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why study clusters?

• they are gorgeous!

• excellent astrophysical laboratory
– ram pressure stripping

– tidal disruption

– galaxy harassment

– transformation from the “field’’ population to “red and dead”

• intriguing classes of objects
– cD, giant elliptical galaxies, luminous red galaxies

– intracluster stars

– radio galaxies

• powerful cosmological probes
– mass function, clustering/power spectrum, baryon fraction

– crucial to understand clusters before using them!



questions to be addressed

• how are cluster galaxies formed/assembled in the context of
hierarchical structure formation?

• redshift evolution of cluster galaxy populations? implication of
massive galaxy formation?

• what is the (radio-loud) AGN content of clusters? implication for
Sunyaev-Zel’dovich effect (SZE) cluster surveys?



methods and samples
• the mass of the clusters is important

– to obtain a fundamental length scale to normalize the galaxy radial
distribution ⇒ calculation of spatial distribution

– to estimate the cluster volume probed by the survey ⇒ luminosity
function (LF)

• X-ray is useful: mass estimate, centroid determination, ICM info
• use samples constructed from existing catalogs, requiring

clusters have measured TX or LX from ASCA, ROSAT, Chandra,
or XMM ⇒ estimate mass using M500-TX or M200-LX relations
– ensemble properties of cluster galaxies: 93 clusters at z<0.1

(K-band data from 2MASS)
– redshift evolution of scaling relations: 41 clusters at 0.1≤z≤0.9

(deep K-band imaging)

– luminous red galaxy (LRG) population in intermediate-z clusters: 47
clusters at 0.2≤z≤0.6 (optical data from SDSS)

– radio-loud AGN (RLAGN) content in clusters: 573 clusters at z≤0.2
(1.4GHz data from NVSS)

• “stack” clusters to enhance signal over background, which is
estimated statistically



questions to be addressed

• how are cluster galaxies formed/assembled in the context of
hierarchical structure formation?
– review some of the basic properties such as spatial distribution

within clusters, and LF

– dark matter halo formation and evolution well-understood
– seek for quantities that can be linked to the halo mass ⇒

observable-mass scaling relations

– implications of the galaxy evolution in clusters



cluster galaxy formation: spatial distribution

• clusters are of different sizes; use virial radius r200 to rescale radial distance
• Σ: surface density per unit “virial area”

• non-BCG galaxies well described by NFW profile
– c~3–4 for all galaxies; c~3–4 for red galaxies; c~1 for blue galaxies ⇒ color-density relation

– weak luminosity segregation

• including BCGs makes profile steeper, c~6

• lensing & X-ray observations suggest cluster-scale dark matter halos have c~5–10

Lin et al (2004)

no BCGs!



cluster galaxy formation: optical/near-IR LFs

• LF within r500; no BCGs

• all magnitudes in AB system

• red squares: red galaxies

     blue triangles: blue galaxies

     black circles: all galaxies

• use u-r=2.2 to separate blue
from red population

• galaxies become more
luminous toward longer λ

• red galaxies dominate over
blue ones in all bands
(number density ~30 times
higher down to M*)

• faint-end slope:

     red: –0.9; blue: –1.5; all: –1.1

Lin et al (in prep)



cluster galaxy formation: scaling relations

• recall Schechter function
     three parameters: α, M*, ϕ*

• fixing α=–0.9 for all clusters, from the
observed, background corrected galaxy
number and flux, we can solve for M* and ϕ*
⇒ can then integrate the LF to get total N
and L more luminous than e.g., MK=–21

• N and L correlate with cluster mass
– N∝M0.76

– L∝M0.82

– 30–35% fractional scatter

– regularity of cluster galaxy formation and
evolution processes

• why isn’t N proportional to M?
– high mass clusters not simply direct sum of

lower mass systems?

Lin et al (2004)



cluster galaxy formation: why is galaxy
number not proportional to mass?

• possible scenarios
– star formation efficiency higher in low mass clusters
– galaxy disruption more efficient in high mass clusters: tidal

processes, ram pressure, etc

• constraints from LFs and spatial distribution of most
and least massive clusters (no BCGs)
– very luminous galaxies appear only in most massive

clusters; lower mass clusters have higher abundance of
~M* galaxies

– evolving LMLF into HMLF:
• galaxy harassment, tidal stripping can remove ~40% of

galaxy mass (but less certain in light) (√?)

• ram pressure stripping more efficient in transforming
morphology (X)

• K-band insensitive to stellar aging (X)

• merger between brightest galaxies (√)

– galaxy spatial distribution does not depend on cluster
mass

• tidal interactions (X)
• ram pressure stripping (X)
• cannibalism (X)

• maybe: progenitors of high mass clusters differ from
z~0 low mass clusters?

