A 2% Measurement of the BAO in SDSS DR7 using Reconstruction

Berkeley Cosmology Group Seminar

Tuesday October 25, 2011

Xiaoying Xu (UA)

Collaborators: D. Eisenstein (CfA), N. Padmanabhan (Yale), A. Cuesta (Yale), K. Mehta (UA)

Table of Contents

- Intro to Baryon Acoustic Oscillations (BAOs)
- SDSS DR7 LRG sample
- Uncertainties
- Toolkit
- Robustness of Fitting
- DR7 results
- Future BAO surveys

Table of Contents

 Intro to Baryon Acoustic Oscillations (BAOs)
 SDSS DR7 LRG sample
 Uncertainties
 Toolkit
 Robustness of Fitting
 DR7 results
 Future BAO surveys

What are BAOs?

What are BAOs? (cont'd)

Photons and baryons push out in a spherical sound wave.

Dark matter tries to pull material back in.

What are BAOs? (con'td)

Standing waves form in the fluid.

At recombination, their phases are imprinted on the photon and baryon distributions; these are the **baryon acoustic oscillations**.

What are BAOs? (cont'd)

What are BAOs? (cont'd)

The Acoustic Peak

- The 150Mpc scale marked by the location of the acoustic peak is known as the acoustic scale or sound horizon.
- The magnitude of this scale in linear theory is only affected by two factors: 1) the time of matter-radiation equality (set by Ω_mh²), 2) the value of Ω_bh². Both of these can be measured to sufficient accuracy from CMB data.
- > WMAP5 has measured the acoustic scale to 1.3% accuracy.
- Hence, it can be used as a standard ruler for measuring cosmological distances which can then be used to constrain various cosmological parameters.

Clustering Statistics

The Correlation Function

- ξ(r) = excess probability
 over a random distribution
 of finding two galaxies with
 a separation r.
- ξ(r) has a small peak at separations corresponding to the acoustic scale.
- To measure acoustic scale, fit model for ξ(r) to data.

Table of Contents

SDSS Survey

- Currently, one of the largest galaxy surveys in operation.
- Dedicated 2.5m telescope.
- SDSS II used a pair of spectrographs that could observe more than 600 objects simultaneously.

Luminous Red Galaxy Sample

Sky coverage: 7124 square degrees

The DR7 luminous red galaxy (LRG) sample:

- Redshift range: z=0.16-0.47 (1.4Gpc³/h³).
- Number density: approximately 20 objects per square degree.

Table of Contents

 Intro to Baryon Acoustic Oscillations (BAOs)
 SDSS DR7 LRG sample

Uncertainties

Toolkit

Robustness of Fitting
 DR7 results
 Future BAO surveys

Non-linear Evolution

Non-linear Evolution (cont'd)

Redshift Space Distortions

- We use redshifts to measure the positions of galaxies along the line-of-sight.
- The measured redshifts are affected by the motions of the galaxies.
- Hence, the measured redshift of any galaxy is the combination of cosmological redshift and an additional component due to the galaxy's line-of-sight velocity.
- This "extra" redshift gives rise to redshift space distortions which make the clustering of galaxies appear anisotropic.

Distortions (cont'd)

Distortions (cont'd)

Scale Dependent Bias

- We use galaxies as tracers of the underlying distribution of dark matter.
- However, galaxies only form in the most massive halos, so they are biased tracers.
- This bias is apparent as an offset between the matter correlation function and the galaxy correlation function.
- At large r, this offset is roughly constant; at small r, it has a scale dependence due to non-linear evolution.
- This scale dependence can be marginalized out from data using an appropriate fitting model.

Table of Contents

 Intro to Baryon Acoustic Oscillations (BAOs)
 SDSS DR7 LRG sample
 Uncertainties
 Uncertainties
 Toolkit
 Robustness of Fitting
 DR7 results
 Future BAO surveys

Tool Inventory

Reconstruction:

• Deals with non-linear structure growth.

Covariance matrix:

 Approximates errors on the correlation function when we perform our fits.

Fitting model and algorithm:

- Deals with other uncertainties.
- Measures the acoustic scale.

These require mock catalogues to:

- Validate fitting model and reconstruction technique.
- Serve as a basis for our covariance matrix algorithm.

LasDamas Mocks

- Simulation cosmology (at z = 0): $\Omega_{\rm m} = 0.25, \Omega_{\rm b} = 0.04, h = 0.7, n_{\rm s}$ = 1.0, $\sigma_{\rm g} = 0.8$
- 40 simulations of 1280³ particles in 2.4Gpc/h boxes
- Simulation halos populated according to LRG parameters =>160 mocks generated.

