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Early Structure Formation

Illustration Credit: NASA and A. Feild (STScI)

3



CMB and The Dark Ages

‣ With the WMAP results, the conditions at 
this epoch are very well calibrated.

‣ In CDM models, DM can clump on the free-
streaming scale.

‣ However, baryons experience pressure 
forces and must overcome the cosmological 
Jeans mass before collapsing.

‣ Residual free electrons that exist after 
recombination aid the formation of molecular 
hydrogen.

Credit: NASA/WMAP Science Team
Spergel et al. (2003, 2006)

Saslaw & Zipoy (1967), Peebles & Dicke (1968), 
Tegmark et al. (1997)
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The First Stars

‣ Various computational techniques have 
calculated and verified that the first stars are 
massive (30 - 300 M⊙) and isolated.

‣ L ~ 106 L⊙, ~1050 ionizing photons / sec

‣ Lifetime ~ 3 Myr

‣ H2 is the main coolant, which is easily 
dissociated by distant sources of radiation.

‣ Provide the first ionizing radiation and first 
metals to the Universe.

Viz: Kähler, Wise, & Abel

Abel et al. (2002), Bromm et al. (2002), Yoshida et al. (2003)

Schaerer (2002)

Dekel & Rees (1987)
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The First Stars

Heger et al. (2003)
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The First Galaxies

‣ The transition from primordial stars 
to “normal” star formation is 
determined by the nature of the 
stellar population.

‣ Clustered and metal-enriched 
(Salpeter IMF) stellar population

‣ Traditionally halos with Tvir > 104 K 
are considered (proto)galaxies, 
where gas can cool and collapse 
through hydrogen lines.

‣ H2 cooling is enhanced by the free 
electrons created from this 
ionization in the first stars and 
galaxies.

B
orne et al. (2001)

Rees & Ostriker (1977), White & Rees (1978)
Spitzer (1978)

O’Shea et al. (2005)
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Observational Motivations

‣ z ~ 6 SMBHs have up to 109 M⊙

‣ Gunn-Peterson troughs observed 
in z > 6 QSOs

‣ WMAP electron scattering optical 
depth indicates a reionization of z ~ 
10 if a sudden reionization is 
assumed.

‣ Halo and dwarf galaxy stellar 
metallicities

‣ Lyman alpha metallicities Credit: SDSS

Becker et al. (2001), Fan et al. (2002)

Page et al. (2006)

Songaila & Cowie (1995), Songaila (2001)

Tolstoy et al. (2004), Qian & Wasserburg (2005)
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Theoretical Motivations

‣ Hierarchical structure formation – 
the dynamics and history of smaller 
galaxies influences all later objects.

‣ Currently, observations only probe 
the most massive objects at z > 6.

‣ Protogalaxies are responsible for 
most of reionization in many semi-
analytic models.

‣ How does the transition from 
primordial to “normal” star 
formation occur?  Metal mixing 
may play a large role in this 
determination.

Peebles & Dicke (1968), White & Rees (1978)

W
echsler et al. (2002)

Cen (2003), Ciardi et al. (2003), Ricotti & Ostriker (2003)
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Standard Galaxy Formation Model

‣ White & Rees (1978) set the stage 
for standard galaxy formation 
models by embedding galaxy 
formation within hierarchical 
structure formation.

‣ Expanded by White & Frenk (1991) 
to include better calibrated star 
formation models and metallicity 
effects.

‣ DM and baryons are treated as 
solid body rotators.

‣ Star formation in a rotationally 
supported disk.

H + He

H2

B
arkana &

 Loeb
 (2001)

e.g. Loeb & Rasio (1994), Mo et al. (1998)
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Simulation Setup

‣ enzo – Adaptive Mesh Refinement

‣ Refine on dark matter and gas 
densities and resolve the Jeans length 
by at least 16 cells.

‣ 22 179 grids

‣ 74 000 000 (4203) unique cells

‣ Hydrogen and helium cooling only

‣ 1.5 comoving Mpc box

‣ Initial redshift = 120

11



Zoom by a factor 1012

Dynamic range of 1015 in length and 1025 in density, 41 levels of refinement
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Turbulent Collapse within the 
Standard Galaxy Formation Model

‣ Mass = 3.6 x 107 M⊙, Tvir =  9900 K, z = 
16.8

‣ There is no rotationally supported disk, 
but a thick, pressure supported disk 
with a radius of ~50 pc.

‣ 105 M⊙ in the central parsec becomes 
gravitationally unstable and has a Mach 
number of 2-3.  We expect a SMBH to 
form in this case.

‣ No fragmentation down to sub-solar 
scales.

‣ Central collapse occurs before any 
fragmentation in the disk.

3 pc

Loeb & Rasio (1994), Bromm & Loeb (2003), Spaans & Silk (2006)
Begelman et al. (2006), Lodato & Natarajan (2006)

Density
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Turbulent Collapse within the 
Standard Galaxy Formation Model

‣ Baryons undergo violent relaxation 
similar to DM.

