m
and �8 (after marginalizing over equation-of-state parameters of
dark energy, w0 and wa). The best-fits obtained from a noisy co-
variance (green points) clearly display a much larger scatter than
those obtained from the true covariance (red points). Also shown
are the best fits obtained by precision matrix expansion (PME, blue
points) which we are going to introduce in the next section. Here
we assumed that only Ns = 200 simulations are available to estimate
the PME, which gives best fit values that are significantly closer to
the ones obtained when knowing the true covariance matrix.

When reconstructing p(⇡⇡⇡|⇠̂⇠⇠) (e.g. from a Monte-Carlo-
Markov-Chain) this can lead to significant o↵sets between likeli-
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covariance estimates. A fully non-Gaussian treatment of the e↵ects
discussed in Dodelson & Schneider (2013, hereafter DS13) is how-
ever still missing.

Prior knowledge on the sparsity of the covariance matrix and
the precision matrix was used by Paz & Sánchez (2015) and Pad-
manabhan et al. (2015) to improve estimates of the precision ma-
trix from few simulations. Pope & Szapudi (2008) investigated
shrinkage estimators of the covariance, i.e. a mixing of estimated
and modelled covariance matrices. This however raises the task
of finding an equivalent to the Kaufman-Hartlap correction for
such a mixture of estimated and analytic matrices. More recently,
Joachimi (2017) describes a non-linear extension of that estimator
which combines covariance estimates from two sets of independent
data vector realisations and hence does not require a covariance
model.

In this paper we describe a way to expand the true precision
matrix around a covariance model as a power series in the devia-
tion between model and true covariance. Assuming a Wishart re-
alisation for the true covariance and using the results on invariant
moments of the Wishart distribution by Letac & Massam (2004)
we derive an unbiased estimator for the up to second order expan-
sion of the true precision matrix. This becomes especially powerful
if parts of the covariance matrix that are well understood analyt-
ically can be turned o↵ in simulations in order to yield a direct
estimate of the remaining covariance parts. In Sect. 3 we recap
the main problems of estimating parameter constraints from noisy
covariance estimates and present our method of "Precision Matrix
Expansion" (PME). In Sect. 4 we perform numerical experiments
that mimic data from the Dark Energy Survey (DES) and the Large
Synoptic Survey Telecope (LSST) likelihood analyses to test the
performance of our idea. Sect. 5 concludes with a discussion of our
results.

2 Parameter constraints from noisy covariance estimates

We begin by outlining the main task of this paper. Let ⇠̂⇠⇠ be a vector
of Nd data points measured from observational data and let ⇠⇠⇠[⇡⇡⇡]
be a model for this data vector that depends on a vector of Np pa-
rameters ⇡⇡⇡. If C is the covariance matrix of ⇠̂⇠⇠ then a standard way
to constrain the parameters ⇡⇡⇡ is to assign a posterior distribution
p(⇡⇡⇡|⇠̂⇠⇠) to them as

p(⇡⇡⇡|⇠̂⇠⇠) ⇠ exp
 
�

1
2
�2

h
⇡⇡⇡ | ⇠̂⇠⇠,C

i!
p(⇡⇡⇡) (1)

with

�2
h
⇡⇡⇡ | ⇠̂⇠⇠,C

i
=

⇣
⇠̂⇠⇠� ⇠⇠⇠[⇡⇡⇡]

⌘T
C�1

⇣
⇠̂⇠⇠� ⇠⇠⇠[⇡⇡⇡]

⌘
(2)

and p(⇡⇡⇡) being a prior density incorporating apriori knowledge or
assumptions on ⇡⇡⇡. These expressions in fact ignore that C also can
be depedent on ⇡⇡⇡. We will do this throughout this paper and re-
fer the reader to Eifler et al. (2009) who investigated the impact of
cosmology dependent covariance matrices on cosmic shear likeli-
hood analyses. Another assumption that goes into Eq. 1 is that the
measured data vector ⇠̂⇠⇠ is drawn from a multi-variate Gaussian dis-
tribution. In wide area surveys this is justified in the limit where
one can consider the survey to consist of many independent sub-
regions, such that the measurements in those regions add up to a
Gaussian data vector by means of the central limit theorem.

If the covariance matrix C is not exactly known, it can e.g. be
estimated from N-body simulations. If ⇠̂⇠⇠i, i = 1...Ns, are a number

of independent measurements of ⇠⇠⇠ in simulations then an unbiased
estimate of C is given by

Ĉ :=
1
⌫
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i=1
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where ⌫ = Ns � 1 and ⇠̄⇠⇠ is the sample mean of the ⇠̂⇠⇠i. We will as-
sume Ĉ to have a Wishart distribution with ⌫ degrees of freedom
which follows from our assumption that ⇠̂⇠⇠ and the ⇠̂⇠⇠i are Gaussian
distributed (cf. Taylor et al. 2013).

To compute the likelihood in Eq. 1 we need to know the preci-
sion matrix, i.e. is the inverse covariance matrix  = C�1. Accord-
ing to Kaufman (1967, see also Hartlap et al. 2007; Taylor et al.
2013) an unbiased estimator for  can be constructed from Ĉ as

 ̂ =
⌫�Nd �1
⌫

Ĉ�1 (4)

and we will call the factor of (⌫�Nd �1)/⌫ the Kaufman-Hartlap-
correction.

Given a measurement ⇠̂⇠⇠ of the data vector one can derive the
posterior density of the model parameters p(⇡⇡⇡|⇠̂⇠⇠) by means of equa-
tions 1 and 2. A noisy precision matrix estimate influences this in-
ference in two ways:

• it adds noise to the width of likelihood contours derived from
inserting the precision matrix estimate into the figure of merit �2

(Eq. 2).
• it adds noise to the location of likelihood contours. E.g. the maxi-
mum likelihood estimator for the parameters ⇡⇡⇡ would be

⇡̂⇡⇡ML =min
⇡⇡⇡
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When using a noisy precision matrix the uncertainties of ⇡̂⇡⇡ML have
contributions from both the noise in ⇠̂⇠⇠ and the noise in  ̂.

The astro-statistics literature has so far focused on the first
e↵ect, i.e. on the uncertainties on contour width due to noise in
the estimate  ̂ (Taylor et al. 2013; Taylor & Joachimi 2014; Sel-
lentin & Heavens 2016a,b). Sellentin & Heavens (2016b) provide
the most complete demonstration that  ̂ yields a good estimate of
the width of the posterior contours as long as Ns �Nd � Np.

The more critical e↵ect however is the additional noise of
⇡̂⇡⇡ML. DS13 (also see appendix A) showed that the uncertainty on
the position of likelihood contours from noise in  ̂ is only negligi-
ble if Ns �Nd � Nd �Np which is a much more demanding crite-
rion for current cosmological data vectors. We demonstrate this in
the left-hand panel of Fig. 1, where we show 100 randomly drawn
realisations of a DES-like weak lensing data vector with Nd = 450
and a halo model covariance matrix (see Sec. 4 for further details).
For each of the 100 data vectors we have also generated Wishart
realisations of our covariance matrix corresponding to an estimate
from Ns = 650 simulations. Using either the true covariance or the
estimated one, we then determine the best fitting parameters ⌦m
and �8 (after marginalizing over equation-of-state parameters of
dark energy, w0 and wa). The best-fits obtained from a noisy co-
variance (green points) clearly display a much larger scatter than
those obtained from the true covariance (red points). Also shown
are the best fits obtained by precision matrix expansion (PME, blue
points) which we are going to introduce in the next section. Here
we assumed that only Ns = 200 simulations are available to estimate
the PME, which gives best fit values that are significantly closer to
the ones obtained when knowing the true covariance matrix.

When reconstructing p(⇡⇡⇡|⇠̂⇠⇠) (e.g. from a Monte-Carlo-
Markov-Chain) this can lead to significant o↵sets between likeli-
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covariance estimates. A fully non-Gaussian treatment of the e↵ects
discussed in Dodelson & Schneider (2013, hereafter DS13) is how-
ever still missing.

Prior knowledge on the sparsity of the covariance matrix and
the precision matrix was used by Paz & Sánchez (2015) and Pad-
manabhan et al. (2015) to improve estimates of the precision ma-
trix from few simulations. Pope & Szapudi (2008) investigated
shrinkage estimators of the covariance, i.e. a mixing of estimated
and modelled covariance matrices. This however raises the task
of finding an equivalent to the Kaufman-Hartlap correction for
such a mixture of estimated and analytic matrices. More recently,
Joachimi (2017) describes a non-linear extension of that estimator
which combines covariance estimates from two sets of independent
data vector realisations and hence does not require a covariance
model.

In this paper we describe a way to expand the true precision
matrix around a covariance model as a power series in the devia-
tion between model and true covariance. Assuming a Wishart re-
alisation for the true covariance and using the results on invariant
moments of the Wishart distribution by Letac & Massam (2004)
we derive an unbiased estimator for the up to second order expan-
sion of the true precision matrix. This becomes especially powerful
if parts of the covariance matrix that are well understood analyt-
ically can be turned o↵ in simulations in order to yield a direct
estimate of the remaining covariance parts. In Sect. 3 we recap
the main problems of estimating parameter constraints from noisy
covariance estimates and present our method of "Precision Matrix
Expansion" (PME). In Sect. 4 we perform numerical experiments
that mimic data from the Dark Energy Survey (DES) and the Large
Synoptic Survey Telecope (LSST) likelihood analyses to test the
performance of our idea. Sect. 5 concludes with a discussion of our
results.

2 Parameter constraints from noisy covariance estimates

We begin by outlining the main task of this paper. Let ⇠̂⇠⇠ be a vector
of Nd data points measured from observational data and let ⇠⇠⇠[⇡⇡⇡]
be a model for this data vector that depends on a vector of Np pa-
rameters ⇡⇡⇡. If C is the covariance matrix of ⇠̂⇠⇠ then a standard way
to constrain the parameters ⇡⇡⇡ is to assign a posterior distribution
p(⇡⇡⇡|⇠̂⇠⇠) to them as

p(⇡⇡⇡|⇠̂⇠⇠) ⇠ exp
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and p(⇡⇡⇡) being a prior density incorporating apriori knowledge or
assumptions on ⇡⇡⇡. These expressions in fact ignore that C also can
be depedent on ⇡⇡⇡. We will do this throughout this paper and re-
fer the reader to Eifler et al. (2009) who investigated the impact of
cosmology dependent covariance matrices on cosmic shear likeli-
hood analyses. Another assumption that goes into Eq. 1 is that the
measured data vector ⇠̂⇠⇠ is drawn from a multi-variate Gaussian dis-
tribution. In wide area surveys this is justified in the limit where
one can consider the survey to consist of many independent sub-
regions, such that the measurements in those regions add up to a
Gaussian data vector by means of the central limit theorem.

If the covariance matrix C is not exactly known, it can e.g. be
estimated from N-body simulations. If ⇠̂⇠⇠i, i = 1...Ns, are a number

of independent measurements of ⇠⇠⇠ in simulations then an unbiased
estimate of C is given by

Ĉ :=
1
⌫
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where ⌫ = Ns � 1 and ⇠̄⇠⇠ is the sample mean of the ⇠̂⇠⇠i. We will as-
sume Ĉ to have a Wishart distribution with ⌫ degrees of freedom
which follows from our assumption that ⇠̂⇠⇠ and the ⇠̂⇠⇠i are Gaussian
distributed (cf. Taylor et al. 2013).

To compute the likelihood in Eq. 1 we need to know the preci-
sion matrix, i.e. is the inverse covariance matrix  = C�1. Accord-
ing to Kaufman (1967, see also Hartlap et al. 2007; Taylor et al.
2013) an unbiased estimator for  can be constructed from Ĉ as

 ̂ =
⌫�Nd �1
⌫

Ĉ�1 (4)

and we will call the factor of (⌫�Nd �1)/⌫ the Kaufman-Hartlap-
correction.

Given a measurement ⇠̂⇠⇠ of the data vector one can derive the
posterior density of the model parameters p(⇡⇡⇡|⇠̂⇠⇠) by means of equa-
tions 1 and 2. A noisy precision matrix estimate influences this in-
ference in two ways:

• it adds noise to the width of likelihood contours derived from
inserting the precision matrix estimate into the figure of merit �2

(Eq. 2).
• it adds noise to the location of likelihood contours. E.g. the maxi-
mum likelihood estimator for the parameters ⇡⇡⇡ would be
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When using a noisy precision matrix the uncertainties of ⇡̂⇡⇡ML have
contributions from both the noise in ⇠̂⇠⇠ and the noise in  ̂.

The astro-statistics literature has so far focused on the first
e↵ect, i.e. on the uncertainties on contour width due to noise in
the estimate  ̂ (Taylor et al. 2013; Taylor & Joachimi 2014; Sel-
lentin & Heavens 2016a,b). Sellentin & Heavens (2016b) provide
the most complete demonstration that  ̂ yields a good estimate of
the width of the posterior contours as long as Ns �Nd � Np.

The more critical e↵ect however is the additional noise of
⇡̂⇡⇡ML. DS13 (also see appendix A) showed that the uncertainty on
the position of likelihood contours from noise in  ̂ is only negligi-
ble if Ns �Nd � Nd �Np which is a much more demanding crite-
rion for current cosmological data vectors. We demonstrate this in
the left-hand panel of Fig. 1, where we show 100 randomly drawn
realisations of a DES-like weak lensing data vector with Nd = 450
and a halo model covariance matrix (see Sec. 4 for further details).
For each of the 100 data vectors we have also generated Wishart
realisations of our covariance matrix corresponding to an estimate
from Ns = 650 simulations. Using either the true covariance or the
estimated one, we then determine the best fitting parameters ⌦m
and �8 (after marginalizing over equation-of-state parameters of
dark energy, w0 and wa). The best-fits obtained from a noisy co-
variance (green points) clearly display a much larger scatter than
those obtained from the true covariance (red points). Also shown
are the best fits obtained by precision matrix expansion (PME, blue
points) which we are going to introduce in the next section. Here
we assumed that only Ns = 200 simulations are available to estimate
the PME, which gives best fit values that are significantly closer to
the ones obtained when knowing the true covariance matrix.

When reconstructing p(⇡⇡⇡|⇠̂⇠⇠) (e.g. from a Monte-Carlo-
Markov-Chain) this can lead to significant o↵sets between likeli-
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Anderson 2003). The noise properties of this corrected precision
matrix estimator and its impact on the constraints derived on cos-
mological parameters was e.g. investigated by Taylor, Joachimi &
Kitching (2013), Dodelson & Schneider (2013), Taylor & Joachimi
(2014).

Sellentin & Heavens (2016, hereafter SH16a) have presented a
different approach: given a covariance estimate they marginalize
over the posterior distribution of the precision matrix to compute
the likelihood in parameter space. Assuming that the covariance
estimate follows a Wishart distribution they have derived a simple,
closed-form expression for the resulting likelihood function. In
Sellentin & Heavens (2017) they have extended these results
to derive the information loss in parameter space due to noisy
covariance estimates. A fully non-Gaussian treatment of the effects
discussed in Dodelson & Schneider (2013, hereafter DS13) is
however still missing.

An important result of the above-mentioned works is the fol-
lowing: even if a set of simulations is large enough to give a
precise estimate of the covariance, the process of inverting this
covariance estimate amplifies the noise of the estimation in a way
that can still significantly impact the constraining power of a cos-
mological analysis, i.e. the uncertainty of the derived parameter
errors can still be comparable to the errors themselves (see e.g.
equations 27 and 28 of Dodelson & Schneider 2013). To overcome
this problem it is important to note that often major contributions
to the covariance matrix are analytically well understood. Estimat-
ing these contributions with the help of simulated data is hence
a significant waste of computational resources and incorporating
prior knowledge about the covariance into the estimate can poten-
tially decrease uncertainties on the error budget of a cosmological
analysis.

Prior knowledge on the sparsity of the covariance matrix and
the precision matrix was used by Paz & Sánchez (2015) and
Padmanabhan et al. (2016) to improve estimates of the precision
matrix from few simulations. Pope & Szapudi (2008) investigated
shrinkage estimators of the covariance, i.e. a mixing of estimated
and modelled covariance matrices. This however raises the task
of finding an equivalent to the Kaufman–Hartlap correction for
such a mixture of estimated and analytic matrices. More recently,
Joachimi (2017) describes a non-linear extension of that estima-
tor which combines covariance estimates from two sets of in-
dependent data vector realizations and hence does not require a
covariance model.