Reconstruction

- Non-linear structure growth smears the BAO peak and reduces its amplitude.
- Apply reconstruction to partially undo these effects.
- > To apply reconstruction:
 - Estimate the matter density field from observations.
 - Use Zel'dovich approximation to calculate 1st order displacement field using this density field.
 - Shift galaxies back along these displacement vectors, this should place them back near their linear theory positions.

Reconstruction (cont'd)

Reconstruction on LD

Reconstruction on LD $\xi(r_p,\pi)$

Covariance Matrices

 The covariance matrix calculated from the mocks is noisy, despite having 160 realizations.
 In a well-measured covariance matrix, these curves should

be smooth.

Covariance Matrices (cont'd)

Analytic Gaussian covariance matrix: $C_{ij} = \frac{2}{V} \int j_0(kr_i) j_0(kr_j) \left(P(k) + \frac{1}{n} \right)^2 \frac{k^2 dk}{2\pi^2}$ $P(k) = \frac{1}{2} \int_{-1}^{1} \left(1 + \frac{f}{b} \mu^2 \right)^2 \frac{F(\mu, k)}{FoG} P_m(k) d\mu$ Kaiser $(-1)^{2} P_m(k) d\mu$

$$P_m(k) = \left(P_{lin}(k) - Pn_w(k)\right) \exp\left(-\frac{k^2 \Sigma_{nl}^2}{2}\right) + Pn_w(k)$$

Acoustic Peak Smearing due to Non-linear Evolution

Covariance Matrices (cont'd)

Analytic Gaussian covariance matrix:

$$C_{ij} = \frac{2}{V} \int j_0(kr_i) j_0(kr_j) \left(\frac{P(k) + \frac{1}{n}}{\frac{1}{c_0}} \right)^2 \frac{k^2 dk}{2\pi^2}$$

Modified Gaussian covariance matrix:

$$C_{ij} = \frac{2}{V} \int j_0(kr_i) j_0(kr_j) \left(c_0 P(k) + c_1 \frac{1}{n} \right)^2 \frac{k^2 dk}{2\pi^2} + c_2$$

Modified Gaussian covariance matrix is smooth and fits mock covariances well => use it to fit the data.

Fitting Form

To measure the BAO scale, we fit using the model:

 $\xi_{fit}(r) = B^2 \xi_m(\alpha r) + A(r)$

Model acoustic peak smearing by applying a Gaussian smoothing to the power spectrum in Fourier space:

$$P_m(k) = \left[P_{lin}(k) - Pn_w(k)\right] \exp\left(-\frac{k^2 \Sigma_{nl}^2}{2}\right) + Pn_w(k)$$

A(r) is used to marginalize out broadband effects such as scale-dependent bias and redshift space distortions, it can also account for errors in the model cosmology.

Fitting Form (cont'd)

- We use α to
 parameterize the
 BAO scale.
- α>1 implies the BAO is shifted to smaller scales.
- α<1 implies the
 BAO is shifted to
 larger scales.

Fitting

Minimize χ² goodness of fit indicator to determine the α that gives the best-fit model:
 χ²(α) = [ξ_{fit}(r; α) - ξ_{data}(r)]^TC⁻¹[ξ_{fit}(r; α) - ξ_{data}(r)]
 Can also measure the probability distribution of α, Pr(α) as:
 Pr(α) ∝ exp (- χ²(α)/2)

Table of Contents

 Intro to Baryon Acoustic Oscillations (BAOs)
 SDSS DR7 LRG sample
 Uncertainties
 Toolkit
 Robustness of Fitting
 DR7 results
 Future BAO surveys

Fiducial Model

$$\xi_{fit}(r) = B^2 \xi_m(\alpha r) + A(r)$$

Model parameters:

• True LasDamas cosmology.

•
$$A(r) = \frac{a_1}{r^2} + \frac{a_2}{r} + a_3$$
.

- BAO smoothing scale $(\Sigma_{nl}) = 8Mpc/h$ before reconstruction, 4Mpc/h after reconstruction.
- Fitting range of 30-200Mpc.

Need to make sure that if we change any of the above parameters, we still obtain consistent measures of α.

Robust Fitting of the BAO Scale

Robust Fitting (cont'd)

LasDamas Results

- Mean $\alpha = 0.999 \pm 0.033$
- Median $\alpha = 1.003 \pm \frac{0.030}{0.034}$
- After reconstruction:
 - Mean α = 0.999 ± 0.020
 - Median $\alpha = 1.000 \pm \frac{0.019}{0.020}$

 Error on acoustic scale decreases from 3.3% to 2.0%, equivalent to increasing the survey volume by a factor of 2.7 (V ∝ σ⁻²)!

