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Optical: DES, Pan- X-ray: Chandra, Sunyaev-Zel dovich:
STARRS, LSST eROSITA, WEXT SPT, ACT, Planck

¢ How do we control various systematics to achieve

precision cosmology?
e How do we combine multi-wavelength observations
of galaxy clusters?




Cosmology from Galaxy Cluster Counts
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® In a survey, we measure cluster number 3 '
102

as a function of

- Mass proxy Mobs (e.g. optical richness, {1
X—ray properties, SZ signals, weak % / 7
lensing) 2 e
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- Redshift z , 3
f 1 )
e Then we infer # 781 Comoving .’ Volume |
; : ; g : 9 _ Abundance \ ’,' ElemenL_‘ o
- Mobs-M distribution (scaling relation, T [
0 1 2 3 1 2 3
scatter) . .
- Dark matter halo mass function
- Constraints on cosmological Figure: Haiman ‘01 (w=-1; -0.6; -0.2; no DE)

parameters

Also see Levine “‘02; Gladders 07; Rozo ‘08




Current Cosmological Constraints from Clusters

Mantz et al. ‘09 for ROSAT and Chandra
clusters; also see Vikhlinin ‘09
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Rozo et al. ‘09 for SDSS clusters; also see
Gladders ‘07 for RCS clusters




Outline

® Introduction
® Part I: Observable-mass distribution
- Self-calibration
- Follow-up mass calibrations
® Part II: Theoretical uncertainties
- Theoretical uncertainties in mass function and halo bias
- The effect of assembly history




PART 1: Observable-Mass Distribution

® Self-calibration
- Statistical errors in scatter
- Systematic errors in scatter
® Follow-up mass calibrations
- X-ray and SZ follow-up strategies
- Stacked weak lensing




A Cartoon Picture of Self-Calibration

Halo
Halo : Halo bias definition:
Counts Bias
b = 8halo / 6dark matter
Halo Mass Halo Mass
cat1% and other complications
s e.g., survey selection,
/ \

completeness, and purity
Distribution of M, at a given M

Observed | Observed
Cluster —\ Cluster
Counts Bias
s BT /
Cluster Mops Cluster Mops

Fitting scatter and other nuisance parameters to match both cluster counts and bias
will provide a consistency check and also improve the cosmological constraints.




Self-Calibration for Cluster Observable-Mass Relation

In a counts-in-cells analysis, counts and variance (halo bias) can self-calibrate
observable-mass distribution and improve dark energy constraints
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(M) / dMn(M)P(M°*|M) Figures from Lima and Hu ‘04, ‘05; also

b(M) o / AMb(M)n(M)P(M%|M) see Hu and Cohn ‘06; Holder ‘06, etc.




The Effect of Scatter: Statistical Errors

FoM vs. Scatter

1.00

e Tightening the prior of scatter is
more important than tightening the
scatter itself.

e Optical surveys tend to have
better statistics but also bigger
scatter -- thus the key is to constrain
the scatter!
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prior of scatter G,;,,(Gy,)

0.01

0.2 0.4 0.6 0.8
scatter G,

DES-like survey: cluster sample: My, = 10137 Mo /h and zmax = 1 (~10° clusters)
Dark Energy Figure of Merit: FoM := [o(wa) o(wp)]!
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The Effect of Scatter: Systematic Errors
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® [f our estimate in scatter
(Omodel) differs from the true
scatter (Otrue), the inferred
cosmological parameters will be
biased.

® The scatter needs to be
unbiased at 5% level to avoid
significant bias in the inference
of wo (similar for wa).

DES-like survey: cluster sample: My, = 10137 Mo /h and zmax = 1 (~10° clusters)
Coming soon: see Rozo et al. “10 (in prep) for various sources of error for scatter




External Mass Calibration from Follow-ups
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Follow up part of the sample in a bin 1.05
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Number of follow—up cluster observations

(measure the mass more precisely)

® The mean and variance of the follow-up mass measurements can further
constrain the O-M distribution. The variance of follow-up mass is
particularly crucial for constraining the scatter.

e Optimized follow-up strategy can further improve the FoM.

e With 100 follow-up clusters with perfect mass measurements, FoM can be
improved by 77%

Wu, Rozo, and Wechsler 2010, Ap]J, 713, 1207 (arXiv:0907.2690)
Also see Majumdar and Mohr ‘03, ‘04




Statistical Errors of Follow-up Mass Tracers

35[ —
(Cgbs » Op)

30E (1)=(0.5,0.1)
C (2)-(0.5,0.4)
[ (3)-(0.2,0.1)

N
)

FoM/FoMg,
[\
o

—
W
T T TT

_______ solid: fixed p and o;
— - dashed: free p and o;

10 100 1000
Number of follow—up cluster observations

® The FoM is barely degraded when the g is uncertain.

e Large scatter in follow-ups: FoM is slightly lower.

