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1) Response Approach to Perturbation Theory

Barreira, Schmidt , 1703.09212
Barreira, Schmidt , 1705.01092

2) Application to lensing spectra covariance

Barreira, Krause, Schmidt, 1711.07467
Barreira, Krause, Schmidt, 1807.04266



Response Approach to PT

Barreira, Schmidt , 1703.09212
Barreira, Schmidt , 1705.01092



What are responses?

Responses describe how the power spectrum responds to the presence
of large-scale perturbations.
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What are responses?

What are they good for?

To describe squeezed N-point functions

How do we evaluate them?

With separate universe simulations



Responses and N-point functions

n+2 squeezed point function given by n-th order response

(0(k)o(K)o(p1) -+ 6(Pn)) = R Prn(k)Pon(p1) -+ P (pn)

Barreira & Schmidt, 1703.09212



Responses and N-point functions

n+2 squeezed point function given by n-th order response

(0(k)O(K)o(p1) - 0(pn)) = Rn P (k) Pm(p1) -+ - P (pn)

Small scale

Barreira & Schmidt, 1703.09212



Responses and N-point functions

n+2 squeezed point function given by n-th order response

(0(k)o(K)o(p1) -+ 0(Pn)) = Ry Pra(k)Prn(p1) - - P (pn)

Small scale Large scale

Barreira & Schmidt, 1703.09212



Responses and N-point functions

n+2 squeezed point function given by n-th order response

(0(k)o(K")(p1) - 0(Pn)) = R Prn(k)Po(p1) - Pru(pn)

Small scale Large scale Power spectra

?

“Standard” simulations

Barreira & Schmidt, 1703.09212



Responses and N-point functions

n+2 squeezed point function given by n-th order response

(0(k)o(K")(P1) - 0(Pn)) = Rn Prn(k)Pou(p1) - Pru(p)

Small scale  Large scale Response Power spectra

/! }

Separate Universe “Standard” simulations
simulations

Barreira & Schmidt, 1703.09212



Responses and N-point functions

n+2 squeezed point function given by n-th order response

(0(k)o(K")(P1) - 0(Pn)) = Rn Prn(k)Pou(p1) - Pru(p)

Small scale  Large scale Response Power spectra

/! }

Separate Universe “Standard” simulations
simulations

Predictive for nonlinear values of k, k'

Barreira & Schmidt , 1703.09212



Responses and N-point functions

N infinitely many
nonlinear terms

Hard

H_/H_/

Responses are a Analytical, but insufficient. Accessible with
resummed sq. interaction simulations




Response decomposition

Write the response in terms of all possible local gravitational observables

Ry = Z Ro(k) }Cgb,)large scale
O



Response decomposition

Write the response in terms of all possible local gravitational observables

R = Z RO(k) }Cg?;)laige scale
O

All possible configurations of
large-scale density/tidal fields;

Given by perturbation theory.



Response decomposition

Write the response in terms of all possible local gravitational observables

Ky, = Z RO(k) ]Cgl,)large scale

(9/ I

Measure the response to each All possible configurations of
specific large-scale configuration; large-scale density/tidal fields;

What we will get from simulations. Given by perturbation theory.



Response decomposition

Large-scale overdensity Large-scale tidal field

! !
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Ry — Ri(k)d(p) + R (k)k'k Ky (p)

v v

Response to overdensity Response to tidal field



Response decomposition

Ro — Ry(k) [5(2)(1?1,132)] + Rg (k) [l%i]%jKi(f)(plaPQ)]

+ %Rz(k) -5(191)5(132)] + Rycs(k) !kkj e (pl)ﬁ(Pz)]

b RiaR) KoK (p2)| + Bac )| Kapo) K ()|

b Ricx(k) [1’%%9'1’%%%;; (pnmm(pz)] Ry (k) [kk i, (pl,pz)]

Response coefficients

All 2nd order large-scale operators

Generalizations to any order are always
straightforward, just more cumbersome.