In this paper we introduce a way of incorporating prior knowl-
edge about the covariance directly into an estimate of the inverse
covariance matrix, i.e. the precision matrix. We describe a way to
expand the precision matrix around a covariance model as a power
series in the deviation between model and true covariance. Assum-
ing a Wishart realization for the true covariance (e.g. an estimate
from N-body simulations) and using the results on invariant mo-
ments of the Wishart distribution by Letac & Massam (2004) we
derive an unbiased estimator for the up to second-order expansion
of the true precision matrix. This becomes especially powerful if
parts of the covariance matrix that are well understood analytically
can be turned off in simulations in order to yield a direct estimate
of the remaining covariance parts. In Section 3 we recap the main
problems of estimating parameter constraints from noisy covariance
estimates and present our method of ‘precision matrix expansion’
(PME). In Section 4 we perform numerical experiments that mimic
data from the DES and the LSST likelihood analyses to test the
performance of our idea. Section 5 concludes with a discussion of
our results.

2 PARAMETER CONSTRAINTS FRO M N OISY
C OVA R I A N C E E S T I M AT E S

We begin by outlining the main task of this paper. Let ξ̂ be a vector
of Nd data points measured from observational data and let ξ [π ] be a
model for this data vector that depends on a vector of Np parameters
π . If C is the covariance matrix of ξ̂ then a standard way to constrain
the parameters π is to assign a posterior distribution p(π |ξ̂ ) to them
as

p(π |ξ̂ ) ∼ exp
(

−1
2
χ2

[
π | ξ̂ ,C

])
p(π) (1)

with

χ2
[
π | ξ̂ ,C

]
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(
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)T
C−1

(
ξ̂ − ξ [π]

)
(2)

and p(π) being a prior density incorporating a priori knowledge
or assumptions on π . These expressions in fact ignore that C also
can be dependent on π . We will do this throughout this paper and
refer the reader to Eifler, Schneider & Hartlap (2009) who investi-
gated the impact of cosmology-dependent covariance matrices on
cosmic shear likelihood analyses. Another assumption that goes
into equation (1) is that the measured data vector ξ̂ is drawn from
a multivariate Gaussian distribution. In wide area surveys this is
justified in the limit where one can consider the survey to consist of
many independent sub-regions, such that the measurements in those
regions add up to a Gaussian data vector by means of the central
limit theorem.

If the covariance matrix C is not exactly known, it can e.g. be
estimated from N-body simulations. If ξ̂ i , i = 1...Ns, are a number
of independent measurements of ξ in simulations then an unbiased
estimate of C is given by

Ĉ := 1
ν

N s∑

i=1

(
ξ̂ i − ξ̄

) (
ξ̂ i − ξ̄

)T

, (3)

where ν = Ns − 1 and ξ̄ is the sample mean of the ξ̂ i . We will
assume Ĉ to have a Wishart distribution with ν degrees of freedom
which follows from our assumption that ξ̂ and the ξ̂ i are Gaussian
distributed (cf. Taylor et al. 2013). Also, we will assume that Ĉ is
an unbiased estimator for the covariance matrix of actual data, i.e.
if Ĉ is indeed an estimate from N-body simulations, then we will
assume these simulations to well resemble the error constributions
present in actual data.

To compute the likelihood in equation (1) we need to know the
precision matrix, i.e. is the inverse covariance matrix # = C−1.
According to Kaufman (1967, see also Hartlap et al. 2007; Taylor
et al. 2013) an unbiased estimator for # can be constructed from Ĉ
as

#̂ = ν − Nd − 1
ν

Ĉ−1 (4)

and we will call the factor of (ν − Nd − 1)/ν the Kaufman–Hartlap
correction.

Given a measurement ξ̂ of the data vector one can derive the
posterior density of the model parameters p(π |ξ̂ ) by means of
equations (1) and (2). A noisy precision matrix estimate influences
this inference in two ways:

(i) it adds noise to the width of likelihood contours derived from
inserting the precision matrix estimate into the figure of merit χ2

(equation 2).
(ii) it adds noise to the location of likelihood contours. Consider

e.g. the maximum likelihood estimator for the parameters, π̂ML,
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covariance estimates. A fully non-Gaussian treatment of the e↵ects
discussed in Dodelson & Schneider (2013, hereafter DS13) is how-
ever still missing.

Prior knowledge on the sparsity of the covariance matrix and
the precision matrix was used by Paz & Sánchez (2015) and Pad-
manabhan et al. (2015) to improve estimates of the precision ma-
trix from few simulations. Pope & Szapudi (2008) investigated
shrinkage estimators of the covariance, i.e. a mixing of estimated
and modelled covariance matrices. This however raises the task
of finding an equivalent to the Kaufman-Hartlap correction for
such a mixture of estimated and analytic matrices. More recently,
Joachimi (2017) describes a non-linear extension of that estimator
which combines covariance estimates from two sets of independent
data vector realisations and hence does not require a covariance
model.

In this paper we describe a way to expand the true precision
matrix around a covariance model as a power series in the devia-
tion between model and true covariance. Assuming a Wishart re-
alisation for the true covariance and using the results on invariant
moments of the Wishart distribution by Letac & Massam (2004)
we derive an unbiased estimator for the up to second order expan-
sion of the true precision matrix. This becomes especially powerful
if parts of the covariance matrix that are well understood analyt-
ically can be turned o↵ in simulations in order to yield a direct
estimate of the remaining covariance parts. In Sect. 3 we recap
the main problems of estimating parameter constraints from noisy
covariance estimates and present our method of "Precision Matrix
Expansion" (PME). In Sect. 4 we perform numerical experiments
that mimic data from the Dark Energy Survey (DES) and the Large
Synoptic Survey Telecope (LSST) likelihood analyses to test the
performance of our idea. Sect. 5 concludes with a discussion of our
results.

2 Parameter constraints from noisy covariance estimates

We begin by outlining the main task of this paper. Let ⇠̂⇠⇠ be a vector
of Nd data points measured from observational data and let ⇠⇠⇠[⇡⇡⇡]
be a model for this data vector that depends on a vector of Np pa-
rameters ⇡⇡⇡. If C is the covariance matrix of ⇠̂⇠⇠ then a standard way
to constrain the parameters ⇡⇡⇡ is to assign a posterior distribution
p(⇡⇡⇡|⇠̂⇠⇠) to them as
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and p(⇡⇡⇡) being a prior density incorporating apriori knowledge or
assumptions on ⇡⇡⇡. These expressions in fact ignore that C also can
be depedent on ⇡⇡⇡. We will do this throughout this paper and re-
fer the reader to Eifler et al. (2009) who investigated the impact of
cosmology dependent covariance matrices on cosmic shear likeli-
hood analyses. Another assumption that goes into Eq. 1 is that the
measured data vector ⇠̂⇠⇠ is drawn from a multi-variate Gaussian dis-
tribution. In wide area surveys this is justified in the limit where
one can consider the survey to consist of many independent sub-
regions, such that the measurements in those regions add up to a
Gaussian data vector by means of the central limit theorem.

If the covariance matrix C is not exactly known, it can e.g. be
estimated from N-body simulations. If ⇠̂⇠⇠i, i = 1...Ns, are a number

of independent measurements of ⇠⇠⇠ in simulations then an unbiased
estimate of C is given by

Ĉ :=
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where ⌫ = Ns � 1 and ⇠̄⇠⇠ is the sample mean of the ⇠̂⇠⇠i. We will as-
sume Ĉ to have a Wishart distribution with ⌫ degrees of freedom
which follows from our assumption that ⇠̂⇠⇠ and the ⇠̂⇠⇠i are Gaussian
distributed (cf. Taylor et al. 2013).

To compute the likelihood in Eq. 1 we need to know the preci-
sion matrix, i.e. is the inverse covariance matrix  = C�1. Accord-
ing to Kaufman (1967, see also Hartlap et al. 2007; Taylor et al.
2013) an unbiased estimator for  can be constructed from Ĉ as

 ̂ =
⌫�Nd �1
⌫

Ĉ�1 (4)

and we will call the factor of (⌫�Nd �1)/⌫ the Kaufman-Hartlap-
correction.

Given a measurement ⇠̂⇠⇠ of the data vector one can derive the
posterior density of the model parameters p(⇡⇡⇡|⇠̂⇠⇠) by means of equa-
tions 1 and 2. A noisy precision matrix estimate influences this in-
ference in two ways:

• it adds noise to the width of likelihood contours derived from
inserting the precision matrix estimate into the figure of merit �2

(Eq. 2).
• it adds noise to the location of likelihood contours. E.g. the maxi-
mum likelihood estimator for the parameters ⇡⇡⇡ would be
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When using a noisy precision matrix the uncertainties of ⇡̂⇡⇡ML have
contributions from both the noise in ⇠̂⇠⇠ and the noise in  ̂.

The astro-statistics literature has so far focused on the first
e↵ect, i.e. on the uncertainties on contour width due to noise in
the estimate  ̂ (Taylor et al. 2013; Taylor & Joachimi 2014; Sel-
lentin & Heavens 2016a,b). Sellentin & Heavens (2016b) provide
the most complete demonstration that  ̂ yields a good estimate of
the width of the posterior contours as long as Ns �Nd � Np.

The more critical e↵ect however is the additional noise of
⇡̂⇡⇡ML. DS13 (also see appendix A) showed that the uncertainty on
the position of likelihood contours from noise in  ̂ is only negligi-
ble if Ns �Nd � Nd �Np which is a much more demanding crite-
rion for current cosmological data vectors. We demonstrate this in
the left-hand panel of Fig. 1, where we show 100 randomly drawn
realisations of a DES-like weak lensing data vector with Nd = 450
and a halo model covariance matrix (see Sec. 4 for further details).
For each of the 100 data vectors we have also generated Wishart
realisations of our covariance matrix corresponding to an estimate
from Ns = 650 simulations. Using either the true covariance or the
estimated one, we then determine the best fitting parameters ⌦m
and �8 (after marginalizing over equation-of-state parameters of
dark energy, w0 and wa). The best-fits obtained from a noisy co-
variance (green points) clearly display a much larger scatter than
those obtained from the true covariance (red points). Also shown
are the best fits obtained by precision matrix expansion (PME, blue
points) which we are going to introduce in the next section. Here
we assumed that only Ns = 200 simulations are available to estimate
the PME, which gives best fit values that are significantly closer to
the ones obtained when knowing the true covariance matrix.

When reconstructing p(⇡⇡⇡|⇠̂⇠⇠) (e.g. from a Monte-Carlo-
Markov-Chain) this can lead to significant o↵sets between likeli-
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covariance estimates. A fully non-Gaussian treatment of the e↵ects
discussed in Dodelson & Schneider (2013, hereafter DS13) is how-
ever still missing.

Prior knowledge on the sparsity of the covariance matrix and
the precision matrix was used by Paz & Sánchez (2015) and Pad-
manabhan et al. (2015) to improve estimates of the precision ma-
trix from few simulations. Pope & Szapudi (2008) investigated
shrinkage estimators of the covariance, i.e. a mixing of estimated
and modelled covariance matrices. This however raises the task
of finding an equivalent to the Kaufman-Hartlap correction for
such a mixture of estimated and analytic matrices. More recently,
Joachimi (2017) describes a non-linear extension of that estimator
which combines covariance estimates from two sets of independent
data vector realisations and hence does not require a covariance
model.

In this paper we describe a way to expand the true precision
matrix around a covariance model as a power series in the devia-
tion between model and true covariance. Assuming a Wishart re-
alisation for the true covariance and using the results on invariant
moments of the Wishart distribution by Letac & Massam (2004)
we derive an unbiased estimator for the up to second order expan-
sion of the true precision matrix. This becomes especially powerful
if parts of the covariance matrix that are well understood analyt-
ically can be turned o↵ in simulations in order to yield a direct
estimate of the remaining covariance parts. In Sect. 3 we recap
the main problems of estimating parameter constraints from noisy
covariance estimates and present our method of "Precision Matrix
Expansion" (PME). In Sect. 4 we perform numerical experiments
that mimic data from the Dark Energy Survey (DES) and the Large
Synoptic Survey Telecope (LSST) likelihood analyses to test the
performance of our idea. Sect. 5 concludes with a discussion of our
results.

2 Parameter constraints from noisy covariance estimates

We begin by outlining the main task of this paper. Let ⇠̂⇠⇠ be a vector
of Nd data points measured from observational data and let ⇠⇠⇠[⇡⇡⇡]
be a model for this data vector that depends on a vector of Np pa-
rameters ⇡⇡⇡. If C is the covariance matrix of ⇠̂⇠⇠ then a standard way
to constrain the parameters ⇡⇡⇡ is to assign a posterior distribution
p(⇡⇡⇡|⇠̂⇠⇠) to them as

p(⇡⇡⇡|⇠̂⇠⇠) ⇠ exp
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and p(⇡⇡⇡) being a prior density incorporating apriori knowledge or
assumptions on ⇡⇡⇡. These expressions in fact ignore that C also can
be depedent on ⇡⇡⇡. We will do this throughout this paper and re-
fer the reader to Eifler et al. (2009) who investigated the impact of
cosmology dependent covariance matrices on cosmic shear likeli-
hood analyses. Another assumption that goes into Eq. 1 is that the
measured data vector ⇠̂⇠⇠ is drawn from a multi-variate Gaussian dis-
tribution. In wide area surveys this is justified in the limit where
one can consider the survey to consist of many independent sub-
regions, such that the measurements in those regions add up to a
Gaussian data vector by means of the central limit theorem.

If the covariance matrix C is not exactly known, it can e.g. be
estimated from N-body simulations. If ⇠̂⇠⇠i, i = 1...Ns, are a number

of independent measurements of ⇠⇠⇠ in simulations then an unbiased
estimate of C is given by
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where ⌫ = Ns � 1 and ⇠̄⇠⇠ is the sample mean of the ⇠̂⇠⇠i. We will as-
sume Ĉ to have a Wishart distribution with ⌫ degrees of freedom
which follows from our assumption that ⇠̂⇠⇠ and the ⇠̂⇠⇠i are Gaussian
distributed (cf. Taylor et al. 2013).

To compute the likelihood in Eq. 1 we need to know the preci-
sion matrix, i.e. is the inverse covariance matrix  = C�1. Accord-
ing to Kaufman (1967, see also Hartlap et al. 2007; Taylor et al.
2013) an unbiased estimator for  can be constructed from Ĉ as

 ̂ =
⌫�Nd �1
⌫

Ĉ�1 (4)

and we will call the factor of (⌫�Nd �1)/⌫ the Kaufman-Hartlap-
correction.

Given a measurement ⇠̂⇠⇠ of the data vector one can derive the
posterior density of the model parameters p(⇡⇡⇡|⇠̂⇠⇠) by means of equa-
tions 1 and 2. A noisy precision matrix estimate influences this in-
ference in two ways:

• it adds noise to the width of likelihood contours derived from
inserting the precision matrix estimate into the figure of merit �2

(Eq. 2).
• it adds noise to the location of likelihood contours. E.g. the maxi-
mum likelihood estimator for the parameters ⇡⇡⇡ would be
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When using a noisy precision matrix the uncertainties of ⇡̂⇡⇡ML have
contributions from both the noise in ⇠̂⇠⇠ and the noise in  ̂.

The astro-statistics literature has so far focused on the first
e↵ect, i.e. on the uncertainties on contour width due to noise in
the estimate  ̂ (Taylor et al. 2013; Taylor & Joachimi 2014; Sel-
lentin & Heavens 2016a,b). Sellentin & Heavens (2016b) provide
the most complete demonstration that  ̂ yields a good estimate of
the width of the posterior contours as long as Ns �Nd � Np.

The more critical e↵ect however is the additional noise of
⇡̂⇡⇡ML. DS13 (also see appendix A) showed that the uncertainty on
the position of likelihood contours from noise in  ̂ is only negligi-
ble if Ns �Nd � Nd �Np which is a much more demanding crite-
rion for current cosmological data vectors. We demonstrate this in
the left-hand panel of Fig. 1, where we show 100 randomly drawn
realisations of a DES-like weak lensing data vector with Nd = 450
and a halo model covariance matrix (see Sec. 4 for further details).
For each of the 100 data vectors we have also generated Wishart
realisations of our covariance matrix corresponding to an estimate
from Ns = 650 simulations. Using either the true covariance or the
estimated one, we then determine the best fitting parameters ⌦m
and �8 (after marginalizing over equation-of-state parameters of
dark energy, w0 and wa). The best-fits obtained from a noisy co-
variance (green points) clearly display a much larger scatter than
those obtained from the true covariance (red points). Also shown
are the best fits obtained by precision matrix expansion (PME, blue
points) which we are going to introduce in the next section. Here
we assumed that only Ns = 200 simulations are available to estimate
the PME, which gives best fit values that are significantly closer to
the ones obtained when knowing the true covariance matrix.