Lin et al (2004)



effect of intracluster light

Lin & Mohr (2004)



questions to be addressed

• redshift evolution? implication of (massive) galaxy formation?
– are progenitors of present-day massive clusters differ from low

mass clusters at z~0?

– evolution of K-band LF and scaling relations out to z=0.9 for bulk of
cluster galaxies

– evolution of massive galaxies: LRG populations in clusters at
z=0.2–0.6 from Vikhlinin’s ROSAT PSPC 400 deg2 survey



redshift evolution:
LF & K*(z)

• 41 clusters at 0≤z≤0.9 with deep K-band
data (the “high-z sample”)

• apparent composite LFs suggest that a
simple stellar population formed in a
single burst at zform=1.5~2 (based on the
Bruzual-Charlot model) describes data
well

• we do not distinguish galaxy types in
composite LFs ⇒ inferred zform is an
average over all galaxies

Lin et al (2006)Lin et al (2006)

Lin et al (2006)



redshift evolution: scaling relations

• using the zform=1.5 BC model for evolution and k-
corrections to infer fluxes in restframe K-band

• for each cluster, calculate N and L for galaxies more
luminous than M*(z)+2 ⇒ to sample the same fraction
of the LF (take out passive evolution)

• infer the evolution of N–M correlation from the high-z
and nearby cluster samples; assuming

      N(M,z) = N0 (M/M0)
s (1+z)γ

      solving for N0, γ, and s (assuming s independent of z)

• the nearby cluster sample largely determines s=0.76
• when marginalized over s, γ=–0.03±0.27

• understanding the no-evolution:
– N(M,z) = V ϕ* Γ[α+1,Llow(z)/L*(z)]

– α and Llow/L* the same for all clusters

– clusters i and j: same mass, at zi and zj (zi>zj)
               ⇒ Vj>Vi; data suggest that ϕ*,i>ϕ*,j

– the increase in the galaxy number density (ϕ*) is offset by
the decrease in the virial volume at higher-z

Lin et al (2006)



redshift evolution: LRGs at 0.2≤z≤0.6
• why study LRGs?

– we just examined the evolution of the bulk of the
cluster galaxies; how about the massive ones?

• what are LRGs?
– massive, luminous, red, early type

– majority of stars formed at high redshift

– spectra characterized by strong break at 4000Å
• help redshift measurement

• selectable by color

• goals
– are their properties related to host clusters?

– do they show any redshift evolution?

• galaxy sample
– SDSS photometric catalog

– selecting LRGs via g-r and r-i colors, following
Padmanabhan et al (2005)

– z=0 restframe g-band magnitude –23.5≤Mg≤–21

– utilizing photometric redshift [δz/(1+z)≤0.03] for
cluster membership assignment

Padmanabhan et al (2005)



LRGs at 0.2≤z≤0.6:
scaling relation

• power-law fit to the distribution gives
NLRG∝M0.62±0.11

• defining a low-z comparison sample:
select massive galaxies with
luminosity cut (MK≤–25.6) that gives
same number density as LRGs

• for z<0.1 massive, K-band selected
galaxies, N∝M0.40±0.10 with similar
normalization as LRGs

• lessons from LRGs: both spatial
distribution and scaling relation are
similar to that of massive, K-band
selected cluster galaxies at z≤0.2

• no obvious redshift evolution

z<0.1

Ho et al (2006)



cluster galaxy formation:
star formation efficiency

• ensemble properties of galaxy
populations in clusters may be set
at z~1 or earlier

• another possibility to explain the
slope of the N–M relation is a
varying star formation efficiency:
massive halos form stars less
efficiently than lower mass ones

• look at the cold baryon fraction:
fraction of cluster baryons that are
in the form of stars (in galaxies)

• X-ray data from Mohr et al (1999)
and Sanderson et al (2003) for
~60 clusters and groups

• cold fraction decreases with
cluster mass



questions to be addressed

• what is the RLAGN content of clusters?
– radio and near-IR K-band LFs ⇒ radio-active fraction and duty cycle

– BCGs as radio-active galaxies

• clustering properties of RLAGNs

• implication for SZE cluster surveys?



radio-loud AGNs: motivation

• at low frequencies (e.g., ν≤30 GHz),
RLAGNs may overwhelm the SZE signal
from the cluster
– cosmological constraints based on cluster

abundance weakened if not properly account
for clusters lost due to AGNs

– realistic forecast for survey yields needs
accurate estimates of degree of contamination

• long been invoked as candidate source for
heating up the ICM

• need to study their abundance and relation
to the general cluster galaxy population:
radio LF (RLF) at 1.4 GHz, spatial
distribution, and duty cycle