‣ Maxwellian (not a solid body 
rotator!) velocity distribution

‣ Angular momentum segregation.  
Due to Rayleigh’s inviscid rotational 
stability argument:

‣ Only the lowest AM gas filters to the 
central parsec.

‣ Afterwards, gravitational bar 
instabilities.
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Turbulent Collapse within the 
Standard Galaxy Formation Model

‣ Whether the central object be a 
starburst or SMBH, its feedback will 
have grand consequences on later star 
formation within the halo / disk.

‣ Ignoring H2 chemistry and primordial 
star formation made this simulation 
possible.

‣ This may never happen in nature, but it 
provides a good testbed for turbulent 
collapses and what the standard 
simulations of galaxy formation should 
find.

‣ What have we learned in this stage?  
The halo is turbulent and not rigidly 
rotating.  It centrally collapses without 
fragmentation before disk formation.

1.7 kpc

Density
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Molecular Hydrogen Cooling

H + He

H2

B
arkana &

 Loeb
 (2001)

‣ H2 cooling is efficient to 300K at high 
densities.

‣ Easily dissociated by (Lyman-Werner) 
radiation between 11.2 – 13.6 eV.

‣ Soft UV backgrounds and nearby 
sources are important to quantify.

‣ Primordial star formation is not halted 
by this radiation but only delayed.

‣ The halo mass required to cool and 
collapse increases with the 
background intensity.

Machacek et al. (2001), Wise & Abel (2005)

Field et al. (1966), Stecher & Williams (1967)
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Molecular Hydrogen Cooling
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‣ Soft UV backgrounds and nearby 
sources are important to quantify.

‣ Primordial star formation is not halted 
by this radiation but only delayed.

‣ The halo mass required to cool and 
collapse increases with the 
background intensity.

H + He

H2

Machacek et al. (2001), Wise & Abel (2005)

Redshift

100 M⊙
500 M⊙

Field et al. (1966), Stecher & Williams (1967)

W
ise &

 A
b

el (2005)
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H2 Cooling Simulations

No UV Background
J = 10-22 

UV Background
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H2 Cooling Simulations

Density 1.7 kpc

z = 31.1 z = 28.3 z = 24.4

z = 23.4 z = 21.1 z = 16.8
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H2 Cooling Simulations

Temperature 1.7 kpc

z = 31.1 z = 28.3 z = 24.4

z = 23.4 z = 21.1 z = 16.8
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H2 Cooling Simulations
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H2 Cooling Simulations

‣ Even in the worst case scenario with no residual electrons and a soft UV 
background of J = 10-20, we see halos cooling and collapsing before 
virial temperatures reach 104 K.

‣ Critical minimum masses are ~3x (~5x with no UV background and no 
residual electrons) smaller than previously thought.

‣ Due to the exponential nature of Press-Schechter formalism, this results 
in an order of magnitude increase of protogalaxies.
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H2 Cooling Simulations

‣ These halos can cool by H2 in such extreme 
conditions due to the excess electrons 
created by collisional ionization.

‣ In this mass range, a halo with µ = 1.22 and
Tvir = 7000K only needs 20% of the mass to
virially heat gas to 104 K.

‣ This could result in earlier and more abundant galaxy formation.

‣ Semi-analytic models of reionization usually use minimum mass of 
different populations of stars.  The gap between protogalaxies and 
primordial stars is only a factor of ~3-5.

‣ Perhaps a smooth transition occurs from H2 to Lya cooling.  However, 
metallicity should govern the transition from isolated to clustered star 
formation.

Tvir =
µmpV

2
c

2k

Electron Fraction
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Primordial Star Formation and 
Feedback

‣ With adaptive ray tracing and an optically 
thin, 1/r2 Lyman-Werner radiation field, we 
studied the radiative transfer from a single 
primordial star.

‣ Our radiative transfer is coupled to the 
hydrodynamics, chemistry, and energy 
solvers.  MPI Parallelized.

‣ When the results are radially averaged, 
they agree with previous 1D calculations 
very well.

‣ We see cometary structures and 
shadowing in our 3D simulation, similar to 
Galactic star forming regions.

Density Temperature

Abel et al. (2006)
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Primordial Star Formation and 
Feedback

Density Temperature
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Photorealistic volume rendering of a primordial stellar lifetime and SN
Colors correspond to the gas’ blackbody spectrum

Hardware accelerated rendering at 10 fps

28



Primordial Star Formation and 
Feedback

Density Temperature
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Primordial Star Formation and 
Feedback

Radiative Transfer Standard Model

4.5

1.5

Temperature

30



Primordial Star Formation and 
Feedback

‣ Only 1 in 200 photons contribute to 
reionization due to high 
recombination rates at high-z.