When reconstructing p(⇡⇡⇡|⇠̂⇠⇠) (e.g. from a Monte-Carlo-
Markov-Chain) this can lead to significant o↵sets between likeli-
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covariance estimates. A fully non-Gaussian treatment of the e↵ects
discussed in Dodelson & Schneider (2013, hereafter DS13) is how-
ever still missing.

Prior knowledge on the sparsity of the covariance matrix and
the precision matrix was used by Paz & Sánchez (2015) and Pad-
manabhan et al. (2015) to improve estimates of the precision ma-
trix from few simulations. Pope & Szapudi (2008) investigated
shrinkage estimators of the covariance, i.e. a mixing of estimated
and modelled covariance matrices. This however raises the task
of finding an equivalent to the Kaufman-Hartlap correction for
such a mixture of estimated and analytic matrices. More recently,
Joachimi (2017) describes a non-linear extension of that estimator
which combines covariance estimates from two sets of independent
data vector realisations and hence does not require a covariance
model.

In this paper we describe a way to expand the true precision
matrix around a covariance model as a power series in the devia-
tion between model and true covariance. Assuming a Wishart re-
alisation for the true covariance and using the results on invariant
moments of the Wishart distribution by Letac & Massam (2004)
we derive an unbiased estimator for the up to second order expan-
sion of the true precision matrix. This becomes especially powerful
if parts of the covariance matrix that are well understood analyt-
ically can be turned o↵ in simulations in order to yield a direct
estimate of the remaining covariance parts. In Sect. 3 we recap
the main problems of estimating parameter constraints from noisy
covariance estimates and present our method of "Precision Matrix
Expansion" (PME). In Sect. 4 we perform numerical experiments
that mimic data from the Dark Energy Survey (DES) and the Large
Synoptic Survey Telecope (LSST) likelihood analyses to test the
performance of our idea. Sect. 5 concludes with a discussion of our
results.

2 Parameter constraints from noisy covariance estimates

We begin by outlining the main task of this paper. Let ⇠̂⇠⇠ be a vector
of Nd data points measured from observational data and let ⇠⇠⇠[⇡⇡⇡]
be a model for this data vector that depends on a vector of Np pa-
rameters ⇡⇡⇡. If C is the covariance matrix of ⇠̂⇠⇠ then a standard way
to constrain the parameters ⇡⇡⇡ is to assign a posterior distribution
p(⇡⇡⇡|⇠̂⇠⇠) to them as
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and p(⇡⇡⇡) being a prior density incorporating apriori knowledge or
assumptions on ⇡⇡⇡. These expressions in fact ignore that C also can
be depedent on ⇡⇡⇡. We will do this throughout this paper and re-
fer the reader to Eifler et al. (2009) who investigated the impact of
cosmology dependent covariance matrices on cosmic shear likeli-
hood analyses. Another assumption that goes into Eq. 1 is that the
measured data vector ⇠̂⇠⇠ is drawn from a multi-variate Gaussian dis-
tribution. In wide area surveys this is justified in the limit where
one can consider the survey to consist of many independent sub-
regions, such that the measurements in those regions add up to a
Gaussian data vector by means of the central limit theorem.

If the covariance matrix C is not exactly known, it can e.g. be
estimated from N-body simulations. If ⇠̂⇠⇠i, i = 1...Ns, are a number

of independent measurements of ⇠⇠⇠ in simulations then an unbiased
estimate of C is given by
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where ⌫ = Ns � 1 and ⇠̄⇠⇠ is the sample mean of the ⇠̂⇠⇠i. We will as-
sume Ĉ to have a Wishart distribution with ⌫ degrees of freedom
which follows from our assumption that ⇠̂⇠⇠ and the ⇠̂⇠⇠i are Gaussian
distributed (cf. Taylor et al. 2013).

To compute the likelihood in Eq. 1 we need to know the preci-
sion matrix, i.e. is the inverse covariance matrix  = C�1. Accord-
ing to Kaufman (1967, see also Hartlap et al. 2007; Taylor et al.
2013) an unbiased estimator for  can be constructed from Ĉ as

 ̂ =
⌫�Nd �1
⌫

Ĉ�1 (4)

and we will call the factor of (⌫�Nd �1)/⌫ the Kaufman-Hartlap-
correction.

Given a measurement ⇠̂⇠⇠ of the data vector one can derive the
posterior density of the model parameters p(⇡⇡⇡|⇠̂⇠⇠) by means of equa-
tions 1 and 2. A noisy precision matrix estimate influences this in-
ference in two ways:

• it adds noise to the width of likelihood contours derived from
inserting the precision matrix estimate into the figure of merit �2

(Eq. 2).
• it adds noise to the location of likelihood contours. E.g. the maxi-
mum likelihood estimator for the parameters ⇡⇡⇡ would be
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When using a noisy precision matrix the uncertainties of ⇡̂⇡⇡ML have
contributions from both the noise in ⇠̂⇠⇠ and the noise in  ̂.

The astro-statistics literature has so far focused on the first
e↵ect, i.e. on the uncertainties on contour width due to noise in
the estimate  ̂ (Taylor et al. 2013; Taylor & Joachimi 2014; Sel-
lentin & Heavens 2016a,b). Sellentin & Heavens (2016b) provide
the most complete demonstration that  ̂ yields a good estimate of
the width of the posterior contours as long as Ns �Nd � Np.

The more critical e↵ect however is the additional noise of
⇡̂⇡⇡ML. DS13 (also see appendix A) showed that the uncertainty on
the position of likelihood contours from noise in  ̂ is only negligi-
ble if Ns �Nd � Nd �Np which is a much more demanding crite-
rion for current cosmological data vectors. We demonstrate this in
the left-hand panel of Fig. 1, where we show 100 randomly drawn
realisations of a DES-like weak lensing data vector with Nd = 450
and a halo model covariance matrix (see Sec. 4 for further details).
For each of the 100 data vectors we have also generated Wishart
realisations of our covariance matrix corresponding to an estimate
from Ns = 650 simulations. Using either the true covariance or the
estimated one, we then determine the best fitting parameters ⌦m
and �8 (after marginalizing over equation-of-state parameters of
dark energy, w0 and wa). The best-fits obtained from a noisy co-
variance (green points) clearly display a much larger scatter than
those obtained from the true covariance (red points). Also shown
are the best fits obtained by precision matrix expansion (PME, blue
points) which we are going to introduce in the next section. Here
we assumed that only Ns = 200 simulations are available to estimate
the PME, which gives best fit values that are significantly closer to
the ones obtained when knowing the true covariance matrix.

When reconstructing p(⇡⇡⇡|⇠̂⇠⇠) (e.g. from a Monte-Carlo-
Markov-Chain) this can lead to significant o↵sets between likeli-
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Figure 1. Left: Best fit parameter pairs (⌦m,�8) obtained from random realisations of a DES-like weak lensing data vector with 450 data points when using
di↵erent approaches to compute the precision matrix. The red points assume that the true covariance matrix is known while for the green points we draw
a Wishart realisation of the covariance (Ns = 450+ 200 = 650 simulations) for each data vector. The blue points are obtained with the method of precision
matrix expansion (and allowing only 200 simulations to estimate the expansion). The black contours display the 1� and 2� Fisher contours derived from our
fiducial covariance. Right: For one of the random realisations we perform a complete likelihood analysis and show the 1� and 2� contours in the ⌦m ��8
plane after marginalizing over w0 and wa (see Sec. 4 for details). The contours obtained from the Wishart realisation of the covariance are clearly o↵set from
those obtained from the true covariance matrix. We recommend to account for this by expanding the likelihood around its maximum (of the full parameter
space, which in this figure is 4-dimensional) with the factor derived by DS13. This leads to a decreased contraining power of our mock survey. The use of
PME manages to significantly decrease this contour o↵set.

hood contours inferred from the true covariance matrix and like-
lihood contours inferred from a covariance estimate – even if the
overall width of the likelihood contours is captured well by the co-
variance estimate. We demonstrate this in the right-hand panel of
figure 1. DS13 have derived a factor (see appendix A) by which pa-
rameter contours obtained from a Wishart realisation of the covari-
ance should be expanded in order to account for this additional scat-
ter. However, their derivation relies on the assumption of a Gaus-
sian parameter likelihood and is only applicable to the extent that a
Fisher analysis is accurate. The current state of the art for dealing
with noisy covariance estimates is hence a combination of SH16a
and DS13: expanding the contours derived from the SH16a likeli-
hood by the DS13 factor. We implement this idea for the cyan con-
tours in Fig. 1 and show that this brings the contours derived from
a standard covariance estimate into consistency with those derived
from the true covariance.

Downsides of this approach are a large increase of the uncer-
tainties on cosmological parameters and the fact that one still needs
at least as many realisations as data points in the data vector to even
derive a precision matrix estimate. We now want to introduce an al-
ternative method to estimate the precision matrix which is able to
drastically decrease the o↵set of contours seen for the standard pre-
cision matrix estimator.

3 Precision matrix expansion

Let us split the covariance matrix C into two contributions

C = A+B , (6)

where for matrix A we have an accurate model (e.g. the shape-
noise contributions to the covariance of cosmic shear correlation

functions) and for B we have a model Bm which we know to be im-
perfect. We want to include this prior knowledge of the covariance
matrix when estimating the precision matrix. Starting from

C =M+ (B�Bm) , (7)

where M=A+Bm is our model for the complete covariance matrix,
we rewrite

C = (1+X) M , (8)

where 1 is the identity matrix and we have defined

X := (B�Bm) M�1 . (9)

The precision matrix  =C�1 can then be expressed as the follow-
ing power series in X:
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We will call this series the precision matrix expansion (PME). In
appendix C we show that it converges under a wide range of con-
ditions. There we also demonstrate that the series yields at each
order a symmetric approximation of  and that at second order it
is always positive definite (at each order if the series converges).

3.1 Estimating the expansion of  

Suppose we have an estimate B̂ of the matrix B from a number
of N-body simulations. This especially assumes that all covariance
contributions included in A can be turned o↵ in the simulations
(i.e. for cosmic shear covariances A could consist of shape-noise
contributions which can be set to zero in simulations). We want to
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covariance estimates. A fully non-Gaussian treatment of the e↵ects
discussed in Dodelson & Schneider (2013, hereafter DS13) is how-
ever still missing.

Prior knowledge on the sparsity of the covariance matrix and
the precision matrix was used by Paz & Sánchez (2015) and Pad-
manabhan et al. (2015) to improve estimates of the precision ma-
trix from few simulations. Pope & Szapudi (2008) investigated
shrinkage estimators of the covariance, i.e. a mixing of estimated
and modelled covariance matrices. This however raises the task
of finding an equivalent to the Kaufman-Hartlap correction for
such a mixture of estimated and analytic matrices. More recently,
Joachimi (2017) describes a non-linear extension of that estimator
which combines covariance estimates from two sets of independent
data vector realisations and hence does not require a covariance
model.

In this paper we describe a way to expand the true precision
matrix around a covariance model as a power series in the devia-
tion between model and true covariance. Assuming a Wishart re-
alisation for the true covariance and using the results on invariant
moments of the Wishart distribution by Letac & Massam (2004)
we derive an unbiased estimator for the up to second order expan-
sion of the true precision matrix. This becomes especially powerful
if parts of the covariance matrix that are well understood analyt-
ically can be turned o↵ in simulations in order to yield a direct
estimate of the remaining covariance parts. In Sect. 3 we recap
the main problems of estimating parameter constraints from noisy
covariance estimates and present our method of "Precision Matrix
Expansion" (PME). In Sect. 4 we perform numerical experiments
that mimic data from the Dark Energy Survey (DES) and the Large
Synoptic Survey Telecope (LSST) likelihood analyses to test the
performance of our idea. Sect. 5 concludes with a discussion of our
results.

2 Parameter constraints from noisy covariance estimates

We begin by outlining the main task of this paper. Let ⇠̂⇠⇠ be a vector
of Nd data points measured from observational data and let ⇠⇠⇠[⇡⇡⇡]
be a model for this data vector that depends on a vector of Np pa-
rameters ⇡⇡⇡. If C is the covariance matrix of ⇠̂⇠⇠ then a standard way
to constrain the parameters ⇡⇡⇡ is to assign a posterior distribution
p(⇡⇡⇡|⇠̂⇠⇠) to them as
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and p(⇡⇡⇡) being a prior density incorporating apriori knowledge or
assumptions on ⇡⇡⇡. These expressions in fact ignore that C also can
be depedent on ⇡⇡⇡. We will do this throughout this paper and re-
fer the reader to Eifler et al. (2009) who investigated the impact of
cosmology dependent covariance matrices on cosmic shear likeli-
hood analyses. Another assumption that goes into Eq. 1 is that the
measured data vector ⇠̂⇠⇠ is drawn from a multi-variate Gaussian dis-
tribution. In wide area surveys this is justified in the limit where
one can consider the survey to consist of many independent sub-
regions, such that the measurements in those regions add up to a
Gaussian data vector by means of the central limit theorem.

If the covariance matrix C is not exactly known, it can e.g. be
estimated from N-body simulations. If ⇠̂⇠⇠i, i = 1...Ns, are a number

of independent measurements of ⇠⇠⇠ in simulations then an unbiased
estimate of C is given by
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where ⌫ = Ns � 1 and ⇠̄⇠⇠ is the sample mean of the ⇠̂⇠⇠i. We will as-
sume Ĉ to have a Wishart distribution with ⌫ degrees of freedom
which follows from our assumption that ⇠̂⇠⇠ and the ⇠̂⇠⇠i are Gaussian
distributed (cf. Taylor et al. 2013).

To compute the likelihood in Eq. 1 we need to know the preci-
sion matrix, i.e. is the inverse covariance matrix  = C�1. Accord-
ing to Kaufman (1967, see also Hartlap et al. 2007; Taylor et al.
2013) an unbiased estimator for  can be constructed from Ĉ as

 ̂ =
⌫�Nd �1
⌫

Ĉ�1 (4)

and we will call the factor of (⌫�Nd �1)/⌫ the Kaufman-Hartlap-
correction.

Given a measurement ⇠̂⇠⇠ of the data vector one can derive the
posterior density of the model parameters p(⇡⇡⇡|⇠̂⇠⇠) by means of equa-
tions 1 and 2. A noisy precision matrix estimate influences this in-
ference in two ways:

• it adds noise to the width of likelihood contours derived from
inserting the precision matrix estimate into the figure of merit �2

(Eq. 2).
• it adds noise to the location of likelihood contours. E.g. the maxi-
mum likelihood estimator for the parameters ⇡⇡⇡ would be
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When using a noisy precision matrix the uncertainties of ⇡̂⇡⇡ML have
contributions from both the noise in ⇠̂⇠⇠ and the noise in  ̂.

The astro-statistics literature has so far focused on the first
e↵ect, i.e. on the uncertainties on contour width due to noise in
the estimate  ̂ (Taylor et al. 2013; Taylor & Joachimi 2014; Sel-
lentin & Heavens 2016a,b). Sellentin & Heavens (2016b) provide
the most complete demonstration that  ̂ yields a good estimate of
the width of the posterior contours as long as Ns �Nd � Np.

The more critical e↵ect however is the additional noise of
⇡̂⇡⇡ML. DS13 (also see appendix A) showed that the uncertainty on
the position of likelihood contours from noise in  ̂ is only negligi-
ble if Ns �Nd � Nd �Np which is a much more demanding crite-
rion for current cosmological data vectors. We demonstrate this in
the left-hand panel of Fig. 1, where we show 100 randomly drawn
realisations of a DES-like weak lensing data vector with Nd = 450
and a halo model covariance matrix (see Sec. 4 for further details).
For each of the 100 data vectors we have also generated Wishart
realisations of our covariance matrix corresponding to an estimate
from Ns = 650 simulations. Using either the true covariance or the
estimated one, we then determine the best fitting parameters ⌦m
and �8 (after marginalizing over equation-of-state parameters of
dark energy, w0 and wa). The best-fits obtained from a noisy co-
variance (green points) clearly display a much larger scatter than
those obtained from the true covariance (red points). Also shown
are the best fits obtained by precision matrix expansion (PME, blue
points) which we are going to introduce in the next section. Here
we assumed that only Ns = 200 simulations are available to estimate
the PME, which gives best fit values that are significantly closer to
the ones obtained when knowing the true covariance matrix.