Separate Universe simulations

Nitty-gritty: Li et al (1401.0385) ; Wagner et al (1409.6294); Schmidt et al (1803.03274);

Ry = Z Ro(k) }Cgl,)large scale

() Response to specific All possible configurations of
perturbations large-scale densityl/tidal fields;



Separate Universe simulations

Nitty-gritty: Li et al (1401.0385) ; Wagner et al (1409.6294); Schmidt et al (1803.03274);

Ry = Z Ro(k) }Cgl,)large scale

() Response to specific All possible configurations of
perturbations large-scale densityl/tidal fields;

4

2) Compare to “mean”
spectrum to measure
responses

1) Induce these
in simulations




Separate Universe simulations

P, (k,x) = P, (k) {1 + Ri(k)5(z) + R (KR W K; -(:c)]

e

Response to overdensity
Li et al (1401.0385) ; Wagner et al (1409.6294)
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To keep in mind ...

Separate Universe Simulations

give us

\

Responses
|

give us

\

Squeezed mode-coupling interactions
In the nonlinear regime

(6(k)o(k")o(p1) - 5(pn)>chn x Rn(k,angles) P, (k)

Small scale Large scale Response




Covariances with Responses

Barreira, Krause, Schmidt, 1711.07467
Barreira, Krause, Schmidt, 1807.04266



The covariance decomposition

 Windowed lensing convergence

L
-
S
.

N/S

« Estimator of its power spectrum .

C(f) = Fw (£)Ew (—4) ‘;f\})2<:13‘ DES convergence mab P "I
() = e

e.g. Takada&Hu (1302.6994)

 Covariance matrix of the estimator

< <(2)C, <£z>> (¢ <el)>< )>

Gaussian Connecte_d Super-sample
non-Gaussian

Covie (Cu(2). Crul(£2))




The Gaussian term : G

e It is the only contribution during the linear regime of structure formation

e |t is diagonal

Trivially given by power spectrum squared.

(2m)*

C{JV (fl,fg) QW

C,(£1)]7 [55(31 )+ 5p (8 — ﬁg)}

Well understood !



Connected non-Gaussian term : cNG

« Describes the coupling of different Fourier modes due to nonlinear
structure formation (given by the parallelogram matter trispectrum).




Connected non-Gaussian term : cNG

« Describes the coupling of different Fourier modes due to nonlinear
structure formation (given by the parallelogram matter trispectrum).

Small scale Large scale

C 1 ’
CDdeG(El?Eg) — —\/dx[g%}] Tm(kflg_kflakfga_kfg)

o L1/ ¢
R2(k£15 NlQ)Pm(k&) [PL(kﬁz)}Q

2nd order response

Easy evaluation of the 4-pt function for
any value of the small scale mode !




cNG : response vs simulations

Response Ensemble method
approach (over 12000 sims.)
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cNG : response vs simulations

Response
approach
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The super-sample term : SSC

» Describes the coupling of modes inside the survey with unobserved
modes outside the survey.

1 1 oaze .
Con*(tn, ) = g [P [ S O PR (e e )R ke i
4%

X Py (ke, ) P (ke, ) Pr(Ke)

Note: This expression assumes Limber for the super-survey modes, which is only
accurate up to 10% for Euclid/LSST. Beyond Limber SSC expressions exist however
(Barreira, Krause, Schmidt , arXiv:1711.07467).



The super-sample term : SSC

» Describes the coupling of modes inside the survey with unobserved
modes outside the survey.

Fourier transform of survey geometry

.

1 d’f e
COVESG(EI,EZ) Q2 d}( [g(;()] (27[')2 |W(£)|2R1(kf1aﬂ£1 ,E)Rl (kfgap‘fg?f)

/ X Py (kg ) P (Ko, ) Pr(Ke)

Responses capture SSC completely !

Note: This expression assumes Limber for the super-survey modes, which is only
accurate up to 10% for Euclid/LSST. Beyond Limber SSC expressions exist however
(Barreira, Krause, Schmidt , arXiv:1711.07467).



Lensing covariance summary

Cov(l1,£2) = COVS + Cov®™C + Coy2>%

K K



Lensing covariance summary




Lensing covariance summary

e/ Ve

Responses capture most of it ,
but do we even need it ?