• caution: at logP≤26, AGNs selected via radio
represent a different population from those
selected by optical emission lines (Best et al
2005)

image credit: F. Owen



radio-loud AGNs: radial distribution

• RLAGN distribution much more concentrated than galaxies,
c~30 ⇒ central region of clusters promotes AGN activity
(within “cooling radius”)

• being centrally located, BCGs have higher probability of being
radio-active

Lin et al (2004)

Lin & Mohr (2007) Lin & Mohr (2004)



• comparison of K-band LF for all galaxies and
radio galaxies (more powerful than a radio
luminosity threshold, e.g. ≥1024 W/Hz)

       ⇒ RAF: fraction of galaxies that are active in the
radio

• ~5% of galaxies more luminous than M* host
RLAGNs (~1.3% in the field); ~35% of BCGs are
radio-active

• cluster central region is special: RAF of central
galaxies 2–3 times larger than other cluster
galaxies of similar optical luminosity

• more powerful than log P = 23, RLF
dominated by RLAGNs; weaker sources
mainly star-forming galaxies

• density of cluster AGNs ~6x higher than
expectations from the scaled field value
⇒ another indication that RLAGNs favor
cluster environment

radio active fraction and radio LF

Lin & Mohr (2007) Lin & Mohr (2007)



radio-loud AGNs: optical-radio bivariate
luminosity distribution

• clearer picture of optical-radio
bivariate luminosity distribution

• cross-matching SDSS DR6 with
NVSS+FIRST surveys at 1.4 GHz
generates the largest radio
galaxy catalog to date: 9,300
RGs from ~215,300 galaxies to
Mr≤–20.5

• NOTE: not just cluster radio
sources

• radio luminosity ∝ (optical
luminosity)2

• projection on either axis
generates optical and radio LFs

Lin et al (in prep)



radio-loud AGNs: correlation function

• both galaxies and RLAGNs are
volume-limited
– both subject to same optical

luminosity cut (Mr≤–21.5)

– RLAGNs more powerful than
1023.47 W/Hz

• RLAGNs (red points) more
strongly clustered than galaxies
(blue points)

• clustering length comparable to
groups of galaxies (~10h-1Mpc)

• trend remains with further
color/luminosity cuts

Lin et al (in prep)



radio-loud AGNs: forecast for SZE
contamination

• extrapolate observed 1.4 GHz RLF to higher frequency by convolving the RLF
with the distribution of the spectral shape

• assume redshift evolution of RLF ∝(1+z)γ with γ=2.5

• compute RLAGN contamination in a Monte Carlo fashion:
– given cluster mass and redshift, expect 〈N〉 AGNs based on the RLF

– draw Poisson random number Np with mean of 〈N〉

– assign fluxes to Np  sources according to RLF

– for each redshift and mass, repeat the MC process for 105 times; estimate the
contamination fraction as the proportion of all clusters whose AGN fluxes are large
compared to the SZE flux: ΣSAGN ≥ q|SSZE|

• consider q=0.2 and 1.0

• advantage of our forecast: use of observed spectra of cluster radio galaxies
up to 43 GHz (Partridge et al 2007)

• caveat: redshift evolution of the RLF and the spectral shape are still unknown



radio-loud AGNs: forecast for SZE
contamination

• extrapolated RLFs have amplitudes much reduced compared to 1.4 GHz
• consider two degrees of contamination: 100% and 20%

– solid points: ΣSAGN ≥ |SSZE|
– open points: ΣSAGN ≥ 0.2|SSZE|
– fraction of contaminated clusters is small at all redshifts (red, magenta, blue: z=0.1, 0.6, 1.1)

Partridge et al (2007)Partridge et al (2007)



summary

• what sets the slope of N–M relation?
– mergers, tidal disruption, varying star formation efficiency

• the redshift evolution of cluster galaxy populations
– ensemble properties set by z=1

• the radio-loud AGN content of clusters?
– central regions of clusters promote AGN activity

• results mainly from
– Lin, Mohr, and Stanford (2004 ApJ 610, 745) — LF, scaling relations
– Lin & Mohr (2004 ApJ 617, 879) — BCGs
– Lin, Mohr, Gonzalez, and Stanford (2006 ApJL 650, 99) — cluster

galaxy evolution
– Ho, Lin, Spergel, and Hirata (2007, ApJ, submitted; 0706.0727) —

cluster LRG evolution
– Lin & Mohr (2007 ApJS, 170, 71) — radio sources in low-z clusters
– Partridge, Lin, et al (2007 ApJ, submitted) — spectral shape of radio

sources





Summary: How to Populate a Cluster?
 BCGs:

• Mainly located at cluster center

• Luminosity weakly correlates with cluster mass; growth of luminosity slower than the cluster as
a whole (overall importance of BCG in cluster luminosity content decreasing with cluster mass)

• High probability of being radio active

 Red and blue galaxies:
• Spatial distribution can be described by NFW profile; red galaxies more concentrated than blue

ones

• Space density of red galaxies much higher than that of the blue ones

• Mean spectral types approximated by E2 and Scd

• Red galaxy luminosity correlates well with cluster mass; not so much for blue light

 Radio-loud AGNs:
• Very concentrated (c~30) spatial distribution

• Number density of cluster radio sources ~6x higher than the expectation from the field

• Radio active fraction of cluster galaxies is higher than field galaxies of similar luminosity

• Central region of clusters promotes radio activity: Cooling instability? ICM confining pressure?