When reconstructing p(⇡⇡⇡|⇠̂⇠⇠) (e.g. from a Monte-Carlo-
Markov-Chain) this can lead to significant o↵sets between likeli-
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Figure 1. Left: Best fit parameter pairs (⌦m,�8) obtained from random realisations of a DES-like weak lensing data vector with 450 data points when using
di↵erent approaches to compute the precision matrix. The red points assume that the true covariance matrix is known while for the green points we draw
a Wishart realisation of the covariance (Ns = 450+ 200 = 650 simulations) for each data vector. The blue points are obtained with the method of precision
matrix expansion (and allowing only 200 simulations to estimate the expansion). The black contours display the 1� and 2� Fisher contours derived from our
fiducial covariance. Right: For one of the random realisations we perform a complete likelihood analysis and show the 1� and 2� contours in the ⌦m ��8
plane after marginalizing over w0 and wa (see Sec. 4 for details). The contours obtained from the Wishart realisation of the covariance are clearly o↵set from
those obtained from the true covariance matrix. We recommend to account for this by expanding the likelihood around its maximum (of the full parameter
space, which in this figure is 4-dimensional) with the factor derived by DS13. This leads to a decreased contraining power of our mock survey. The use of
PME manages to significantly decrease this contour o↵set.

hood contours inferred from the true covariance matrix and like-
lihood contours inferred from a covariance estimate – even if the
overall width of the likelihood contours is captured well by the co-
variance estimate. We demonstrate this in the right-hand panel of
figure 1. DS13 have derived a factor (see appendix A) by which pa-
rameter contours obtained from a Wishart realisation of the covari-
ance should be expanded in order to account for this additional scat-
ter. However, their derivation relies on the assumption of a Gaus-
sian parameter likelihood and is only applicable to the extent that a
Fisher analysis is accurate. The current state of the art for dealing
with noisy covariance estimates is hence a combination of SH16a
and DS13: expanding the contours derived from the SH16a likeli-
hood by the DS13 factor. We implement this idea for the cyan con-
tours in Fig. 1 and show that this brings the contours derived from
a standard covariance estimate into consistency with those derived
from the true covariance.

Downsides of this approach are a large increase of the uncer-
tainties on cosmological parameters and the fact that one still needs
at least as many realisations as data points in the data vector to even
derive a precision matrix estimate. We now want to introduce an al-
ternative method to estimate the precision matrix which is able to
drastically decrease the o↵set of contours seen for the standard pre-
cision matrix estimator.

3 Precision matrix expansion

Let us split the covariance matrix C into two contributions

C = A+B , (6)

where for matrix A we have an accurate model (e.g. the shape-
noise contributions to the covariance of cosmic shear correlation

functions) and for B we have a model Bm which we know to be im-
perfect. We want to include this prior knowledge of the covariance
matrix when estimating the precision matrix. Starting from

C =M+ (B�Bm) , (7)

where M=A+Bm is our model for the complete covariance matrix,
we rewrite

C = (1+X) M , (8)

where 1 is the identity matrix and we have defined

X := (B�Bm) M�1 . (9)

The precision matrix  =C�1 can then be expressed as the follow-
ing power series in X:

 = M�1

0
BBBBBB@
1X

k=0
(�1)kXk
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= M�1
⇣
1�X+X2 +O

h
X3
i⌘
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We will call this series the precision matrix expansion (PME). In
appendix C we show that it converges under a wide range of con-
ditions. There we also demonstrate that the series yields at each
order a symmetric approximation of  and that at second order it
is always positive definite (at each order if the series converges).

3.1 Estimating the expansion of  

Suppose we have an estimate B̂ of the matrix B from a number
of N-body simulations. This especially assumes that all covariance
contributions included in A can be turned o↵ in the simulations
(i.e. for cosmic shear covariances A could consist of shape-noise
contributions which can be set to zero in simulations). We want to
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Figure 1. Left: Best fit parameter pairs (⌦m,�8) obtained from random realisations of a DES-like weak lensing data vector with 450 data points when using
di↵erent approaches to compute the precision matrix. The red points assume that the true covariance matrix is known while for the green points we draw
a Wishart realisation of the covariance (Ns = 450+ 200 = 650 simulations) for each data vector. The blue points are obtained with the method of precision
matrix expansion (and allowing only 200 simulations to estimate the expansion). The black contours display the 1� and 2� Fisher contours derived from our
fiducial covariance. Right: For one of the random realisations we perform a complete likelihood analysis and show the 1� and 2� contours in the ⌦m ��8
plane after marginalizing over w0 and wa (see Sec. 4 for details). The contours obtained from the Wishart realisation of the covariance are clearly o↵set from
those obtained from the true covariance matrix. We recommend to account for this by expanding the likelihood around its maximum (of the full parameter
space, which in this figure is 4-dimensional) with the factor derived by DS13. This leads to a decreased contraining power of our mock survey. The use of
PME manages to significantly decrease this contour o↵set.

hood contours inferred from the true covariance matrix and like-
lihood contours inferred from a covariance estimate – even if the
overall width of the likelihood contours is captured well by the co-
variance estimate. We demonstrate this in the right-hand panel of
figure 1. DS13 have derived a factor (see appendix A) by which pa-
rameter contours obtained from a Wishart realisation of the covari-
ance should be expanded in order to account for this additional scat-
ter. However, their derivation relies on the assumption of a Gaus-
sian parameter likelihood and is only applicable to the extent that a
Fisher analysis is accurate. The current state of the art for dealing
with noisy covariance estimates is hence a combination of SH16a
and DS13: expanding the contours derived from the SH16a likeli-
hood by the DS13 factor. We implement this idea for the cyan con-
tours in Fig. 1 and show that this brings the contours derived from
a standard covariance estimate into consistency with those derived
from the true covariance.

Downsides of this approach are a large increase of the uncer-
tainties on cosmological parameters and the fact that one still needs
at least as many realisations as data points in the data vector to even
derive a precision matrix estimate. We now want to introduce an al-
ternative method to estimate the precision matrix which is able to
drastically decrease the o↵set of contours seen for the standard pre-
cision matrix estimator.

3 Precision matrix expansion

Let us split the covariance matrix C into two contributions

C = A+B , (6)

where for matrix A we have an accurate model (e.g. the shape-
noise contributions to the covariance of cosmic shear correlation

functions) and for B we have a model Bm which we know to be im-
perfect. We want to include this prior knowledge of the covariance
matrix when estimating the precision matrix. Starting from

C =M+ (B�Bm) , (7)

where M=A+Bm is our model for the complete covariance matrix,
we rewrite

C = (1+X) M , (8)

where 1 is the identity matrix and we have defined

X := (B�Bm) M�1 . (9)

The precision matrix  =C�1 can then be expressed as the follow-
ing power series in X:
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We will call this series the precision matrix expansion (PME). In
appendix C we show that it converges under a wide range of con-
ditions. There we also demonstrate that the series yields at each
order a symmetric approximation of  and that at second order it
is always positive definite (at each order if the series converges).

3.1 Estimating the expansion of  

Suppose we have an estimate B̂ of the matrix B from a number
of N-body simulations. This especially assumes that all covariance
contributions included in A can be turned o↵ in the simulations
(i.e. for cosmic shear covariances A could consist of shape-noise
contributions which can be set to zero in simulations). We want to
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Figure 1. Left: Best fit parameter pairs (⌦m,�8) obtained from random realisations of a DES-like weak lensing data vector with 450 data points when using
di↵erent approaches to compute the precision matrix. The red points assume that the true covariance matrix is known while for the green points we draw
a Wishart realisation of the covariance (Ns = 450+ 200 = 650 simulations) for each data vector. The blue points are obtained with the method of precision
matrix expansion (and allowing only 200 simulations to estimate the expansion). The black contours display the 1� and 2� Fisher contours derived from our
fiducial covariance. Right: For one of the random realisations we perform a complete likelihood analysis and show the 1� and 2� contours in the ⌦m ��8
plane after marginalizing over w0 and wa (see Sec. 4 for details). The contours obtained from the Wishart realisation of the covariance are clearly o↵set from
those obtained from the true covariance matrix. We recommend to account for this by expanding the likelihood around its maximum (of the full parameter
space, which in this figure is 4-dimensional) with the factor derived by DS13. This leads to a decreased contraining power of our mock survey. The use of
PME manages to significantly decrease this contour o↵set.

hood contours inferred from the true covariance matrix and like-
lihood contours inferred from a covariance estimate – even if the
overall width of the likelihood contours is captured well by the co-
variance estimate. We demonstrate this in the right-hand panel of
figure 1. DS13 have derived a factor (see appendix A) by which pa-
rameter contours obtained from a Wishart realisation of the covari-
ance should be expanded in order to account for this additional scat-
ter. However, their derivation relies on the assumption of a Gaus-
sian parameter likelihood and is only applicable to the extent that a
Fisher analysis is accurate. The current state of the art for dealing
with noisy covariance estimates is hence a combination of SH16a
and DS13: expanding the contours derived from the SH16a likeli-
hood by the DS13 factor. We implement this idea for the cyan con-
tours in Fig. 1 and show that this brings the contours derived from
a standard covariance estimate into consistency with those derived
from the true covariance.

Downsides of this approach are a large increase of the uncer-
tainties on cosmological parameters and the fact that one still needs
at least as many realisations as data points in the data vector to even
derive a precision matrix estimate. We now want to introduce an al-
ternative method to estimate the precision matrix which is able to
drastically decrease the o↵set of contours seen for the standard pre-
cision matrix estimator.

3 Precision matrix expansion

Let us split the covariance matrix C into two contributions

C = A+B , (6)

where for matrix A we have an accurate model (e.g. the shape-
noise contributions to the covariance of cosmic shear correlation

functions) and for B we have a model Bm which we know to be im-
perfect. We want to include this prior knowledge of the covariance
matrix when estimating the precision matrix. Starting from

C =M+ (B�Bm) , (7)

where M=A+Bm is our model for the complete covariance matrix,
we rewrite

C = (1+X) M , (8)

where 1 is the identity matrix and we have defined

X := (B�Bm) M�1 . (9)

The precision matrix  =C�1 can then be expressed as the follow-
ing power series in X:
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We will call this series the precision matrix expansion (PME). In
appendix C we show that it converges under a wide range of con-
ditions. There we also demonstrate that the series yields at each
order a symmetric approximation of  and that at second order it
is always positive definite (at each order if the series converges).

3.1 Estimating the expansion of  

Suppose we have an estimate B̂ of the matrix B from a number
of N-body simulations. This especially assumes that all covariance
contributions included in A can be turned o↵ in the simulations
(i.e. for cosmic shear covariances A could consist of shape-noise
contributions which can be set to zero in simulations). We want to
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Figure 1. Left: Best fit parameter pairs (⌦m,�8) obtained from random realisations of a DES-like weak lensing data vector with 450 data points when using
di↵erent approaches to compute the precision matrix. The red points assume that the true covariance matrix is known while for the green points we draw
a Wishart realisation of the covariance (Ns = 450+ 200 = 650 simulations) for each data vector. The blue points are obtained with the method of precision
matrix expansion (and allowing only 200 simulations to estimate the expansion). The black contours display the 1� and 2� Fisher contours derived from our
fiducial covariance. Right: For one of the random realisations we perform a complete likelihood analysis and show the 1� and 2� contours in the ⌦m ��8
plane after marginalizing over w0 and wa (see Sec. 4 for details). The contours obtained from the Wishart realisation of the covariance are clearly o↵set from
those obtained from the true covariance matrix. We recommend to account for this by expanding the likelihood around its maximum (of the full parameter
space, which in this figure is 4-dimensional) with the factor derived by DS13. This leads to a decreased contraining power of our mock survey. The use of
PME manages to significantly decrease this contour o↵set.

hood contours inferred from the true covariance matrix and like-
lihood contours inferred from a covariance estimate – even if the
overall width of the likelihood contours is captured well by the co-
variance estimate. We demonstrate this in the right-hand panel of
figure 1. DS13 have derived a factor (see appendix A) by which pa-
rameter contours obtained from a Wishart realisation of the covari-
ance should be expanded in order to account for this additional scat-
ter. However, their derivation relies on the assumption of a Gaus-
sian parameter likelihood and is only applicable to the extent that a
Fisher analysis is accurate. The current state of the art for dealing
with noisy covariance estimates is hence a combination of SH16a
and DS13: expanding the contours derived from the SH16a likeli-
hood by the DS13 factor. We implement this idea for the cyan con-
tours in Fig. 1 and show that this brings the contours derived from
a standard covariance estimate into consistency with those derived
from the true covariance.

Downsides of this approach are a large increase of the uncer-
tainties on cosmological parameters and the fact that one still needs
at least as many realisations as data points in the data vector to even
derive a precision matrix estimate. We now want to introduce an al-
ternative method to estimate the precision matrix which is able to
drastically decrease the o↵set of contours seen for the standard pre-
cision matrix estimator.

3 Precision matrix expansion

Let us split the covariance matrix C into two contributions

C = A+B , (6)

where for matrix A we have an accurate model (e.g. the shape-
noise contributions to the covariance of cosmic shear correlation

functions) and for B we have a model Bm which we know to be im-
perfect. We want to include this prior knowledge of the covariance
matrix when estimating the precision matrix. Starting from

C =M+ (B�Bm) , (7)

where M=A+Bm is our model for the complete covariance matrix,
we rewrite

C = (1+X) M , (8)

where 1 is the identity matrix and we have defined

X := (B�Bm) M�1 . (9)

The precision matrix  =C�1 can then be expressed as the follow-
ing power series in X:
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We will call this series the precision matrix expansion (PME). In
appendix C we show that it converges under a wide range of con-
ditions. There we also demonstrate that the series yields at each
order a symmetric approximation of  and that at second order it
is always positive definite (at each order if the series converges).

3.1 Estimating the expansion of  

Suppose we have an estimate B̂ of the matrix B from a number
of N-body simulations. This especially assumes that all covariance
contributions included in A can be turned o↵ in the simulations
(i.e. for cosmic shear covariances A could consist of shape-noise
contributions which can be set to zero in simulations). We want to
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Figure 1. Left: Best fit parameter pairs (⌦m,�8) obtained from random realisations of a DES-like weak lensing data vector with 450 data points when using
di↵erent approaches to compute the precision matrix. The red points assume that the true covariance matrix is known while for the green points we draw
a Wishart realisation of the covariance (Ns = 450+ 200 = 650 simulations) for each data vector. The blue points are obtained with the method of precision
matrix expansion (and allowing only 200 simulations to estimate the expansion). The black contours display the 1� and 2� Fisher contours derived from our
fiducial covariance. Right: For one of the random realisations we perform a complete likelihood analysis and show the 1� and 2� contours in the ⌦m ��8
plane after marginalizing over w0 and wa (see Sec. 4 for details). The contours obtained from the Wishart realisation of the covariance are clearly o↵set from
those obtained from the true covariance matrix. We recommend to account for this by expanding the likelihood around its maximum (of the full parameter
space, which in this figure is 4-dimensional) with the factor derived by DS13. This leads to a decreased contraining power of our mock survey. The use of
PME manages to significantly decrease this contour o↵set.

hood contours inferred from the true covariance matrix and like-
lihood contours inferred from a covariance estimate – even if the
overall width of the likelihood contours is captured well by the co-
variance estimate. We demonstrate this in the right-hand panel of
figure 1. DS13 have derived a factor (see appendix A) by which pa-
rameter contours obtained from a Wishart realisation of the covari-
ance should be expanded in order to account for this additional scat-
ter. However, their derivation relies on the assumption of a Gaus-
sian parameter likelihood and is only applicable to the extent that a
Fisher analysis is accurate. The current state of the art for dealing
with noisy covariance estimates is hence a combination of SH16a
and DS13: expanding the contours derived from the SH16a likeli-
hood by the DS13 factor. We implement this idea for the cyan con-
tours in Fig. 1 and show that this brings the contours derived from
a standard covariance estimate into consistency with those derived
from the true covariance.

Downsides of this approach are a large increase of the uncer-
tainties on cosmological parameters and the fact that one still needs
at least as many realisations as data points in the data vector to even
derive a precision matrix estimate. We now want to introduce an al-
ternative method to estimate the precision matrix which is able to
drastically decrease the o↵set of contours seen for the standard pre-
cision matrix estimator.

3 Precision matrix expansion

Let us split the covariance matrix C into two contributions

C = A+B , (6)

where for matrix A we have an accurate model (e.g. the shape-
noise contributions to the covariance of cosmic shear correlation

functions) and for B we have a model Bm which we know to be im-
perfect. We want to include this prior knowledge of the covariance
matrix when estimating the precision matrix. Starting from

C =M+ (B�Bm) , (7)

where M=A+Bm is our model for the complete covariance matrix,
we rewrite

C = (1+X) M , (8)

where 1 is the identity matrix and we have defined

X := (B�Bm) M�1 . (9)

The precision matrix  =C�1 can then be expressed as the follow-
ing power series in X:
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We will call this series the precision matrix expansion (PME). In
appendix C we show that it converges under a wide range of con-
ditions. There we also demonstrate that the series yields at each
order a symmetric approximation of  and that at second order it
is always positive definite (at each order if the series converges).