® Small scatter in optical richness: FoM is further improved,
because the (optically-selected) follow-ups are less noisy:.

Also see Cunha “08 for cross-calibration




Systematic Errors in Follow-up Mass Tracers
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e Systematic bias (Mf = d Mwe) can largely degrade the efficacy of follow-ups
it d is not well constrained.

® Modestly-sized program requires In d to be constrained at 5% level.

Also see Nagai ‘07, Rudd ‘09 for possible sources of systematic bias




Mass

Optimization: Different Strategies for X-ray and SZ

X-ray SZ
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e Clusters are weighted by their observational cost «< 1 / Flux
- X-ray follow-ups: Cost is most sensitive to redshift
- SZ follow-ups: Cost is most sensitive to mass
e Maximizing FoM at a given total observational costs:
- Simulated annealing
- Metropolis algorithm




Optimization: Different Strategies for X-ray and SZ

V2

SZ, 8y = 36.6%, cost = 778 (1400 ks with SPT), 160 clusters

X-ray

X-ray, 8, = 50.3%, cost = 5597 (727 ks with XMM), 140 clusters
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Small program:
~ 150 clusters

Large program:
~ 500 clusters

e X-ray: Small program: low-z clusters; large program: clusters span a redshift range
® SZ: Small program: massive clusters span over a redshift range; large program:

some less-massive clusters




FoM / FoM;,,

Optimization: FoM as a function of Telescope Time

Cost proxy < 1 / Flux; corresponding telescope time is shown on the top

XMM time (ks) SPT time (ks)
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e Optimizing the FoM at a given cost can significantly improve the FoM.

e To achieve a given FoM, the optimization can reduce the cost by an order of
magnitude over random selection.

e Slope changes are related to switch of strategies; blue points correspond to
the strategies in the previous slide.




Stacked Weak Lensing Mass Calibration

Constraints on Mean Mass Improvement in FoM
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e Stacked weak lensing can probe relatively low-mass systems and constrain the
mean mass at a given richness.

e Stacked weak lensing can constrain mean mass to 2%; this will improve FoM by
approximately a factor of 3.

e Further constraints on the scatter will boost the efficacy of stacked weak lensing.

Rozo, Wu, and Schmidt 2010, submitted (arXiv: 1009.0756)




Ongoing Projects

® Assessing the constraining power of the Wide Field X-ray
Telescope (WFXT) (with Adam Mantz)
- 20,000 deg? survey; partially core-excised Lx (10% scatter)
and Tx (10% scatter)
- 3,000 deg? fully followed up with core-excised Lx
® Optimizing the spectroscopic follow-ups for DES clusters
(with Brian Gerke)
- Velocity dispersion measurements from different scenarios
- Impact on dark energy constraints




Part II: Theoretical Uncertainties

® Theoretical uncertainties in mass function and halo bias
- Required precision for future surveys
- Comparison between different mass and redshift ranges
® The effect of halo assembly history
- The impact of secondary dependence of halo bias on
self-calibration
- Potential systematic errors in cosmology
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Current Calibrations of Halo Mass Function and
Halo Bias from N-body Simulations
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Tinker et al. ‘08, “10; also see Bhattacharya et al. ‘10




Systematic Errors Caused by Inaccurate Modeling
of Mass Function

Systematic error
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e How does the uncertainty in mass
function and halo bias impact the
cosmological constraints from clusters?
What are the required accuracies of
them in future cluster surveys?

e Current theoretical uncertainties in
the shape of mass function (~20%) can
lead to significant systematic errors in
future surveys. We compare Sheth-
Tormen ‘99 and Tinker ‘08 fitting
formulae as an example.