Table of Contents

 Intro to Baryon Acoustic Oscillations (BAOs)
 SDSS DR7 LRG sample
 Uncertainties
 Toolkit
 Robustness of Fitting
 DR7 results
 Future BAO surveys

DR7 Pre-Reconstruction

DR7 Post-Reconstruction

DR7 Results

- Before reconstruction:
 - $\alpha = 1.016 \pm 0.034$
- After reconstruction:
 - $\alpha = 1.004 \pm 0.019$
- Error on acoustic scale decreases from 3.4% to 1.9%, this is a 44% decrease (similar to LasDamas).
- Again, this is equivalent to the effects of tripling the survey volume, but reconstruction gives us this extra help for free!

Significance of Detection

DR7 Results (cont'd)

$$\alpha = \frac{D_v(z)/s}{D_{v_fid}(z)/s_{fid}}$$

> For z_{med} = 0.35 and a WMAP7 fiducial cosmology:

- D_{v,fid}(z_{med}) = 1340.2 Mpc (spherically averaged distance to z_{med})
- s_{fid} = 152.8 Mpc
- Before reconstruction:
 - $\alpha = 1.016 \pm 0.034 \Rightarrow D_v(z_{med}=0.35)/s = 8.86 \pm 0.30$
- After reconstruction:
 - $\alpha = 1.004 \pm 0.019 \Rightarrow D_v(z_{med}=0.35)/s = 8.76 \pm 0.17$

Cosmology with BAO

The MCMC algorithm:

- Select cosmology of interest and initial guesses for cosmological parameters.
- Calculate observables, such as α , using these parameters .
- Determine P_{current}(observables) using the probability distributions measured from data.
- Select candidate values for cosmological parameters in next step of chain, calculate P_{candidate}(observables).
- Use the ratio of P_{candidate}/P_{current} to determine if candidate parameters are a suitable next step.
- Continue until values for cosmological parameters converge.

 \succ ow₀w_aCDM without reconstruction:

- $\Omega_{\rm m} = 0.281 \pm 0.023$
- $H_0 = 69.0 \pm 2.5 \text{ km/s/Mpc}$

 \triangleright ow₀w_aCDM with reconstruction:

- $\Omega_{\rm m} = 0.274 \pm 0.017$
- H₀ = 69.7 ± 1.8 km/s/Mpc

 \geq 28% decrease in error on H₀, 26% decrease in error on $\Omega_{\rm m}$.

Decreases also seen for exotic cosmologies => reconstruction helps improve constraints on cosmological parameters!

Table of Contents

- > Intro to Baryon Acoustic Oscillations (BAOs)
 > SDSS DR7 LRG sample
 > Uncertainties
 > Toolkit
 > Robustness of Fitting
 > DR7 results
- Future BAO surveys

Future Surveys

	BOSS (SDSS III)	DES	LSST	WFIRST	BigBOSS
	Spectroscopic	Photometric	Photometric	Spectroscopic (space-based)	Spectroscopic
	Mainly BAO	BAO, SN, WL and clusters	BAO, SN, WL and clusters	BAO, SN and WL	Mainly BAO
1-10	2.5m	4.0m	8.4m	1.3m	4.0m
	2009-2014	Start 2012	Start 2020	Start 2020	????
1	1.5 million LRGs	300 million galaxies	Billions of galaxies	120 million galaxies	20 million galaxies
Y	10,000 sq deg	5000 sq deg	20,000 sq deg	11,000 sq deg	14,000 sq deg
XXX	0.2 <z<0.7< th=""><th>0.2<z<1.3< th=""><th>0.5<z<3.0< th=""><th>0.7<z<2.0< th=""><th>0.2<z<1.7< th=""></z<1.7<></th></z<2.0<></th></z<3.0<></th></z<1.3<></th></z<0.7<>	0.2 <z<1.3< th=""><th>0.5<z<3.0< th=""><th>0.7<z<2.0< th=""><th>0.2<z<1.7< th=""></z<1.7<></th></z<2.0<></th></z<3.0<></th></z<1.3<>	0.5 <z<3.0< th=""><th>0.7<z<2.0< th=""><th>0.2<z<1.7< th=""></z<1.7<></th></z<2.0<></th></z<3.0<>	0.7 <z<2.0< th=""><th>0.2<z<1.7< th=""></z<1.7<></th></z<2.0<>	0.2 <z<1.7< th=""></z<1.7<>

Conclusions

- We presented the first application of reconstruction to real galaxy data.
- > We applied a more careful treatment of the covariances.
- We showed that our fiducial model is robust against small changes in model parameters.
- We measured the DR7 BAO scale to 3.4% accuracy before reconstruction and 1.9% accuracy after reconstruction
- > Our BAO detection is more significant after reconstruction.
- BAO can improve constraints on cosmological parameters. Our cosmology results are consistent with ΛCDM.