3.1 Estimating the expansion of  

Suppose we have an estimate B̂ of the matrix B from a number
of N-body simulations. This especially assumes that all covariance
contributions included in A can be turned o↵ in the simulations
(i.e. for cosmic shear covariances A could consist of shape-noise
contributions which can be set to zero in simulations). We want to
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covariance estimates. A fully non-Gaussian treatment of the e↵ects
discussed in Dodelson & Schneider (2013, hereafter DS13) is how-
ever still missing.

Prior knowledge on the sparsity of the covariance matrix and
the precision matrix was used by Paz & Sánchez (2015) and Pad-
manabhan et al. (2015) to improve estimates of the precision ma-
trix from few simulations. Pope & Szapudi (2008) investigated
shrinkage estimators of the covariance, i.e. a mixing of estimated
and modelled covariance matrices. This however raises the task
of finding an equivalent to the Kaufman-Hartlap correction for
such a mixture of estimated and analytic matrices. More recently,
Joachimi (2017) describes a non-linear extension of that estimator
which combines covariance estimates from two sets of independent
data vector realisations and hence does not require a covariance
model.

In this paper we describe a way to expand the true precision
matrix around a covariance model as a power series in the devia-
tion between model and true covariance. Assuming a Wishart re-
alisation for the true covariance and using the results on invariant
moments of the Wishart distribution by Letac & Massam (2004)
we derive an unbiased estimator for the up to second order expan-
sion of the true precision matrix. This becomes especially powerful
if parts of the covariance matrix that are well understood analyt-
ically can be turned o↵ in simulations in order to yield a direct
estimate of the remaining covariance parts. In Sect. 3 we recap
the main problems of estimating parameter constraints from noisy
covariance estimates and present our method of "Precision Matrix
Expansion" (PME). In Sect. 4 we perform numerical experiments
that mimic data from the Dark Energy Survey (DES) and the Large
Synoptic Survey Telecope (LSST) likelihood analyses to test the
performance of our idea. Sect. 5 concludes with a discussion of our
results.

2 Parameter constraints from noisy covariance estimates

We begin by outlining the main task of this paper. Let ⇠̂⇠⇠ be a vector
of Nd data points measured from observational data and let ⇠⇠⇠[⇡⇡⇡]
be a model for this data vector that depends on a vector of Np pa-
rameters ⇡⇡⇡. If C is the covariance matrix of ⇠̂⇠⇠ then a standard way
to constrain the parameters ⇡⇡⇡ is to assign a posterior distribution
p(⇡⇡⇡|⇠̂⇠⇠) to them as

p(⇡⇡⇡|⇠̂⇠⇠) ⇠ exp
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and p(⇡⇡⇡) being a prior density incorporating apriori knowledge or
assumptions on ⇡⇡⇡. These expressions in fact ignore that C also can
be depedent on ⇡⇡⇡. We will do this throughout this paper and re-
fer the reader to Eifler et al. (2009) who investigated the impact of
cosmology dependent covariance matrices on cosmic shear likeli-
hood analyses. Another assumption that goes into Eq. 1 is that the
measured data vector ⇠̂⇠⇠ is drawn from a multi-variate Gaussian dis-
tribution. In wide area surveys this is justified in the limit where
one can consider the survey to consist of many independent sub-
regions, such that the measurements in those regions add up to a
Gaussian data vector by means of the central limit theorem.

If the covariance matrix C is not exactly known, it can e.g. be
estimated from N-body simulations. If ⇠̂⇠⇠i, i = 1...Ns, are a number

of independent measurements of ⇠⇠⇠ in simulations then an unbiased
estimate of C is given by

Ĉ :=
1
⌫

NsX

i=1

⇣
⇠̂⇠⇠i � ⇠̄⇠⇠

⌘ ⇣
⇠̂⇠⇠i � ⇠̄⇠⇠

⌘T
, (3)

where ⌫ = Ns � 1 and ⇠̄⇠⇠ is the sample mean of the ⇠̂⇠⇠i. We will as-
sume Ĉ to have a Wishart distribution with ⌫ degrees of freedom
which follows from our assumption that ⇠̂⇠⇠ and the ⇠̂⇠⇠i are Gaussian
distributed (cf. Taylor et al. 2013).

To compute the likelihood in Eq. 1 we need to know the preci-
sion matrix, i.e. is the inverse covariance matrix  = C�1. Accord-
ing to Kaufman (1967, see also Hartlap et al. 2007; Taylor et al.
2013) an unbiased estimator for  can be constructed from Ĉ as

 ̂ =
⌫�Nd �1
⌫

Ĉ�1 (4)

and we will call the factor of (⌫�Nd �1)/⌫ the Kaufman-Hartlap-
correction.

Given a measurement ⇠̂⇠⇠ of the data vector one can derive the
posterior density of the model parameters p(⇡⇡⇡|⇠̂⇠⇠) by means of equa-
tions 1 and 2. A noisy precision matrix estimate influences this in-
ference in two ways:

• it adds noise to the width of likelihood contours derived from
inserting the precision matrix estimate into the figure of merit �2

(Eq. 2).
• it adds noise to the location of likelihood contours. E.g. the maxi-
mum likelihood estimator for the parameters ⇡⇡⇡ would be

⇡̂⇡⇡ML =min
⇡⇡⇡
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When using a noisy precision matrix the uncertainties of ⇡̂⇡⇡ML have
contributions from both the noise in ⇠̂⇠⇠ and the noise in  ̂.

The astro-statistics literature has so far focused on the first
e↵ect, i.e. on the uncertainties on contour width due to noise in
the estimate  ̂ (Taylor et al. 2013; Taylor & Joachimi 2014; Sel-
lentin & Heavens 2016a,b). Sellentin & Heavens (2016b) provide
the most complete demonstration that  ̂ yields a good estimate of
the width of the posterior contours as long as Ns �Nd � Np.

The more critical e↵ect however is the additional noise of
⇡̂⇡⇡ML. DS13 (also see appendix A) showed that the uncertainty on
the position of likelihood contours from noise in  ̂ is only negligi-
ble if Ns �Nd � Nd �Np which is a much more demanding crite-
rion for current cosmological data vectors. We demonstrate this in
the left-hand panel of Fig. 1, where we show 100 randomly drawn
realisations of a DES-like weak lensing data vector with Nd = 450
and a halo model covariance matrix (see Sec. 4 for further details).
For each of the 100 data vectors we have also generated Wishart
realisations of our covariance matrix corresponding to an estimate
from Ns = 650 simulations. Using either the true covariance or the
estimated one, we then determine the best fitting parameters ⌦m
and �8 (after marginalizing over equation-of-state parameters of
dark energy, w0 and wa). The best-fits obtained from a noisy co-
variance (green points) clearly display a much larger scatter than
those obtained from the true covariance (red points). Also shown
are the best fits obtained by precision matrix expansion (PME, blue
points) which we are going to introduce in the next section. Here
we assumed that only Ns = 200 simulations are available to estimate
the PME, which gives best fit values that are significantly closer to
the ones obtained when knowing the true covariance matrix.

When reconstructing p(⇡⇡⇡|⇠̂⇠⇠) (e.g. from a Monte-Carlo-
Markov-Chain) this can lead to significant o↵sets between likeli-
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covariance estimates. A fully non-Gaussian treatment of the e↵ects
discussed in Dodelson & Schneider (2013, hereafter DS13) is how-
ever still missing.

Prior knowledge on the sparsity of the covariance matrix and
the precision matrix was used by Paz & Sánchez (2015) and Pad-
manabhan et al. (2015) to improve estimates of the precision ma-
trix from few simulations. Pope & Szapudi (2008) investigated
shrinkage estimators of the covariance, i.e. a mixing of estimated
and modelled covariance matrices. This however raises the task
of finding an equivalent to the Kaufman-Hartlap correction for
such a mixture of estimated and analytic matrices. More recently,
Joachimi (2017) describes a non-linear extension of that estimator
which combines covariance estimates from two sets of independent
data vector realisations and hence does not require a covariance
model.

In this paper we describe a way to expand the true precision
matrix around a covariance model as a power series in the devia-
tion between model and true covariance. Assuming a Wishart re-
alisation for the true covariance and using the results on invariant
moments of the Wishart distribution by Letac & Massam (2004)
we derive an unbiased estimator for the up to second order expan-
sion of the true precision matrix. This becomes especially powerful
if parts of the covariance matrix that are well understood analyt-
ically can be turned o↵ in simulations in order to yield a direct
estimate of the remaining covariance parts. In Sect. 3 we recap
the main problems of estimating parameter constraints from noisy
covariance estimates and present our method of "Precision Matrix
Expansion" (PME). In Sect. 4 we perform numerical experiments
that mimic data from the Dark Energy Survey (DES) and the Large
Synoptic Survey Telecope (LSST) likelihood analyses to test the
performance of our idea. Sect. 5 concludes with a discussion of our
results.

2 Parameter constraints from noisy covariance estimates

We begin by outlining the main task of this paper. Let ⇠̂⇠⇠ be a vector
of Nd data points measured from observational data and let ⇠⇠⇠[⇡⇡⇡]
be a model for this data vector that depends on a vector of Np pa-
rameters ⇡⇡⇡. If C is the covariance matrix of ⇠̂⇠⇠ then a standard way
to constrain the parameters ⇡⇡⇡ is to assign a posterior distribution
p(⇡⇡⇡|⇠̂⇠⇠) to them as

p(⇡⇡⇡|⇠̂⇠⇠) ⇠ exp
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and p(⇡⇡⇡) being a prior density incorporating apriori knowledge or
assumptions on ⇡⇡⇡. These expressions in fact ignore that C also can
be depedent on ⇡⇡⇡. We will do this throughout this paper and re-
fer the reader to Eifler et al. (2009) who investigated the impact of
cosmology dependent covariance matrices on cosmic shear likeli-
hood analyses. Another assumption that goes into Eq. 1 is that the
measured data vector ⇠̂⇠⇠ is drawn from a multi-variate Gaussian dis-
tribution. In wide area surveys this is justified in the limit where
one can consider the survey to consist of many independent sub-
regions, such that the measurements in those regions add up to a
Gaussian data vector by means of the central limit theorem.

If the covariance matrix C is not exactly known, it can e.g. be
estimated from N-body simulations. If ⇠̂⇠⇠i, i = 1...Ns, are a number

of independent measurements of ⇠⇠⇠ in simulations then an unbiased
estimate of C is given by
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where ⌫ = Ns � 1 and ⇠̄⇠⇠ is the sample mean of the ⇠̂⇠⇠i. We will as-
sume Ĉ to have a Wishart distribution with ⌫ degrees of freedom
which follows from our assumption that ⇠̂⇠⇠ and the ⇠̂⇠⇠i are Gaussian
distributed (cf. Taylor et al. 2013).

To compute the likelihood in Eq. 1 we need to know the preci-
sion matrix, i.e. is the inverse covariance matrix  = C�1. Accord-
ing to Kaufman (1967, see also Hartlap et al. 2007; Taylor et al.
2013) an unbiased estimator for  can be constructed from Ĉ as
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Ĉ�1 (4)

and we will call the factor of (⌫�Nd �1)/⌫ the Kaufman-Hartlap-
correction.

Given a measurement ⇠̂⇠⇠ of the data vector one can derive the
posterior density of the model parameters p(⇡⇡⇡|⇠̂⇠⇠) by means of equa-
tions 1 and 2. A noisy precision matrix estimate influences this in-
ference in two ways:

• it adds noise to the width of likelihood contours derived from
inserting the precision matrix estimate into the figure of merit �2

(Eq. 2).
• it adds noise to the location of likelihood contours. E.g. the maxi-
mum likelihood estimator for the parameters ⇡⇡⇡ would be
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When using a noisy precision matrix the uncertainties of ⇡̂⇡⇡ML have
contributions from both the noise in ⇠̂⇠⇠ and the noise in  ̂.

The astro-statistics literature has so far focused on the first
e↵ect, i.e. on the uncertainties on contour width due to noise in
the estimate  ̂ (Taylor et al. 2013; Taylor & Joachimi 2014; Sel-
lentin & Heavens 2016a,b). Sellentin & Heavens (2016b) provide
the most complete demonstration that  ̂ yields a good estimate of
the width of the posterior contours as long as Ns �Nd � Np.

The more critical e↵ect however is the additional noise of
⇡̂⇡⇡ML. DS13 (also see appendix A) showed that the uncertainty on
the position of likelihood contours from noise in  ̂ is only negligi-
ble if Ns �Nd � Nd �Np which is a much more demanding crite-
rion for current cosmological data vectors. We demonstrate this in
the left-hand panel of Fig. 1, where we show 100 randomly drawn
realisations of a DES-like weak lensing data vector with Nd = 450
and a halo model covariance matrix (see Sec. 4 for further details).
For each of the 100 data vectors we have also generated Wishart
realisations of our covariance matrix corresponding to an estimate
from Ns = 650 simulations. Using either the true covariance or the
estimated one, we then determine the best fitting parameters ⌦m
and �8 (after marginalizing over equation-of-state parameters of
dark energy, w0 and wa). The best-fits obtained from a noisy co-
variance (green points) clearly display a much larger scatter than
those obtained from the true covariance (red points). Also shown
are the best fits obtained by precision matrix expansion (PME, blue
points) which we are going to introduce in the next section. Here
we assumed that only Ns = 200 simulations are available to estimate
the PME, which gives best fit values that are significantly closer to
the ones obtained when knowing the true covariance matrix.

When reconstructing p(⇡⇡⇡|⇠̂⇠⇠) (e.g. from a Monte-Carlo-
Markov-Chain) this can lead to significant o↵sets between likeli-
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covariance estimates. A fully non-Gaussian treatment of the e↵ects
discussed in Dodelson & Schneider (2013, hereafter DS13) is how-
ever still missing.

Prior knowledge on the sparsity of the covariance matrix and
the precision matrix was used by Paz & Sánchez (2015) and Pad-
manabhan et al. (2015) to improve estimates of the precision ma-
trix from few simulations. Pope & Szapudi (2008) investigated
shrinkage estimators of the covariance, i.e. a mixing of estimated
and modelled covariance matrices. This however raises the task
of finding an equivalent to the Kaufman-Hartlap correction for
such a mixture of estimated and analytic matrices. More recently,
Joachimi (2017) describes a non-linear extension of that estimator
which combines covariance estimates from two sets of independent
data vector realisations and hence does not require a covariance
model.

In this paper we describe a way to expand the true precision
matrix around a covariance model as a power series in the devia-
tion between model and true covariance. Assuming a Wishart re-
alisation for the true covariance and using the results on invariant
moments of the Wishart distribution by Letac & Massam (2004)
we derive an unbiased estimator for the up to second order expan-
sion of the true precision matrix. This becomes especially powerful
if parts of the covariance matrix that are well understood analyt-
ically can be turned o↵ in simulations in order to yield a direct
estimate of the remaining covariance parts. In Sect. 3 we recap
the main problems of estimating parameter constraints from noisy
covariance estimates and present our method of "Precision Matrix
Expansion" (PME). In Sect. 4 we perform numerical experiments
that mimic data from the Dark Energy Survey (DES) and the Large
Synoptic Survey Telecope (LSST) likelihood analyses to test the
performance of our idea. Sect. 5 concludes with a discussion of our
results.

2 Parameter constraints from noisy covariance estimates

We begin by outlining the main task of this paper. Let ⇠̂⇠⇠ be a vector
of Nd data points measured from observational data and let ⇠⇠⇠[⇡⇡⇡]
be a model for this data vector that depends on a vector of Np pa-
rameters ⇡⇡⇡. If C is the covariance matrix of ⇠̂⇠⇠ then a standard way
to constrain the parameters ⇡⇡⇡ is to assign a posterior distribution
p(⇡⇡⇡|⇠̂⇠⇠) to them as
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and p(⇡⇡⇡) being a prior density incorporating apriori knowledge or
assumptions on ⇡⇡⇡. These expressions in fact ignore that C also can
be depedent on ⇡⇡⇡. We will do this throughout this paper and re-
fer the reader to Eifler et al. (2009) who investigated the impact of
cosmology dependent covariance matrices on cosmic shear likeli-
hood analyses. Another assumption that goes into Eq. 1 is that the
measured data vector ⇠̂⇠⇠ is drawn from a multi-variate Gaussian dis-
tribution. In wide area surveys this is justified in the limit where
one can consider the survey to consist of many independent sub-
regions, such that the measurements in those regions add up to a
Gaussian data vector by means of the central limit theorem.