Wu, Zentner, and Wechsler 2010, ApJ, 716, 856 (arXiv:0910.3668)




Modeling the Uncertainties in Mass Function
and Halo Bias

MF A ol A B e .
o ® We discretize the mass function and
\ halo bias to describe the uncertainty in
\ a parameterization-independent way.
InM e The Tinker function is used as the
Bias fiducial model.
/ ® We include {i’s and g;’s as additional
5l 82| 83 nuisance parameters and study their
impacts.
4/
InM

Also see Cunha and Evrard ‘09 for the study of parameters in the Tinker function




Degradation in the Dark Energy Figure of Merit

DES, Free O-M, FoM,, = 17.1

0.10 ® DES assumptions:

M = 10137 Mo / h; Scatter = 0.4;
Area = 5000 deg?

® For DES, percent-level
accuracy on mass function and
halo bias is required to avoid
10% degradation in FoM.

® The requirement on halo bias

t=}

Uncertainty in bias G,

is less stringent.

0.10
Uncertainty in mass function o,

10% degradation
in FoM

Wu, Zentner, and Wechsler 2010, ApJ, 716, 856 (arXiv:0910.3668)




Uncertainty in halo bias
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Degradation in the Dark Energy Figure of Merit
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Uncertainty in mass function




The Effect of Survey Area
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Most stringent
requirement will
come from a full-sky
optical survey.

® Future full-sky optical surveys will require sub-percent level

accuracy in mass function.

® The required constraints are almost independent of Zmax and

assumptions of observable-mass distribution.

e Optical surveys have more stringent requirements than X-ray and

SZ surveys.




Comparing Bins
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e We tighten the MF in one bin at a time and calculate the
FoM improvement.

e This pattern reflects the CMB prior, cluster counts, and
degeneracy between scatter and MF.

e Improving the mass function accuracy in low redshift
and low mass will be the most beneficial.
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Relative bias?
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The Effect of Halo Assembly Bias

Halo bias also depends on secondary parameters, e.g. concentration.
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Wechsler et al. “06; Gao et al. ‘06, ‘07; Wetzel et al. ‘07;
Croton et al. ‘07; Dalal et al. ‘08 etc.

Wu, Rozo, and Wechsler 2008, Ap], 688, 729 (arXiv:0803.1491)
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Modeling the Mghs-M-c Distribution
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® Mbs-M: log-nomal with scatter oinm
® Mps-c: modeled with correlation coefficient r
e Estimated values: r=-0.5 for optical, r = 0.4 for SZ

Bonamente et al. ‘07; Wechsler et al. ‘06; Rudd ‘08




Systematic Errors Caused by Ignoring Assembly Bias
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e Blue: correct model that properly
includes the effect of assembly bias
® Red: biased parameter estimates

caused by ignoring assembly bias

e Optical: larger scatter + negative correlation
® 5Z: small scatter + positive correlation
® The impact is stronger for optical surveys

Wu, Rozo, and Wechsler 2008, Ap]J, 688, 729 (arXiv:0803.1491)




Ongoing Projects

® Re-simulations of halos in a Gpc Box (with Oliver
Hahn and Michael Busha)
- Characterizing assembly bias at high mass regime
- Aiming for studying large-scale halo bias and
small-scale substructure properties simultaneously
- Understanding the origin of scatter
e Small scale halo bias for constraining cluster mass
(with Jeremy Tinker and the LasDamas Collaboration)




Ongoing Projects

Re-simulations of Massive Halos in a Large Suite Dark Matter Simulations
Cosmological Volume (LasDamas)

LasDamas website:
http:/ /1ss.phy.vanderbilt.edu /lasdamas

McBride et al.




Summary

* The constraining power of galaxy cluster surveys will depend on how various
systematic errors are controlled. Here we assume DES as an example.
* PART I: Constraining Observable-Mass Distribution
- The follow-up mass tracers need to be unbiased at 5% level.
- Optimized X-ray and SZ follow-ups: less than 200 X-ray or SZ clusters can
improve the FoM by 50%.
- Stacked weak lensing can provide 2% constraints on mean mass, which will
improve FoM by a factor of 3.
v Note for observers: Follow-ups over a wide range of mass and redshift are the
most etfective!
® PART II: Theoretical Uncertainties in Modeling Halo Distribution
- A full-sky optical survey will require <1% accuracy in mass function to avoid
severe degradation in the FoM.
- Halo assembly bias needs to be properly modeled to avoid systematic errors in
cosmological parameters.
v Note for simulators: The low mass and low redshift regimes are the most
important to accurately calibrate mass function.