The unimportance of the cNG term

for future surveys

Euclid-like lensing setup

Barreira, Krause, Schmidt
« Tomographic convergence power spectrum 1807.04266
10 tomographic bins

e 20 ell bins in [20, 5000]
« Mask: spherical cap 15000 deg”2
e Source density: 30 / arcmin”2

1 > >
L(wg) o< exp {—2 (Theo*ry — a.@ Theory — Data,)]

s

What is the impact of different matrices on parameter constraints ?




The unimportance of the cNG term

for future surveys

Euclid-like lensing setup

Barreira, Krause, Schmidt
« Tomographic convergence power spectrum 1807.04266

10 tomographic bins
e 20 ell bins in [20, 5000]
« Mask: spherical cap 15000 deg”2
e Source density: 30 / arcmin”2 1.2
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The unimportance of the cNG term

for future surveys

Euclid-like lensing setup

Barreira, Krause, Schmidt
« Tomographic convergence power spectrum 1807.04266

10 tomographic bins
e 20 ell bins in [20, 5000]
« Mask: spherical cap 15000 deg”2
e Source density: 30 / arcmin”2 12 G + cNG

Relative to G, cNG increases | 10

error by 38% .
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The unimportance of the cNG term

for future surveys

Euclid-like lensing setup

Barreira, Krause, Schmidt
« Tomographic convergence power spectrum 1807.04266

10 tomographic bins
e 20 ell bins in [20, 5000]
« Mask: spherical cap 15000 deg”2
e Source density: 30 / arcmin”2 12 G + cNG

G + SSC G

Relative to G, cNG increases | 10

error by 38% .
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The unimportance of the cNG term

for future surveys

Euclid-like lensing setup

Barreira, Krause, Schmidt
« Tomographic convergence power spectrum 1807.04266
10 tomographic bins
e 20 ell bins in [20, 5000]
« Mask: spherical cap 15000 deg”2

 Source density: 30 / arcmin”2 121 G +SSC + cNG G + cNG
G + SSC G
Relative to G, cNG increases | 10 A
0
error by 38% . :E i) ,
S
3 0.6/
&
Relative to G+SSC, cNG 0.4]
Increases error by only 6% .
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The unimportance of the cNG term
for future surveys

In the presence of the dominant off-diagonal SSC
term, cNG contributes only marginally ...

... accounting for systematics will only strengthen
this conclusion !




Squeezed bispectrum covariance

« Squeezed bispectrum Barreira (arXiv:1901.01243)

B; = Bm(ki,kéjsi), s; <K k;j, k;

e Covariance decomposition

Cov (Bl, Bg) = Cov'"F 4+ CovPP + Cov!? 4 Cov™°C 4 CovN©



Squeezed bispectrum covariance

« Squeezed bispectrum Barreira (arXiv:1901.01243)

B; = Bm(ki,kéjsi), s; <K k;j, k;

e Covariance decomposition

Negligible

Cov (Bl, Bg) = Cov' " 4 Cov®P + Cov!* 4 Cov®°C 4 CovN©
Fully given by P(k) and its responses



Squeezed bispectrum covariance

« Squeezed bispectrum Barreira (arXiv:1901.01243)
/ /
B, = Bm(k‘@;, k., Si), s; K ki, k;

e Covariance decomposition

Negligible

Cov (Blg Bg) = Cov' " 4 Cov®P + Cov!* 4 Cov®°C 4 CovN©
Fully given by P(k) and its responses

The SSC term is negligible
In the squeezed limit.

Diagonal of Cov?? [Mpc/h]'?

0O 25 50 75 100 125 150 175 200
Triangle index



Responses on Sample Covariance

: : ) Solved ! Solved !
Off-diagonal covariance is o -
dominated by responses . | Covx(bi:62) = + T

Most of it ,

but small anyway!

121 G +SSC + cNG G + cNG

The unimportance of the cNG term indicates 10 ©*SSC €
its accuracy requirements are much 8
more relaxed that previously thought !

Wo

 Implementation for 3x2pt analyses is underway (stay tuned);
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