If the covariance matrix C is not exactly known, it can e.g. be
estimated from N-body simulations. If ⇠̂⇠⇠i, i = 1...Ns, are a number

of independent measurements of ⇠⇠⇠ in simulations then an unbiased
estimate of C is given by
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where ⌫ = Ns � 1 and ⇠̄⇠⇠ is the sample mean of the ⇠̂⇠⇠i. We will as-
sume Ĉ to have a Wishart distribution with ⌫ degrees of freedom
which follows from our assumption that ⇠̂⇠⇠ and the ⇠̂⇠⇠i are Gaussian
distributed (cf. Taylor et al. 2013).

To compute the likelihood in Eq. 1 we need to know the preci-
sion matrix, i.e. is the inverse covariance matrix  = C�1. Accord-
ing to Kaufman (1967, see also Hartlap et al. 2007; Taylor et al.
2013) an unbiased estimator for  can be constructed from Ĉ as

 ̂ =
⌫�Nd �1
⌫

Ĉ�1 (4)

and we will call the factor of (⌫�Nd �1)/⌫ the Kaufman-Hartlap-
correction.

Given a measurement ⇠̂⇠⇠ of the data vector one can derive the
posterior density of the model parameters p(⇡⇡⇡|⇠̂⇠⇠) by means of equa-
tions 1 and 2. A noisy precision matrix estimate influences this in-
ference in two ways:

• it adds noise to the width of likelihood contours derived from
inserting the precision matrix estimate into the figure of merit �2

(Eq. 2).
• it adds noise to the location of likelihood contours. E.g. the maxi-
mum likelihood estimator for the parameters ⇡⇡⇡ would be
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When using a noisy precision matrix the uncertainties of ⇡̂⇡⇡ML have
contributions from both the noise in ⇠̂⇠⇠ and the noise in  ̂.

The astro-statistics literature has so far focused on the first
e↵ect, i.e. on the uncertainties on contour width due to noise in
the estimate  ̂ (Taylor et al. 2013; Taylor & Joachimi 2014; Sel-
lentin & Heavens 2016a,b). Sellentin & Heavens (2016b) provide
the most complete demonstration that  ̂ yields a good estimate of
the width of the posterior contours as long as Ns �Nd � Np.

The more critical e↵ect however is the additional noise of
⇡̂⇡⇡ML. DS13 (also see appendix A) showed that the uncertainty on
the position of likelihood contours from noise in  ̂ is only negligi-
ble if Ns �Nd � Nd �Np which is a much more demanding crite-
rion for current cosmological data vectors. We demonstrate this in
the left-hand panel of Fig. 1, where we show 100 randomly drawn
realisations of a DES-like weak lensing data vector with Nd = 450
and a halo model covariance matrix (see Sec. 4 for further details).
For each of the 100 data vectors we have also generated Wishart
realisations of our covariance matrix corresponding to an estimate
from Ns = 650 simulations. Using either the true covariance or the
estimated one, we then determine the best fitting parameters ⌦m
and �8 (after marginalizing over equation-of-state parameters of
dark energy, w0 and wa). The best-fits obtained from a noisy co-
variance (green points) clearly display a much larger scatter than
those obtained from the true covariance (red points). Also shown
are the best fits obtained by precision matrix expansion (PME, blue
points) which we are going to introduce in the next section. Here
we assumed that only Ns = 200 simulations are available to estimate
the PME, which gives best fit values that are significantly closer to
the ones obtained when knowing the true covariance matrix.

When reconstructing p(⇡⇡⇡|⇠̂⇠⇠) (e.g. from a Monte-Carlo-
Markov-Chain) this can lead to significant o↵sets between likeli-
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Figure 1. Left: Best fit parameter pairs (⌦m,�8) obtained from random realisations of a DES-like weak lensing data vector with 450 data points when using
di↵erent approaches to compute the precision matrix. The red points assume that the true covariance matrix is known while for the green points we draw
a Wishart realisation of the covariance (Ns = 450+ 200 = 650 simulations) for each data vector. The blue points are obtained with the method of precision
matrix expansion (and allowing only 200 simulations to estimate the expansion). The black contours display the 1� and 2� Fisher contours derived from our
fiducial covariance. Right: For one of the random realisations we perform a complete likelihood analysis and show the 1� and 2� contours in the ⌦m ��8
plane after marginalizing over w0 and wa (see Sec. 4 for details). The contours obtained from the Wishart realisation of the covariance are clearly o↵set from
those obtained from the true covariance matrix. We recommend to account for this by expanding the likelihood around its maximum (of the full parameter
space, which in this figure is 4-dimensional) with the factor derived by DS13. This leads to a decreased contraining power of our mock survey. The use of
PME manages to significantly decrease this contour o↵set.

hood contours inferred from the true covariance matrix and like-
lihood contours inferred from a covariance estimate – even if the
overall width of the likelihood contours is captured well by the co-
variance estimate. We demonstrate this in the right-hand panel of
figure 1. DS13 have derived a factor (see appendix A) by which pa-
rameter contours obtained from a Wishart realisation of the covari-
ance should be expanded in order to account for this additional scat-
ter. However, their derivation relies on the assumption of a Gaus-
sian parameter likelihood and is only applicable to the extent that a
Fisher analysis is accurate. The current state of the art for dealing
with noisy covariance estimates is hence a combination of SH16a
and DS13: expanding the contours derived from the SH16a likeli-
hood by the DS13 factor. We implement this idea for the cyan con-
tours in Fig. 1 and show that this brings the contours derived from
a standard covariance estimate into consistency with those derived
from the true covariance.

Downsides of this approach are a large increase of the uncer-
tainties on cosmological parameters and the fact that one still needs
at least as many realisations as data points in the data vector to even
derive a precision matrix estimate. We now want to introduce an al-
ternative method to estimate the precision matrix which is able to
drastically decrease the o↵set of contours seen for the standard pre-
cision matrix estimator.

3 Precision matrix expansion

Let us split the covariance matrix C into two contributions

C = A+B , (6)

where for matrix A we have an accurate model (e.g. the shape-
noise contributions to the covariance of cosmic shear correlation

functions) and for B we have a model Bm which we know to be im-
perfect. We want to include this prior knowledge of the covariance
matrix when estimating the precision matrix. Starting from

C =M+ (B�Bm) , (7)

where M=A+Bm is our model for the complete covariance matrix,
we rewrite

C = (1+X) M , (8)

where 1 is the identity matrix and we have defined

X := (B�Bm) M�1 . (9)

The precision matrix  =C�1 can then be expressed as the follow-
ing power series in X:
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We will call this series the precision matrix expansion (PME). In
appendix C we show that it converges under a wide range of con-
ditions. There we also demonstrate that the series yields at each
order a symmetric approximation of  and that at second order it
is always positive definite (at each order if the series converges).

3.1 Estimating the expansion of  

Suppose we have an estimate B̂ of the matrix B from a number
of N-body simulations. This especially assumes that all covariance
contributions included in A can be turned o↵ in the simulations
(i.e. for cosmic shear covariances A could consist of shape-noise
contributions which can be set to zero in simulations). We want to
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Figure 1. Left: Best fit parameter pairs (⌦m,�8) obtained from random realisations of a DES-like weak lensing data vector with 450 data points when using
di↵erent approaches to compute the precision matrix. The red points assume that the true covariance matrix is known while for the green points we draw
a Wishart realisation of the covariance (Ns = 450+ 200 = 650 simulations) for each data vector. The blue points are obtained with the method of precision
matrix expansion (and allowing only 200 simulations to estimate the expansion). The black contours display the 1� and 2� Fisher contours derived from our
fiducial covariance. Right: For one of the random realisations we perform a complete likelihood analysis and show the 1� and 2� contours in the ⌦m ��8
plane after marginalizing over w0 and wa (see Sec. 4 for details). The contours obtained from the Wishart realisation of the covariance are clearly o↵set from
those obtained from the true covariance matrix. We recommend to account for this by expanding the likelihood around its maximum (of the full parameter
space, which in this figure is 4-dimensional) with the factor derived by DS13. This leads to a decreased contraining power of our mock survey. The use of
PME manages to significantly decrease this contour o↵set.

hood contours inferred from the true covariance matrix and like-
lihood contours inferred from a covariance estimate – even if the
overall width of the likelihood contours is captured well by the co-
variance estimate. We demonstrate this in the right-hand panel of
figure 1. DS13 have derived a factor (see appendix A) by which pa-
rameter contours obtained from a Wishart realisation of the covari-
ance should be expanded in order to account for this additional scat-
ter. However, their derivation relies on the assumption of a Gaus-
sian parameter likelihood and is only applicable to the extent that a
Fisher analysis is accurate. The current state of the art for dealing
with noisy covariance estimates is hence a combination of SH16a
and DS13: expanding the contours derived from the SH16a likeli-
hood by the DS13 factor. We implement this idea for the cyan con-
tours in Fig. 1 and show that this brings the contours derived from
a standard covariance estimate into consistency with those derived
from the true covariance.

Downsides of this approach are a large increase of the uncer-
tainties on cosmological parameters and the fact that one still needs
at least as many realisations as data points in the data vector to even
derive a precision matrix estimate. We now want to introduce an al-
ternative method to estimate the precision matrix which is able to
drastically decrease the o↵set of contours seen for the standard pre-
cision matrix estimator.

3 Precision matrix expansion

Let us split the covariance matrix C into two contributions

C = A+B , (6)

where for matrix A we have an accurate model (e.g. the shape-
noise contributions to the covariance of cosmic shear correlation

functions) and for B we have a model Bm which we know to be im-
perfect. We want to include this prior knowledge of the covariance
matrix when estimating the precision matrix. Starting from

C =M+ (B�Bm) , (7)

where M=A+Bm is our model for the complete covariance matrix,
we rewrite

C = (1+X) M , (8)

where 1 is the identity matrix and we have defined

X := (B�Bm) M�1 . (9)

The precision matrix  =C�1 can then be expressed as the follow-
ing power series in X:
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We will call this series the precision matrix expansion (PME). In
appendix C we show that it converges under a wide range of con-
ditions. There we also demonstrate that the series yields at each
order a symmetric approximation of  and that at second order it
is always positive definite (at each order if the series converges).

3.1 Estimating the expansion of  

Suppose we have an estimate B̂ of the matrix B from a number
of N-body simulations. This especially assumes that all covariance
contributions included in A can be turned o↵ in the simulations
(i.e. for cosmic shear covariances A could consist of shape-noise
contributions which can be set to zero in simulations). We want to
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Figure 1. Left: Best fit parameter pairs (⌦m,�8) obtained from random realisations of a DES-like weak lensing data vector with 450 data points when using
di↵erent approaches to compute the precision matrix. The red points assume that the true covariance matrix is known while for the green points we draw
a Wishart realisation of the covariance (Ns = 450+ 200 = 650 simulations) for each data vector. The blue points are obtained with the method of precision
matrix expansion (and allowing only 200 simulations to estimate the expansion). The black contours display the 1� and 2� Fisher contours derived from our
fiducial covariance. Right: For one of the random realisations we perform a complete likelihood analysis and show the 1� and 2� contours in the ⌦m ��8
plane after marginalizing over w0 and wa (see Sec. 4 for details). The contours obtained from the Wishart realisation of the covariance are clearly o↵set from
those obtained from the true covariance matrix. We recommend to account for this by expanding the likelihood around its maximum (of the full parameter
space, which in this figure is 4-dimensional) with the factor derived by DS13. This leads to a decreased contraining power of our mock survey. The use of
PME manages to significantly decrease this contour o↵set.

hood contours inferred from the true covariance matrix and like-
lihood contours inferred from a covariance estimate – even if the
overall width of the likelihood contours is captured well by the co-
variance estimate. We demonstrate this in the right-hand panel of
figure 1. DS13 have derived a factor (see appendix A) by which pa-
rameter contours obtained from a Wishart realisation of the covari-
ance should be expanded in order to account for this additional scat-
ter. However, their derivation relies on the assumption of a Gaus-
sian parameter likelihood and is only applicable to the extent that a
Fisher analysis is accurate. The current state of the art for dealing
with noisy covariance estimates is hence a combination of SH16a
and DS13: expanding the contours derived from the SH16a likeli-
hood by the DS13 factor. We implement this idea for the cyan con-
tours in Fig. 1 and show that this brings the contours derived from
a standard covariance estimate into consistency with those derived
from the true covariance.

Downsides of this approach are a large increase of the uncer-
tainties on cosmological parameters and the fact that one still needs
at least as many realisations as data points in the data vector to even
derive a precision matrix estimate. We now want to introduce an al-
ternative method to estimate the precision matrix which is able to
drastically decrease the o↵set of contours seen for the standard pre-
cision matrix estimator.

3 Precision matrix expansion

Let us split the covariance matrix C into two contributions

C = A+B , (6)

where for matrix A we have an accurate model (e.g. the shape-
noise contributions to the covariance of cosmic shear correlation

functions) and for B we have a model Bm which we know to be im-
perfect. We want to include this prior knowledge of the covariance
matrix when estimating the precision matrix. Starting from

C =M+ (B�Bm) , (7)

where M=A+Bm is our model for the complete covariance matrix,
we rewrite

C = (1+X) M , (8)

where 1 is the identity matrix and we have defined

X := (B�Bm) M�1 . (9)

The precision matrix  =C�1 can then be expressed as the follow-
ing power series in X:
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We will call this series the precision matrix expansion (PME). In
appendix C we show that it converges under a wide range of con-
ditions. There we also demonstrate that the series yields at each
order a symmetric approximation of  and that at second order it
is always positive definite (at each order if the series converges).

3.1 Estimating the expansion of  

Suppose we have an estimate B̂ of the matrix B from a number
of N-body simulations. This especially assumes that all covariance
contributions included in A can be turned o↵ in the simulations
(i.e. for cosmic shear covariances A could consist of shape-noise
contributions which can be set to zero in simulations). We want to
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Figure 1. Left: Best fit parameter pairs (⌦m,�8) obtained from random realisations of a DES-like weak lensing data vector with 450 data points when using
di↵erent approaches to compute the precision matrix. The red points assume that the true covariance matrix is known while for the green points we draw
a Wishart realisation of the covariance (Ns = 450+ 200 = 650 simulations) for each data vector. The blue points are obtained with the method of precision
matrix expansion (and allowing only 200 simulations to estimate the expansion). The black contours display the 1� and 2� Fisher contours derived from our
fiducial covariance. Right: For one of the random realisations we perform a complete likelihood analysis and show the 1� and 2� contours in the ⌦m ��8
plane after marginalizing over w0 and wa (see Sec. 4 for details). The contours obtained from the Wishart realisation of the covariance are clearly o↵set from
those obtained from the true covariance matrix. We recommend to account for this by expanding the likelihood around its maximum (of the full parameter
space, which in this figure is 4-dimensional) with the factor derived by DS13. This leads to a decreased contraining power of our mock survey. The use of
PME manages to significantly decrease this contour o↵set.
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ance should be expanded in order to account for this additional scat-
ter. However, their derivation relies on the assumption of a Gaus-
sian parameter likelihood and is only applicable to the extent that a
Fisher analysis is accurate. The current state of the art for dealing
with noisy covariance estimates is hence a combination of SH16a
and DS13: expanding the contours derived from the SH16a likeli-
hood by the DS13 factor. We implement this idea for the cyan con-
tours in Fig. 1 and show that this brings the contours derived from
a standard covariance estimate into consistency with those derived
from the true covariance.

Downsides of this approach are a large increase of the uncer-
tainties on cosmological parameters and the fact that one still needs
at least as many realisations as data points in the data vector to even
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ternative method to estimate the precision matrix which is able to
drastically decrease the o↵set of contours seen for the standard pre-
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matrix when estimating the precision matrix. Starting from

C =M+ (B�Bm) , (7)
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matrix expansion (and allowing only 200 simulations to estimate the expansion). The black contours display the 1� and 2� Fisher contours derived from our
fiducial covariance. Right: For one of the random realisations we perform a complete likelihood analysis and show the 1� and 2� contours in the ⌦m ��8
plane after marginalizing over w0 and wa (see Sec. 4 for details). The contours obtained from the Wishart realisation of the covariance are clearly o↵set from
those obtained from the true covariance matrix. We recommend to account for this by expanding the likelihood around its maximum (of the full parameter
space, which in this figure is 4-dimensional) with the factor derived by DS13. This leads to a decreased contraining power of our mock survey. The use of
PME manages to significantly decrease this contour o↵set.
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ter. However, their derivation relies on the assumption of a Gaus-
sian parameter likelihood and is only applicable to the extent that a
Fisher analysis is accurate. The current state of the art for dealing
with noisy covariance estimates is hence a combination of SH16a
and DS13: expanding the contours derived from the SH16a likeli-
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tours in Fig. 1 and show that this brings the contours derived from
a standard covariance estimate into consistency with those derived
from the true covariance.