‣ As stars form in larger mass halos, 
the effective escape fraction 
decreases and the radiation 
becomes more anisotropic.

‣ Excess electrons in relic HII regions 
result in positive feedback.

‣ With merger trees in the standard 
model, we only expect 8 primordial 
stars forming.  However, we see 
twice as many in the full radiative 
transfer case.
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O’Shea et al. (2005)
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‣ Pair instability supernovae case – 
M = 170 M⊙, Mej = 81 M⊙

‣ The metals from these SNe enrich 
both the IGM and nearby halos.

‣ Enrichment of dense structures 
require longer times since metals 
must mix, whereas in the voids, 
they freely expand.

‣ The 2nd star forms on the SN shell 
and is metal enriched to ~10-6 
solar metallicity.

Primordial Star Formation and 
Feedback
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Primordial Star Formation and 
Feedback

Density / Metallicity
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‣ Decreased baryon fraction 

‣ Increased spin parameter – altered angular momentum distribution

‣ Metal Enrichment

‣ Accretion of pre-heated gas

Effects on the Protogalaxy

Baryon Fraction Spin Parameter Metallicity

Standard 13.5% (12.6%) 0.010 (0.047) N/A

Radiation Only 10.6% (6.3%) 0.022 (0.094) N/A

+ SNe (6.9%) (0.099) (–2.5)

Values given at z = 16.8 (19.7)

35



Effects on the Protogalaxy

Standard ModelRadiative Transfer
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Effects on the Protogalaxy

MetallicityTemperatureDensity
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Physical Models

‣ Formation criteria are an extended version of Cen & Ostriker (1992)

‣ Original: Converging velocity, Jeans unstable, overdense, cooling 
rapidly

‣ Added: H2 fraction must exceed 0.1%, metallicity must not exceed 
10-3 solar.  Removed: Jeans unstable

‣ When a cell reaches these criteria, a particle is formed and mass is 
removed from the grid in a sphere that has twice the mass of the star.

‣ Fully automatic – no manual star insertion required.

‣ As of now, all stars have equal mass and is user-defined.

Primordial Star Formation
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Physical Models

‣ When the primordial star is between 140 and 260 M⊙, the star 
completely destroys itself and explodes with 1051 – 1053 ergs.

‣ Nearly the entire helium core is converted into metals (e.g. 50 M⊙ of 
56Ni for a 260 M⊙ star!).

‣ Energy and metals are injected into a sphere of radius 1 pc that is 
centered where the star exists.

‣ Baryons are returned to the computational grid in this sphere.

Pair Instability Supernovae

Mmetals ≈

13

24
(M! − 20M!)

Heger et al. (2002)

E = ρ0ε0Vcell + ρSN εSNVcell ε′ =
E

ρtotVcell

=
ρ0ε0

ρ0 + ρSN

+
ρSN εSN

ρ0 + ρSN
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Physical Models

‣ Radiative transfer is computed using a 
novel ray tracing technique.

‣ We require at least 5 rays per cells.  Rays 
are split when this criterion is not met.

‣ Direction of the rays and splitting are 
determined by HEALPix.

‣ Fully integrated and coupled with the 
hydrodynamic, chemistry, and energy 
solvers in enzo.

‣ Parallelized with MPI and dynamically load 
balanced.  Computational time is 
comparable with the hydrodynamic 
calculations.

Adaptive Ray Tracing

kph =
∑

rays

Ir[1 − exp(−δτ)]

Vcell

dnH

dt
= krecnpne − nHne − nHkph
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Physical Models
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Summary
‣ Standard galaxy formation model – 

hydrogen and helium cooling

‣ Turbulent collapse to a central object 
with a mass of 105 M⊙ without a 
rotationally supported disk.

‣ No fragmentation down to sub-solar 
scales.

‣ This full scenario may never occur in 
nature.

‣ Molecular hydrogen cooling and 
radiation backgrounds

‣ Halos can cool and collapse with Tvir 
< 104 K even in extreme cases.

‣ Protogalaxy formation could begin 
earlier and more frequently than 
previously thought.

‣ Primordial Star Formation and 
Feedback

‣ In minihalos, baryons are expelled, 
leaving a 1 cm-3 ambient medium.

‣ 1 in 200 photons contribute to 
reionization

‣ Positive feedback in relic HII results in 
twice the number of primordial stars.

‣ Metal mixing is dependent on the 
structure.

‣ Effects on the Protogalaxy

‣ Lowers baryon fractions

‣ Increases angular momentum ~2x

‣ Metal enrichment

‣ Accretion of pre-heated gas
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‣ Increases angular momentum ~2x

‣ Metal enrichment

‣ Accretion of pre-heated gas

Still many outstanding questions about galaxy 
formation.

Magnetic fields?  Dust?  Transition to “normal” star 
formation?  BH accretion and merging?  Starburst or 

SMBH or both?

Questions?
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