 Evolution to z~1:
• Cluster galaxies on average appear to form their stars at z=1.5–2 in a burst, and evolve

passively afterwards

• Mean number of galaxies shows no evolution with redshift; the increase in the galaxy number
density at higher-z is offset by the decrease in the virial volume



Mean Spectra

 Calculating luminosity density by integrating the LFs

 Place composite cluster at z=0.02 (e.g. Coma)

 Red galaxies described by an E2 SED

 Blue galaxies described by a Scd SED

 Can then use appropriate stellar M/L to obtain stellar mass

 May also infer mean star formation history from the spectra

red galaxies blue galaxies



questions to be addressed

• how are brightest cluster galaxies (BCGs) formed?
– special location within clusters

– LF, scaling relations

– clues on the formation from luminosity distribution and dark matter
halo merger history considerations



BCG formation

• how are brightest cluster galaxies (BCGs) formed?
– cooling flows (Fabian)

• existence of the flow

• color of the BCGs

– cannibalism (Ostriker): ~M* galaxies sink to the bottom of potential
and merge with the central galaxy

• multiple nuclei seen in BCGs

• dynamical friction time actually quite long for mergers

– rapid merger during cluster collapse and virialization (Merritt)
• demonstrated by N-body simulation (e.g., Dubinski)



BCG formation: observations

• X-ray emission peak as cluster center
• 45% of BCGs within 0.01r200; 75% within 0.06r200 ⇒ can use BCG

position as proxy of cluster center

• make the bright end of LF deviate from Schechter form

• Tremaine-Richstone test indicates they are not drawn from the same
population as the rest of the galaxies; likely made by mergers



BCG formation: scaling relations

• BCG luminosity correlates with cluster mass Lbcg∝M0.26

• formation history tied to that of host clusters?
• different mass scaling between total light from non-BCG galaxies and

BCGs (L∝M0.82)
– importance in total luminosity budget decreases with cluster mass
– ~50% in groups; few percent in most massive clusters



BCG formation• BCG must grow in luminosity, but
slower than the cluster itself

• luminosity distributions (LDs):
      25 least massive
      25 intermediate
      25 most massive
• mergers of ~M* galaxies enough to

produce BCGs in intermediate clusters,
but not enough for BCGs in high mass
clusters

• brightest galaxies in lower mass
clusters enough to make up ΔL

• ΛCDM supplies enough mergers
between clusters/groups

• possible evolution routes
– after a central galaxy forms, cannibalism

adds only little light
– it can grow by merging with normal (L*)

galaxies
– but most efficiently, merger with ex-

BCGs when parent cluster grows
hierarchically

BCG formation



• BCG luminosity weakly dependent on
cluster mass: Lb ∝ M0.26

• Recall that L (w/ BCG) ∝ M0.69±0.04 ⇒
importance of BCG luminosity
decreases with cluster mass

• Model of Vale & Ostriker can reproduce
both the Ltot-M and Lb-M relations

• Cooray uses these relations to
construct a conditional luminosity
function model

Lin & Mohr (2004)

Lin & Mohr (2004)



LRGs at 0.2≤z≤0.6: data & methods

• galaxy sample
– SDSS photometric catalog

– selecting LRGs via g-r and r-i colors, following Padmanabhan et al
(2005)

– z=0 restframe g-band magnitude –23.5≤Mg≤–21

– utilizing photometric redshift, typically of uncertainty δz/(1+z)≤0.03, for
cluster membership assignment

• cluster sample
– flux-limited cluster sample from the ROSAT 400 square degree survey:

a serendipitous cluster survey using archival PSPC images, covering
400 deg2 (Burenin et al 2006)

– 47 clusters (out of 266) with SDSS DR5 coverage, at 0.2≤z≤0.6

– LX available as proxy of cluster mass



LRGs at 0.2≤z≤0.6:
spatial distribution

• LRGs are concentrated toward
cluster center
– Including brightest LRGs, c~18

– excluding brightest LRGs, c~6

• LRGs at intermediate-z are
distributed within clusters
similar to that of massive
galaxies (M*–1; K-band
selected, no color cuts) in
clusters at lower redshifts

effect of brightest LRGs

comparison of
massive
galaxies in low and
intermediate-z

Ho et al (2006)