Downsides of this approach are a large increase of the uncer-
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at least as many realisations as data points in the data vector to even
derive a precision matrix estimate. We now want to introduce an al-
ternative method to estimate the precision matrix which is able to
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functions) and for B we have a model Bm which we know to be im-
perfect. We want to include this prior knowledge of the covariance
matrix when estimating the precision matrix. Starting from
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where M=A+Bm is our model for the complete covariance matrix,
we rewrite
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where 1 is the identity matrix and we have defined
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order a symmetric approximation of  and that at second order it
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fiducial covariance. Right: For one of the random realisations we perform a complete likelihood analysis and show the 1� and 2� contours in the ⌦m ��8
plane after marginalizing over w0 and wa (see Sec. 4 for details). The contours obtained from the Wishart realisation of the covariance are clearly o↵set from
those obtained from the true covariance matrix. We recommend to account for this by expanding the likelihood around its maximum (of the full parameter
space, which in this figure is 4-dimensional) with the factor derived by DS13. This leads to a decreased contraining power of our mock survey. The use of
PME manages to significantly decrease this contour o↵set.
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rameter contours obtained from a Wishart realisation of the covari-
ance should be expanded in order to account for this additional scat-
ter. However, their derivation relies on the assumption of a Gaus-
sian parameter likelihood and is only applicable to the extent that a
Fisher analysis is accurate. The current state of the art for dealing
with noisy covariance estimates is hence a combination of SH16a
and DS13: expanding the contours derived from the SH16a likeli-
hood by the DS13 factor. We implement this idea for the cyan con-
tours in Fig. 1 and show that this brings the contours derived from
a standard covariance estimate into consistency with those derived
from the true covariance.

Downsides of this approach are a large increase of the uncer-
tainties on cosmological parameters and the fact that one still needs
at least as many realisations as data points in the data vector to even
derive a precision matrix estimate. We now want to introduce an al-
ternative method to estimate the precision matrix which is able to
drastically decrease the o↵set of contours seen for the standard pre-
cision matrix estimator.

3 Precision matrix expansion

Let us split the covariance matrix C into two contributions

C = A+B , (6)

where for matrix A we have an accurate model (e.g. the shape-
noise contributions to the covariance of cosmic shear correlation

functions) and for B we have a model Bm which we know to be im-
perfect. We want to include this prior knowledge of the covariance
matrix when estimating the precision matrix. Starting from

C =M+ (B�Bm) , (7)

where M=A+Bm is our model for the complete covariance matrix,
we rewrite

C = (1+X) M , (8)

where 1 is the identity matrix and we have defined

X := (B�Bm) M�1 . (9)

The precision matrix  =C�1 can then be expressed as the follow-
ing power series in X:
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We will call this series the precision matrix expansion (PME). In
appendix C we show that it converges under a wide range of con-
ditions. There we also demonstrate that the series yields at each
order a symmetric approximation of  and that at second order it
is always positive definite (at each order if the series converges).

3.1 Estimating the expansion of  

Suppose we have an estimate B̂ of the matrix B from a number
of N-body simulations. This especially assumes that all covariance
contributions included in A can be turned o↵ in the simulations
(i.e. for cosmic shear covariances A could consist of shape-noise
contributions which can be set to zero in simulations). We want to
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use B̂ to construct unbiased estimators for the first order and second
order term of the series in Eq. 10.

Our assumptions state that B̂ is drawn from a Wishart dis-
tribution with expectation value B. In this case also M�1B̂M�1

is Wishart distributed but with the expectation value M�1BM�1.
Hence an unbiased estimator for the first order PME is given by

 ̂1st = M�1
�M�1

⇣
B̂�Bm

⌘
M�1 . (11)

Note that this does not involve the inversion of an estimated matrix.
According to Taylor et al. (2013) the standard deviation of diagonal
elements of an inverse-Wishart distributed matrix is proportional to
1/
p

Ns �Nd �4 while for Wishart distributed matrices it is only
proportional to 1/

p
Ns �1. Hence, avoiding the occurence of an

inverted matrix estimate greatly reduces the estimation noise.
The second order term involves squares of Wishart matrices.

Using the results of Letac & Massam (2004) on invariant moments
of the Wishart distribution (cf. appendix B) it is still possible to
construct an unbiased estimator for the second order PME as

 ̂2nd = M�1 +M�1BmM�1BmM�1

�M�1
⇣
B̂�Bm

⌘
M�1

�M�1B̂M�1BmM�1

�M�1BmM�1B̂M�1

+M�1
⌫2B̂M�1B̂� ⌫B̂ tr

⇣
M�1B̂

⌘

⌫2 + ⌫�2
M�1 . (12)

The estimator in Eq. 12 is the key result of our paper. It has two ad-
vantages over the Anderson-Hartlap corrected standard estimator.
First, it only requires matrix multiplications. As a consequence, it
can even be used if Ns 6 Nd . Second, it only needs an estimate of
B instead of the whole covariance C, i.e. it allows to incorporate
apriori knowledge on the covariance in the form of M (and A).

In the next section we demonstrate that this significantly eases
the requirement of Ns�Nd � Nd �Np. Hence, in a likelihood anal-
ysis the noise in  ̂2nd becomes negligible for a much smaller num-
ber of N-body simulations than required by the standard precision
matrix estimator. In appendix C we also show that the bias in pa-
rameter constraints which arises from cutting the power series in
Eq. 10 after a finite number of terms is negligible even for very
strong deviations of our covariance model M from the N-body co-
variance C.

4 Examples: parameter errors for LSST weak lensing and
DES weak lensing and multi-probe analyses

We investigate the performance of our method in the context of
ongoing and future surveys using DES and LSST as specific exam-
ples. These surveys di↵er in terms of survey area, galaxy number
density, and redshift distribution and have di↵erent demands on the
precision matrix. For DES we consider summary statistics in real
space, i.e. auto- and cross-correlation functions of galaxy shear and
position, for LSST we consider the corresponding Fourier quanti-
ties of a shear-shear only data vector. A summary of the scenarios
considered is given in Table 1 and a more detailed description of
the considered data vectors is given in appendix D.

In order to test the performance of PME we set up mock ex-
periments where we assume the true covariance matrix of each sur-
vey to be the analytic halo-model covariance described in Krause
& Eifler (2016). This model divides the covariance into three con-
tributions: a noise-only part that consists of shape- and shot-noise
contributions, Cnn, a contribution from the cosmic variance of the

Figure 2. Contours in the ⌦m-�8 plane obtained from realizations of our
DES-like weak lensing data vector after marginalizing over all other param-
eters. For each random seed also new Wishart realisations B̂ and Ĉ of the
matrices B and C were drawn in order to simulate new realisations of the
second order PME estimator and the standard precision matrix estimator.
Ns = 200 simulations where assumed for the estimation of the PME while
Ns = Nd +200 = 650 simulations where assumed for the standard estimator.
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covariance estimates. A fully non-Gaussian treatment of the e↵ects
discussed in Dodelson & Schneider (2013, hereafter DS13) is how-
ever still missing.

Prior knowledge on the sparsity of the covariance matrix and
the precision matrix was used by Paz & Sánchez (2015) and Pad-
manabhan et al. (2015) to improve estimates of the precision ma-
trix from few simulations. Pope & Szapudi (2008) investigated
shrinkage estimators of the covariance, i.e. a mixing of estimated
and modelled covariance matrices. This however raises the task
of finding an equivalent to the Kaufman-Hartlap correction for
such a mixture of estimated and analytic matrices. More recently,
Joachimi (2017) describes a non-linear extension of that estimator
which combines covariance estimates from two sets of independent
data vector realisations and hence does not require a covariance
model.

In this paper we describe a way to expand the true precision
matrix around a covariance model as a power series in the devia-
tion between model and true covariance. Assuming a Wishart re-
alisation for the true covariance and using the results on invariant
moments of the Wishart distribution by Letac & Massam (2004)
we derive an unbiased estimator for the up to second order expan-
sion of the true precision matrix. This becomes especially powerful
if parts of the covariance matrix that are well understood analyt-
ically can be turned o↵ in simulations in order to yield a direct
estimate of the remaining covariance parts. In Sect. 3 we recap
the main problems of estimating parameter constraints from noisy
covariance estimates and present our method of "Precision Matrix
Expansion" (PME). In Sect. 4 we perform numerical experiments
that mimic data from the Dark Energy Survey (DES) and the Large
Synoptic Survey Telecope (LSST) likelihood analyses to test the
performance of our idea. Sect. 5 concludes with a discussion of our
results.

2 Parameter constraints from noisy covariance estimates

We begin by outlining the main task of this paper. Let ⇠̂⇠⇠ be a vector
of Nd data points measured from observational data and let ⇠⇠⇠[⇡⇡⇡]
be a model for this data vector that depends on a vector of Np pa-
rameters ⇡⇡⇡. If C is the covariance matrix of ⇠̂⇠⇠ then a standard way
to constrain the parameters ⇡⇡⇡ is to assign a posterior distribution
p(⇡⇡⇡|⇠̂⇠⇠) to them as

p(⇡⇡⇡|⇠̂⇠⇠) ⇠ exp
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h
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and p(⇡⇡⇡) being a prior density incorporating apriori knowledge or
assumptions on ⇡⇡⇡. These expressions in fact ignore that C also can
be depedent on ⇡⇡⇡. We will do this throughout this paper and re-
fer the reader to Eifler et al. (2009) who investigated the impact of
cosmology dependent covariance matrices on cosmic shear likeli-
hood analyses. Another assumption that goes into Eq. 1 is that the
measured data vector ⇠̂⇠⇠ is drawn from a multi-variate Gaussian dis-
tribution. In wide area surveys this is justified in the limit where
one can consider the survey to consist of many independent sub-
regions, such that the measurements in those regions add up to a
Gaussian data vector by means of the central limit theorem.

If the covariance matrix C is not exactly known, it can e.g. be
estimated from N-body simulations. If ⇠̂⇠⇠i, i = 1...Ns, are a number

of independent measurements of ⇠⇠⇠ in simulations then an unbiased
estimate of C is given by

Ĉ :=
1
⌫

NsX

i=1

⇣
⇠̂⇠⇠i � ⇠̄⇠⇠

⌘ ⇣
⇠̂⇠⇠i � ⇠̄⇠⇠

⌘T
, (3)

where ⌫ = Ns � 1 and ⇠̄⇠⇠ is the sample mean of the ⇠̂⇠⇠i. We will as-
sume Ĉ to have a Wishart distribution with ⌫ degrees of freedom
which follows from our assumption that ⇠̂⇠⇠ and the ⇠̂⇠⇠i are Gaussian
distributed (cf. Taylor et al. 2013).

To compute the likelihood in Eq. 1 we need to know the preci-
sion matrix, i.e. is the inverse covariance matrix  = C�1. Accord-
ing to Kaufman (1967, see also Hartlap et al. 2007; Taylor et al.
2013) an unbiased estimator for  can be constructed from Ĉ as

 ̂ =
⌫�Nd �1
⌫

Ĉ�1 (4)

and we will call the factor of (⌫�Nd �1)/⌫ the Kaufman-Hartlap-
correction.

Given a measurement ⇠̂⇠⇠ of the data vector one can derive the
posterior density of the model parameters p(⇡⇡⇡|⇠̂⇠⇠) by means of equa-
tions 1 and 2. A noisy precision matrix estimate influences this in-
ference in two ways:

• it adds noise to the width of likelihood contours derived from
inserting the precision matrix estimate into the figure of merit �2

(Eq. 2).
• it adds noise to the location of likelihood contours. E.g. the maxi-
mum likelihood estimator for the parameters ⇡⇡⇡ would be

⇡̂⇡⇡ML =min
⇡⇡⇡

⇢⇣
⇠̂⇠⇠� ⇠⇠⇠[⇡⇡⇡]

⌘T
 ̂

⇣
⇠̂⇠⇠� ⇠⇠⇠[⇡⇡⇡]

⌘�
. (5)

When using a noisy precision matrix the uncertainties of ⇡̂⇡⇡ML have
contributions from both the noise in ⇠̂⇠⇠ and the noise in  ̂.

The astro-statistics literature has so far focused on the first
e↵ect, i.e. on the uncertainties on contour width due to noise in
the estimate  ̂ (Taylor et al. 2013; Taylor & Joachimi 2014; Sel-
lentin & Heavens 2016a,b). Sellentin & Heavens (2016b) provide
the most complete demonstration that  ̂ yields a good estimate of
the width of the posterior contours as long as Ns �Nd � Np.

The more critical e↵ect however is the additional noise of
⇡̂⇡⇡ML. DS13 (also see appendix A) showed that the uncertainty on
the position of likelihood contours from noise in  ̂ is only negligi-
ble if Ns �Nd � Nd �Np which is a much more demanding crite-
rion for current cosmological data vectors. We demonstrate this in
the left-hand panel of Fig. 1, where we show 100 randomly drawn
realisations of a DES-like weak lensing data vector with Nd = 450
and a halo model covariance matrix (see Sec. 4 for further details).
For each of the 100 data vectors we have also generated Wishart
realisations of our covariance matrix corresponding to an estimate
from Ns = 650 simulations. Using either the true covariance or the
estimated one, we then determine the best fitting parameters ⌦m
and �8 (after marginalizing over equation-of-state parameters of
dark energy, w0 and wa). The best-fits obtained from a noisy co-
variance (green points) clearly display a much larger scatter than
those obtained from the true covariance (red points). Also shown
are the best fits obtained by precision matrix expansion (PME, blue
points) which we are going to introduce in the next section. Here
we assumed that only Ns = 200 simulations are available to estimate
the PME, which gives best fit values that are significantly closer to
the ones obtained when knowing the true covariance matrix.

When reconstructing p(⇡⇡⇡|⇠̂⇠⇠) (e.g. from a Monte-Carlo-
Markov-Chain) this can lead to significant o↵sets between likeli-
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covariance estimates. A fully non-Gaussian treatment of the e↵ects
discussed in Dodelson & Schneider (2013, hereafter DS13) is how-
ever still missing.
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the precision matrix was used by Paz & Sánchez (2015) and Pad-
manabhan et al. (2015) to improve estimates of the precision ma-
trix from few simulations. Pope & Szapudi (2008) investigated
shrinkage estimators of the covariance, i.e. a mixing of estimated
and modelled covariance matrices. This however raises the task
of finding an equivalent to the Kaufman-Hartlap correction for
such a mixture of estimated and analytic matrices. More recently,
Joachimi (2017) describes a non-linear extension of that estimator
which combines covariance estimates from two sets of independent
data vector realisations and hence does not require a covariance
model.

In this paper we describe a way to expand the true precision
matrix around a covariance model as a power series in the devia-
tion between model and true covariance. Assuming a Wishart re-
alisation for the true covariance and using the results on invariant
moments of the Wishart distribution by Letac & Massam (2004)
we derive an unbiased estimator for the up to second order expan-
sion of the true precision matrix. This becomes especially powerful
if parts of the covariance matrix that are well understood analyt-
ically can be turned o↵ in simulations in order to yield a direct
estimate of the remaining covariance parts. In Sect. 3 we recap
the main problems of estimating parameter constraints from noisy
covariance estimates and present our method of "Precision Matrix
Expansion" (PME). In Sect. 4 we perform numerical experiments
that mimic data from the Dark Energy Survey (DES) and the Large
Synoptic Survey Telecope (LSST) likelihood analyses to test the
performance of our idea. Sect. 5 concludes with a discussion of our
results.

2 Parameter constraints from noisy covariance estimates

We begin by outlining the main task of this paper. Let ⇠̂⇠⇠ be a vector
of Nd data points measured from observational data and let ⇠⇠⇠[⇡⇡⇡]
be a model for this data vector that depends on a vector of Np pa-
rameters ⇡⇡⇡. If C is the covariance matrix of ⇠̂⇠⇠ then a standard way
to constrain the parameters ⇡⇡⇡ is to assign a posterior distribution
p(⇡⇡⇡|⇠̂⇠⇠) to them as
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and p(⇡⇡⇡) being a prior density incorporating apriori knowledge or
assumptions on ⇡⇡⇡. These expressions in fact ignore that C also can
be depedent on ⇡⇡⇡. We will do this throughout this paper and re-
fer the reader to Eifler et al. (2009) who investigated the impact of
cosmology dependent covariance matrices on cosmic shear likeli-
hood analyses. Another assumption that goes into Eq. 1 is that the
measured data vector ⇠̂⇠⇠ is drawn from a multi-variate Gaussian dis-
tribution. In wide area surveys this is justified in the limit where
one can consider the survey to consist of many independent sub-
regions, such that the measurements in those regions add up to a
Gaussian data vector by means of the central limit theorem.

If the covariance matrix C is not exactly known, it can e.g. be
estimated from N-body simulations. If ⇠̂⇠⇠i, i = 1...Ns, are a number

of independent measurements of ⇠⇠⇠ in simulations then an unbiased
estimate of C is given by

Ĉ :=
1
⌫

NsX

i=1

⇣
⇠̂⇠⇠i � ⇠̄⇠⇠

⌘ ⇣
⇠̂⇠⇠i � ⇠̄⇠⇠

⌘T
, (3)

where ⌫ = Ns � 1 and ⇠̄⇠⇠ is the sample mean of the ⇠̂⇠⇠i. We will as-
sume Ĉ to have a Wishart distribution with ⌫ degrees of freedom
which follows from our assumption that ⇠̂⇠⇠ and the ⇠̂⇠⇠i are Gaussian
distributed (cf. Taylor et al. 2013).

To compute the likelihood in Eq. 1 we need to know the preci-
sion matrix, i.e. is the inverse covariance matrix  = C�1. Accord-
ing to Kaufman (1967, see also Hartlap et al. 2007; Taylor et al.
2013) an unbiased estimator for  can be constructed from Ĉ as

 ̂ =
⌫�Nd �1
⌫

Ĉ�1 (4)

and we will call the factor of (⌫�Nd �1)/⌫ the Kaufman-Hartlap-
correction.

Given a measurement ⇠̂⇠⇠ of the data vector one can derive the
posterior density of the model parameters p(⇡⇡⇡|⇠̂⇠⇠) by means of equa-
tions 1 and 2. A noisy precision matrix estimate influences this in-
ference in two ways:

• it adds noise to the width of likelihood contours derived from
inserting the precision matrix estimate into the figure of merit �2

(Eq. 2).
• it adds noise to the location of likelihood contours. E.g. the maxi-
mum likelihood estimator for the parameters ⇡⇡⇡ would be

⇡̂⇡⇡ML =min
⇡⇡⇡

⇢⇣
⇠̂⇠⇠� ⇠⇠⇠[⇡⇡⇡]

⌘T
 ̂

⇣
⇠̂⇠⇠� ⇠⇠⇠[⇡⇡⇡]

⌘�
. (5)

When using a noisy precision matrix the uncertainties of ⇡̂⇡⇡ML have
contributions from both the noise in ⇠̂⇠⇠ and the noise in  ̂.

The astro-statistics literature has so far focused on the first
e↵ect, i.e. on the uncertainties on contour width due to noise in
the estimate  ̂ (Taylor et al. 2013; Taylor & Joachimi 2014; Sel-
lentin & Heavens 2016a,b). Sellentin & Heavens (2016b) provide
the most complete demonstration that  ̂ yields a good estimate of
the width of the posterior contours as long as Ns �Nd � Np.

The more critical e↵ect however is the additional noise of
⇡̂⇡⇡ML. DS13 (also see appendix A) showed that the uncertainty on
the position of likelihood contours from noise in  ̂ is only negligi-
ble if Ns �Nd � Nd �Np which is a much more demanding crite-
rion for current cosmological data vectors. We demonstrate this in
the left-hand panel of Fig. 1, where we show 100 randomly drawn
realisations of a DES-like weak lensing data vector with Nd = 450
and a halo model covariance matrix (see Sec. 4 for further details).
For each of the 100 data vectors we have also generated Wishart
realisations of our covariance matrix corresponding to an estimate
from Ns = 650 simulations. Using either the true covariance or the
estimated one, we then determine the best fitting parameters ⌦m
and �8 (after marginalizing over equation-of-state parameters of
dark energy, w0 and wa). The best-fits obtained from a noisy co-
variance (green points) clearly display a much larger scatter than
those obtained from the true covariance (red points). Also shown
are the best fits obtained by precision matrix expansion (PME, blue
points) which we are going to introduce in the next section. Here
we assumed that only Ns = 200 simulations are available to estimate
the PME, which gives best fit values that are significantly closer to
the ones obtained when knowing the true covariance matrix.

When reconstructing p(⇡⇡⇡|⇠̂⇠⇠) (e.g. from a Monte-Carlo-
Markov-Chain) this can lead to significant o↵sets between likeli-
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No more inversion of “hat quantities”…

4 Friedrich, Eifler

use B̂ to construct unbiased estimators for the first order and second
order term of the series in Eq. 10.

Our assumptions state that B̂ is drawn from a Wishart dis-
tribution with expectation value B. In this case also M�1B̂M�1

is Wishart distributed but with the expectation value M�1BM�1.
Hence an unbiased estimator for the first order PME is given by

 ̂1st = M�1
�M�1

⇣
B̂�Bm

⌘
M�1 . (11)

Note that this does not involve the inversion of an estimated matrix.
According to Taylor et al. (2013) the standard deviation of diagonal
elements of an inverse-Wishart distributed matrix is proportional to
1/
p

Ns �Nd �4 while for Wishart distributed matrices it is only
proportional to 1/

p
Ns �1. Hence, avoiding the occurence of an

inverted matrix estimate greatly reduces the estimation noise.
The second order term involves squares of Wishart matrices.

Using the results of Letac & Massam (2004) on invariant moments
of the Wishart distribution (cf. appendix B) it is still possible to
construct an unbiased estimator for the second order PME as

 ̂2nd = M�1 +M�1BmM�1BmM�1

�M�1
⇣
B̂�Bm

⌘
M�1

�M�1B̂M�1BmM�1

�M�1BmM�1B̂M�1

+M�1
⌫2B̂M�1B̂� ⌫B̂ tr

⇣
M�1B̂

⌘

⌫2 + ⌫�2
M�1 . (12)

The estimator in Eq. 12 is the key result of our paper. It has two ad-
vantages over the Anderson-Hartlap corrected standard estimator.
First, it only requires matrix multiplications. As a consequence, it
can even be used if Ns 6 Nd . Second, it only needs an estimate of
B instead of the whole covariance C, i.e. it allows to incorporate
apriori knowledge on the covariance in the form of M (and A).

In the next section we demonstrate that this significantly eases
the requirement of Ns�Nd � Nd �Np. Hence, in a likelihood anal-
ysis the noise in  ̂2nd becomes negligible for a much smaller num-
ber of N-body simulations than required by the standard precision
matrix estimator. In appendix C we also show that the bias in pa-
rameter constraints which arises from cutting the power series in
Eq. 10 after a finite number of terms is negligible even for very
strong deviations of our covariance model M from the N-body co-
variance C.

4 Examples: parameter errors for LSST weak lensing and
DES weak lensing and multi-probe analyses

We investigate the performance of our method in the context of
ongoing and future surveys using DES and LSST as specific exam-
ples. These surveys di↵er in terms of survey area, galaxy number
density, and redshift distribution and have di↵erent demands on the
precision matrix. For DES we consider summary statistics in real
space, i.e. auto- and cross-correlation functions of galaxy shear and
position, for LSST we consider the corresponding Fourier quanti-
ties of a shear-shear only data vector. A summary of the scenarios
considered is given in Table 1 and a more detailed description of
the considered data vectors is given in appendix D.

In order to test the performance of PME we set up mock ex-
periments where we assume the true covariance matrix of each sur-
vey to be the analytic halo-model covariance described in Krause
& Eifler (2016). This model divides the covariance into three con-
tributions: a noise-only part that consists of shape- and shot-noise
contributions, Cnn, a contribution from the cosmic variance of the

Figure 2. Contours in the ⌦m-�8 plane obtained from realizations of our
DES-like weak lensing data vector after marginalizing over all other param-
eters. For each random seed also new Wishart realisations B̂ and Ĉ of the
matrices B and C were drawn in order to simulate new realisations of the
second order PME estimator and the standard precision matrix estimator.
Ns = 200 simulations where assumed for the estimation of the PME while
Ns = Nd +200 = 650 simulations where assumed for the standard estimator.
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New estimator performance

Instead of >10^5 our new estimator only requires ~2000 numerical 
simulations (LSST case) 
Given that 1 sim is 1M CPUh, at 1c/CPUh 
New method reduces cost $1B to $20M (-> fund theorists!) 
Next step: data compression

Precision Matrix Expansion 3

Figure 1. Left: Best fit parameter pairs (⌦m,�8) obtained from random realisations of a DES-like weak lensing data vector with 450 data points when using
di↵erent approaches to compute the precision matrix. The red points assume that the true covariance matrix is known while for the green points we draw a
Wishart realisation of the covariance (Ns = 450+200 = 650 simulations) for each data vector. The blue points are obtained with the method of precision matrix
expansion (and allowing only 200 simulations to estimate the expansion). The black contours display the 1� and 2� Fisher contours derived from our fiducial
covariance. Right: For one of the random realisations we perform a complete likelihood analysis and show the 1� and 2� contours in the ⌦m ��8 plane after
marginalizing over w0 and wa (see Sec. 4 for details). The contours obtained from the Wishart estimate of the covariance are clearly o↵set from those obtained
from the true covariance matrix. We recommend to account for this by expanding the likelihood around its maximum (of the full parameter space, which in
this figure is 4-dimensional) with the factor derived by DS13. This leads to a decreased contraining power of our mock survey. The use of PME manages to
significantly decrease this contour o↵set.

3 Precision matrix expansion

Let us split the covariance matrix C into two contributions

C = A+B , (7)

where for matrix A we have an accurate model (eg. the shape-noise
contributions to the covariance of cosmic shear correlation func-
tions) and for B we have a model Bm which we know to be im-
perfect. We want to include this prior knowledge of the covariance
matrix when estimating the precision matrix. Starting from

C =M+ (B�Bm) , (8)

where M=A+Bm is our model for the complete covariance matrix,
we rewrite

C = (1+X) M , (9)

where 1 is the identity matrix and we have defined

X := (B�Bm) M�1 . (10)

The precision matrix  =C�1 can then be expressed as the follow-
ing power series in X:

 = M�1

0
BBBBBB@
1X

k=0
(�1)kXk

1
CCCCCCA

= M�1
⇣
1�X+X2 +O

h
X3
i⌘
. (11)

We will call this series the precision matrix expansion (PME). In
appendix B we show that it converges under a wide range of con-
ditions. There we also demonstrate, that the series yields at each
order a symmetric approximation of  and that at second order it
is always positive definite (at each order if the series converges).

3.0.1 Estimating the expansion of  

Given a Wishart estimate B̂ of B an unbiased estimator for the first
order PME is given by

 ̂1st = M�1
�M�1

⇣
B̂�Bm

⌘
M�1 . (12)

The second order expansion involves squares of Wishart matrices.
Using the results Letac & Massam (2004) on invariant moments
of the Wishart distribution (cf. appendix C) we can construct an
unbiased estimator for the second order PME as

 ̂2nd = M�1 +M�1BmM�1BmM�1

�M�1
⇣
B̂�Bm

⌘
M�1

�M�1B̂M�1BmM�1

�M�1BmM�1B̂M�1

+M�1
⌫2B̂M�1B̂� ⌫B̂ tr

⇣
M�1B̂

⌘

⌫2 + ⌫�2
M�1 . (13)

Note, that this estimator requires only matrix multiplications.
Hence, in contrast to the Anderson-Hartlap corrected standard esti-
mator, it can even be used if Ns 6 Nd . The benefit of the estimator
in Eq. 13 is hence twofold:

1. It only needs an estimate of B instead of the whole covariance
C.

2. It doesn’t involve the inversion of an estimated matrix.

In the next section we demonstrate, that this significantly eases the
requirement of Ns�Nd � Nd �Np. Hence, in a likelihood analysis
the noise in  ̂2nd becomes negligible for a much smaller number of
N-body simulations than required by the standard precision matrix
estimator. In appendix B we also show that the bias in parameter
constraints which arises from cutting the power series in Eq. 11
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Figure 1. Left: Best fit parameter pairs (⌦m,�8) obtained from random realisations of a DES-like weak lensing data vector with 450 data points when using
di↵erent approaches to compute the precision matrix. The red points assume that the true covariance matrix is known while for the green points we draw
a Wishart realisation of the covariance (Ns = 450+ 200 = 650 simulations) for each data vector. The blue points are obtained with the method of precision
matrix expansion (and allowing only 200 simulations to estimate the expansion). The black contours display the 1� and 2� Fisher contours derived from our
fiducial covariance. Right: For one of the random realisations we perform a complete likelihood analysis and show the 1� and 2� contours in the ⌦m ��8
plane after marginalizing over w0 and wa (see Sec. 4 for details). The contours obtained from the Wishart realisation of the covariance are clearly o↵set from
those obtained from the true covariance matrix. We recommend to account for this by expanding the likelihood around its maximum (of the full parameter
space, which in this figure is 4-dimensional) with the factor derived by DS13. This leads to a decreased contraining power of our mock survey. The use of
PME manages to significantly decrease this contour o↵set.

hood contours inferred from the true covariance matrix and like-
lihood contours inferred from a covariance estimate – even if the
overall width of the likelihood contours is captured well by the co-
variance estimate. We demonstrate this in the right-hand panel of
figure 1. DS13 have derived a factor (see appendix A) by which pa-
rameter contours obtained from a Wishart realisation of the covari-
ance should be expanded in order to account for this additional scat-
ter. However, their derivation relies on the assumption of a Gaus-
sian parameter likelihood and is only applicable to the extent that a
Fisher analysis is accurate. The current state of the art for dealing
with noisy covariance estimates is hence a combination of SH16a
and DS13: expanding the contours derived from the SH16a likeli-
hood by the DS13 factor. We implement this idea for the cyan con-
tours in Fig. 1 and show that this brings the contours derived from
a standard covariance estimate into consistency with those derived
from the true covariance.

Downsides of this approach are a large increase of the uncer-
tainties on cosmological parameters and the fact that one still needs
at least as many realisations as data points in the data vector to even
derive a precision matrix estimate. We now want to introduce an al-
ternative method to estimate the precision matrix which is able to
drastically decrease the o↵set of contours seen for the standard pre-
cision matrix estimator.

3 Precision matrix expansion

Let us split the covariance matrix C into two contributions

C = A+B , (6)

where for matrix A we have an accurate model (e.g. the shape-
noise contributions to the covariance of cosmic shear correlation

functions) and for B we have a model Bm which we know to be im-
perfect. We want to include this prior knowledge of the covariance
matrix when estimating the precision matrix. Starting from

C =M+ (B�Bm) , (7)

where M=A+Bm is our model for the complete covariance matrix,
we rewrite

C = (1+X) M , (8)

where 1 is the identity matrix and we have defined

X := (B�Bm) M�1 . (9)

The precision matrix  =C�1 can then be expressed as the follow-
ing power series in X:

 = M�1

0
BBBBBB@
1X

k=0
(�1)kXk

1
CCCCCCA

= M�1
⇣
1�X+X2 +O

h
X3
i⌘
. (10)

We will call this series the precision matrix expansion (PME). In
appendix C we show that it converges under a wide range of con-
ditions. There we also demonstrate that the series yields at each
order a symmetric approximation of  and that at second order it
is always positive definite (at each order if the series converges).

3.1 Estimating the expansion of  

Suppose we have an estimate B̂ of the matrix B from a number
of N-body simulations. This especially assumes that all covariance
contributions included in A can be turned o↵ in the simulations
(i.e. for cosmic shear covariances A could consist of shape-noise
contributions which can be set to zero in simulations). We want to
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Implementation for LSST

Numerical  
Simulations

Analytic Cov 
1) CosmoLike 
2) other analytic code

Data  
(Catalog Form)

 TJPcov

TJPcosmo

Analysis details from TJPcosmo 
(probes, scales, redshift, method)

Returns 
Covariance

NERSC (or similar storage/computing facility for DESC)

All Analysis details are defined here

1) Processes analysis details from TJPcosmo  
2) Computation of numerical sims or data based covariances with different 

estimators and data compression schemes (data base queries) 
3) Launches analytical compute jobs on HPC system 
4) Assembles covariance (e.g. for Hybrid estimators) 
5) Testing/Validation of computed covariance (covariance comparison)

(TJPcov requires the following capabilities depending on user request)



Conclusions
• Multi-probe covariances are hard (think which probes to add) 
• Covariance topic won’t go away as Gaussian is probably ok 

as likelihood + ABC so far not convincing (please disagree…) 
• Hybrid estimators are very interesting to reduce 

computational requirements iff analytic proves insufficient 

• New project for the community: “covfefe: covariances for 
evaluating future experiments” 
• We are computing+collecting several covariances for DES, 

LSST, WFIRST and will make them available on our group’s 
server “amypond” 

• Useful for all that could use covariances 


